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Abstract: The synthesis of the first conjugates of acridine with cobalt bis(dicarbollide) are reported.
A novel 9-azido derivative of acridine was prepared through the reaction of 9-methoxyacridine with
N3CH2CH2NH2, and its solid-state molecular structure was determined via single-crystal X-ray
diffraction. The azidoacridine was used in a copper (I)-catalyzed azide-alkyne cycloaddition reaction
with cobalt bis(dicarbollide)-based terminal alkynes to give the target 1,2,3-triazoles. DNA interaction
studies via absorbance spectroscopy showed the weak binding of the obtained conjugates with DNA.
The antiproliferative activity (IC50) of the boronated conjugates against a series of human cell lines
was evaluated through an MTT assay. The results suggested that acridine derivatives of cobalt
bis(dicarbollide) might serve as a novel scaffold for the future development of new agents for boron
neutron capture therapy (BNCT).

Keywords: acridine; cobalt bis(dicarbollide); synthesis; DNA-interaction; antiproliferative activity

1. Introduction

Boron neutron capture therapy (BNCT) is a binary therapeutic method based on the
nuclear capture reaction that takes place when the stable isotope 10B is irradiated with
neutrons to release high-energy α-particles and 7Li nuclei [1,2]. The most important re-
quirements for BNCT agents are (1) low toxicity; (2) high tumor uptake (~20–35 µg 10B)
and low normal tissue uptake, with a sufficient tumor/normal tissue boron concentra-
tion ratio of >3:1; and (3) relatively rapid clearance from the blood and normal tissues,
and persistence in the tumor for at least several hours during irradiation with a neutron
flux [3–6]. Since α-particles have very short pathlengths in biological tissues (5–9 µm), their
destructive effects are practically limited to cells that contain boron. In theory, α-particles
can selectively destroy not only tumor cells, but also adjoining normal cells. Because BNCT
primarily is a biologically, rather than physically, targeted type of particle radiation therapy,
it offers the possibility to selectively destroy tumor cells without affecting the normal cells
and tissues of an organism. The requirement, however, is that sufficient amounts of 10B
and thermal neutrons are delivered to the site of the tumor.
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Therefore, polyhedral boron hydrides, such as cobalt bis(dicarbollide) [3,3’-Co(1,2-
C2B9H11)2]−, containing eighteen boron atoms in the molecule and characterized by out-
standing chemical and thermal stability and the availability of convenient modification
methods [7,8], are good candidates for the design of BNCT agents. Cobalt bis(dicarbollide)
as a sodium salt demonstrates good water solubility and low toxicity both in vitro [9,10]
and in vivo [9,11]. In particular, it does not show acute toxicity when intravenously [9]
or intraperitoneally [11] injected into wild-type mice. It was also found that cobalt
bis(dicarbollide) can pass directly through lipid membranes [12–14] and accumulate in
cells without disrupting membrane integrity [10].

Calculations have shown that the radiobiological effectiveness of the boron neutron
capture reaction [10B(1n,4He)7Li] can be significantly enhanced when it occurs in the cell
nucleus rather than in the cytoplasm or the cell membrane [15]. Boron accumulating in the
cell nucleus is much more efficient in cell killing than the same amount of boron when it is
uniformly distributed. Consequently, when the BNCT drug is localized in the cell nucleus,
a lower concentration is required [16]. These data have implications for the choice of boron
carriers in neutron capture therapy.

This leads to an interest in DNA-binding BNCT agents, such as DNA intercalators (acri-
dine, phenanthridinium, naphthalimide, and others) [17–27]. The first boron-containing
acridine was synthesized by Snyder and Konecky and contained two aryl dihydroxyboryl
groups [28]. This compound was too toxic to be used as a BNCT agent, but it led to the
synthesis of the first carborane-based acridines [29]. Although these latter compounds
were less toxic and achieved higher concentrations in tumors compared with the normal
brain and blood, these values were significantly lower than those found in the liver, kid-
ney, and spleen. Later, it was proposed to introduce additional hydrophilic groups into
the carborane part of the molecule in order to improve its bioavailability [30]. Recently,
synthesis of a series of acridines modified with carborane clusters and the evaluation of
their DNA-binding ability and cytotoxicity has been described [31]. Also recently, one
example of boronated acridine has been reported in which the boron moiety is cobalt
bis(dicarbollide). This compound was synthesized through the reaction of 9-aminoacridine
with a 1,4-dioxane derivative of cobalt bis(dicarbollide) [32].

In this contribution, we describe the synthesis of a series of novel 9-aminoacridine
derivatives with the cobalt bis(dicarbollide) moiety as potential candidates for BNCT via
the Cu(I)-catalyzed 1,3-dipolar [3 + 2] cycloaddition reaction of alkynes to azides (“click”
reaction) as well as the evaluation of their antiproliferative activity and DNA interaction.

2. Results and Discussion

2.1. Synthesis of N9-Azidooacridine 2

9-Aminoacridine derivatives are an interesting group of heterocyclic compounds
whose chemical structure causes them to have a variety of biological activities [33,34].
Thus, it was found that 9-aminoacridines can selectively accumulate in cell nuclei and
other cellular organoids containing nucleic acids. Earlier studies on 9-aminoacridine have
shown that this compound intercalates between the base stacks into a DNA double helix.
It is assumed that the 9-aminoacridine with its 9-amino group lies in the minor groove
and the 4- and 5-positions of the acridine ring are oriented toward the major groove [35].
It should also be noted that the literature provides information that the cytotoxicity of
acridine derivatives is related to the presence and nature of various types of substituents
at the 9-amino group of the acridine heterocycle. Thus, the substitution of one of the
hydrogen atoms of the amino group in 9-aminoacridine leads to a decrease in the toxicity
of substances [36].

We decided to synthesize boron-containing acridine derivatives with the introduction
of the cobalt bis(dicarbollide) moiety through the “click” reaction. Among the methods for
obtaining bioconjugates, the “click” reaction is widely used, leading to the formation of
1,2,3-triazoles [37–39]. Earlier, the “click” reaction was successfully used to obtain a wide
range of conjugates of cobalt bis(dicarbollide) with chlorine e6 [40], nucleosides [41], and
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cholesterol [42]. In the present work, we used the “click” reaction to obtain new conjugates
of the cobalt bis(dicarbollide) with acridine. At the start of our study, only a few examples
of known boron-containing acridines were represented by carborane derivatives [29,31],
while the first example of conjugate of acridine with cobalt bis(dicarbollide) was reported
very recently, and it was prepared through the direct reaction of 9-aminoacridine with the
1,4-dioxane derivative of cobalt bis(dicarbollide) [32].

Thus, we prepared the azido derivative of acridine which can be used for conjugation
with acetylenic derivatives of cobalt bis(dicarbollide). The reaction of 9-methoxyacridine 1
with 2-azidoethanamine hydrochloride in acetonitrile in the presence of Et3N upon reflux
for 17 h results in N9-azidoacridine hydrochloride 2, which was isolated as a water-soluble
pale yellow crystalline solid after crystallization from ethanol in 76% yield (Scheme 1).
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The synthesized azido derivative of acridine 2 was characterized using the methods
of 1H and 13C NMR spectroscopy, IR-spectroscopy, and high-resolution mass spectrometry
(see Supplementary Materials). In the 1H-NMR spectrum, the signals of the methylene
groups are observed at 3.63 and 3.72 ppm, and the characteristic signals of the acridine core
2 are observed in the range of 6.96–7.61 ppm. The IR spectrum of compound 2 exhibits an
absorption band characteristic of the N3 group at 2065 cm−1.

2.2. Single-Crystal X-ray Diffraction Studies of N9-Azidoacridine 2

The solid-state structure of 9-azidoacridine 2 was determined through a single-crystal
X-ray diffraction study (Figure 1). Crystals of 2 suitable for single-crystal X-ray analysis
were grown via crystallization from ethanol.
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Figure 1. The independent unit in crystal of 2 in the representation of non-hydrogen atoms as
probability ellipsoids of atomic displacements (p = 0.5). The H-bond is shown by a dotted line.

The independent part of the unit cell of 2 contains an H-bonded contact ionic pair: the
chloride anion and the protonated substituted acridine as a cation. According to a Cam-
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bridge Structural Database [43] search, the structure of 2 is one of many known examples
of protonated acridine salts [44–48]. Note that in all these structures, the acridinium cation
is nearly flat, while this is not the case for 2, where the angle between mean-squared planes
composed of the carbon atoms of two lateral hydrocarbon rings is 21.6 (2)◦. Moreover, the
N2 nitrogen atom in 2 is significantly shifted out of the plane of the central acridine cycle:
the non-bonding N1. . .C7-N2 angle equals 167.0 (1)◦. Considering the opposite directions
of the displacement of the substituent and the lateral acridine cycles from the mean-square
acridine plane, one can suppose the presence of steric repulsion between them. Indeed,
there are several rather short H. . .H contacts within the cation; with the normalization of
X-H bond lengths, the distances between the hydrogen atoms at the C5 and C9 atoms and
the hydrogen atoms at the N2, C14, and C15 atoms are less than 2.05 Å.

The role of steric repulsion is supported by the geometry optimization performed
for the isolated cation on the PBE0-D3/def2TZVP level. The relaxed structure is heavily
distorted even without the influence of media effects: the mentioned interplane angle
is 12.1◦ and the N1. . .C7-N2 angle equals 165.8◦. Overall, both the relaxed isolated and
crystal structures of cation 2 are quite similar (the r.m.s. difference for non-hydrogen atoms
does not exceed 0.12 Å, Figure S1). What is noteworthy is that this conformation is indeed
unfavorable for the acridine moiety: according to the calculations for the unsubstituted
acridinium cation, the energy of the distorted conformation (constructed on the basis of
that in 2 with the optimization of only hydrogen atoms) is 6.3 kcal·mol−1 higher than that
in the fully relaxed structure. The electronic structure of the isolated cation 2 was then
analyzed using the real space methods to determine the role of interatomic contacts in the
(de)stabilization of the cation’s conformation.

According to the analysis of non-covalent interactions based on the reduced den-
sity gradient (RDG) and sign (λ2)·ρ (r) functions [49] (λ2—intermediate eigenvalue of
electron density Hessian), there are a number of regions having low RDG values, which
indicate the presence of non-covalent interactions in the area between the substituent and
the acridine moiety. In particular, the RDG/sign (λ2)·ρ (r) plot (Figure S2) and the corre-
sponding 3D isosurface plot (Figure 2, left) demonstrates the regions potentially having
(1) rather strong non-covalent interactions between the H2N and H5 atoms and between
the H9 and H14B atoms (the negative λ2 sign corresponds to the accumulation of electron
density), (2) weak Van der Waals interaction between the N5 and H5 atoms, and (3) forced
interactions between the H9 and H15A atoms, between the H9 and N2 atoms, and between
the N2 and C5 atoms, all formed due to steric effects (the positive λ2 sign corresponds to
the electronic charge depletion). The bonding nature of the dihydrogen H2N. . .H5 and
H9. . .H14B contacts as well as of the weak N5. . .H5 contact is confirmed by the presence
of (3, −1) critical points of electron density between corresponding topological atoms
(Figure 2, right) that is the real space manifestation of preferred exchange–interaction chan-
nels [50,51]. Note that the net energy of these bonding non-covalent interactions estimated
from the interatomic surface integrals of electron density [52] equals −7.1 kcal·mol−1,
which is in exceptionally good agreement with the loss of energy occurring upon the
distortion of acridine moiety conformation (see above). The main contribution (−3.6 and
−3.2 kcal·mol−1) arises from the dihydrogen bonds, whereas the energy of C-H. . .N in-
teraction is less than 0.3 kcal·mol−1 in magnitude. Thus, the steric repulsion between the
substituent and acridine fragments leading to the pronounced distortion of the aromatic
fragment is compensated by two dihydrogen bonds.

Finally, the crystal packing of 2 is expected, considering the presence of two strong
proton donors in the cation. Namely, cation moieties are aggregated into the infinite chains
by rather strong H-bonds between the N-H groups and chloride anions (N. . .Cl 3.131 and
3.156 Å, ∠ (NHCl) with the normalization of N-H bond lengths 171.3◦ and 156.4◦, Figure 3).
Due to their geometry, these H-bonds, together with weaker C-H. . .Cl contacts, can ad-
ditionally stabilize the distorted structure of the cation. The abovementioned chains are
bound together through numerous weaker interactions such as π. . .π stacking interactions
between acridine moieties, C-H. . .Cl hydrogen bonds, and C-H. . .π interactions.
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2.3. Synthesis of Cobalt Bis(dicarbollide)-Acridine Derivatives with 1,2,3-Triazoles 7–10

One of the important goals of BNCT, as already mentioned, is the synthesis of com-
pounds which provide higher accumulation of boron in tumor than the clinically used
compounds. This can be achieved through using boron clusters with a high content of
boron atoms in the molecule, such as cobalt bis(dicarbollide) [6,53]. In this contribution,
the “click” reaction was proposed to combine the cobalt bis(dicarbollide) cluster, provid-
ing a high content of boron atoms in the molecule, and the acridine system, providing
the delivery of the boron component to the cell nucleus due to intercalation between
DNA base stacks. Moreover, through changing the type and the size of a spacer between
cobalt bis(dicarbollide) cluster and acridine, it is possible to control, to some extent, the
hydrophilic/hydrophobic balance of the compounds.

The obtained N9-azidooacridine 2 was used for the synthesis of target conjugates of
cobalt bis(dicarbollide) with acridine 7–10 (Scheme 2). The acetylenic derivatives of cobalt
bis(dicarbollide) 3–6 were prepared through the nucleophilic cleavage reactions of the
corresponding cyclic oxonium derivatives of cobalt bis(dicarbollide) with 2-propyn-1-ol
and 3-butyn-1-ol [40,54]. The “click” reactions were carried out refluxing boron-containing
acetylenic derivatives 3–6 with the N9-azidoacridine 2 in ethanol for 2 h in the presence of
CuI and diisopropylethylamine (DIPEA). The desired triazoles 7–10 were isolated as cesium
salts via precipitation with CsCl from aqueous acetone followed by column chromatography
on silica using a CH2Cl2-CH3CN mixture (70–75%) as eluent.
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Scheme 2. Synthesis of conjugates of cobalt bis(dicarbollide) with acridine 7–10.

The conjugation products were characterized via 1H-, 11B-, and 13C-NMR; IR-spectroscopy;
and high-resolution mass spectrometry (see Supplementary Materials). The purity of the
obtained compounds was confirmed via chemical analysis.

In the 1H-NMR spectra of the synthesized compounds 7–10, the characteristic signals
of the triazole CH hydrogens appear in the region of 7.83–7.99 ppm; the signals of the
methylene groups next to the triazole cycle are observed in the range of 4.90–5.14 ppm
and the characteristic signals of the aromatic system of acridine are observed in the range
of 7.62–8.58 ppm for compounds 7–10. For conjugates 7–10, the signals of the CHcarb
groups in the 1H-NMR spectra appear as broad singlets in the ranges of 4.19–4.25 and
4.11–4.19 ppm. In the 13C-NMR spectra, the signals of the triazole CH carbons for 7–10
are observed in the range of 123.2–124.0 ppm, whereas the signals of the second triazole
carbons appear in the range of 139.8–140.2 ppm. In the 13C-NMR spectra, the signals
of CHcarb groups appeared in the range of 46.4–53.9 ppm. The 11B{1H} NMR spectra of
compounds 7–10 exhibit singlets between 23.4–23.8 ppm from the substituted boron atom.

The IR spectra of compounds 7–10 exhibit absorption bands characteristic of the BH
groups at 2547–2553 cm−1 and the 1,2,3-triazole heterocycles at 1581–1593 cm−1. The mass
spectra of boron-containing conjugates 7–10 show negatively charged ions corresponding
to [M-Cs]−, which are consistent with the predicted isotope distributions; this confirms the
molecular formulas of the obtained compounds (Figure 4 presents the mass spectrum of
conjugate 7).
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2.4. DNA Interaction Study

In order to test the ability of the compounds to bind DNA, spectral changes were
tested through increasing the concentration of DNA in solution. Due to the low solubility
of the compounds, a concentration of 5 µM was used. Calf thymus DNA at concentrations
of up to 80 µM was added to the solution of compounds. The changes in the absorption
spectra of compounds 7–10 are shown in Figure S5 (see Supplementary Materials). It can
be seen that increasing the concentration of DNA in the solution leads to a non-significant
decrease in absorbance. Changes in the absorbance of compounds 7–10 were not significant:
about 5% taking into account dilution during titration. Such changes may characterize
the relatively weak binding of the studied compounds with DNA under experimental
conditions. The largest spectral changes were observed for conjugate 8 (Figure 5).
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2.5. Antiproliferative Activity of Boronated Acridines 7–10

The antiproliferative activity of compounds 7–10 against cancer HCT116, MCF7, A549,
and WI38 nonmalignant lung fibroblast cell lines was evaluated by means of a standard
MTT colorimetric assay after 72 h of incubation (Table 1). All four compounds were found
to be nontoxic against the lung cancer A549 cell line. However, against other cancer cells
and nonmalignant cells, compounds showed activity in the mid-micromolar range that
complicates use as new agents for BNCT.

Table 1. Antiproliferative activity of conjugates 7–10 and cisplatin against human cancer cells.

Cell Line
IC50, µM

7 8 9 10 Cisplatin [55]

WI38 21 ± 4 21 ± 5 33 ± 3 34 ± 8 8 ± 3

A549 >200 >200 >200 >200 13 ± 3

HCT116 49 ± 20 61 ± 25 43 ± 18 41 ± 1 13 ± 4

MCF7 15 ± 3 25 ± 6 28 ± 3 13 ± 3 30 ± 9
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3. Materials and Methods
3.1. General Methods

The acetylenic derivatives of cobalt bis(dicarbollide) [8-HC≡CCH2O(CH2CH2O)2-3,3′-
Co(1,2-C2B9H10)(1′,2′-C2B9H11)]K (3) [40], [8-HC≡CCH2CH2O(CH2CH2O)2-3,3′-Co(1,2-
C2B9H10)(1′,2′-C2B9H11)]K (4) [40], [8-HC≡CCH2O(CH2)5O-3,3′-Co(1,2-C2B9H10)(1′,2′-
C2B9H11)]Na (5) [54], [8-HC≡CCH2CH2O(CH2)5O-3,3′-Co(1,2-C2B9H10)(1′,2′-C2B9H11)]Na
(6) [54], and N3CH2CH2NH2 × HCl [56] were prepared according to the literature.
9-Methoxyacridine (Chemieliva Pharmaceutical Co., Ltd., Chongqing, China), diisopropy-
lethylamine (Carl Roth GmbH, Karlsruhe, Germany), and CuI (PANREAC QUIMICA
SA, Barcelona, Spain) were used without further purification. Ethanol, CH3CN, CH2Cl2,
and NaN3 were commercially analytical grade reagents. The reaction progress was moni-
tored via thin-layer chromatography (Merck F245 silica gel on aluminum plates). Acros
Organics silica gel (0.060–0.200 mm) was used for column chromatography. The NMR
spectra at 1H (400.1 MHz), 11B (128.4 MHz), and 13C (100.0 MHz) were recorded with a
Varian Inova 400 spectrometer (Varian, Palo Alto, CA, USA). The residual signal of the
NMR solvent relative to Me4Si was taken as the internal reference for 1H- and 13C-NMR
spectra. 11B-NMR spectra were referenced using BF3·Et2O as an external standard. In-
frared spectra were recorded on a Spectra SF 2000 (OKB SPECTRUM, Saint-Petersburg,
Russia) instrument. High-resolution mass spectra (HRMS) were measured on a mictOTOF
II (Bruker Daltonic, Bremen, Germany) instrument using electrospray ionization (ESI). The
measurements were performed in a negative ion mode (interface capillary voltage 3000 V)
and positive ion mode (interface capillary voltage 4500 V), mass range from m/z 50 to
m/z 3000, external or internal calibration was carried out with ESI Tuning Mix, Agilent.
A syringe injection was used for solutions in acetonitrile (flow rate 3 µL/min). Nitrogen
was applied as a dry gas; the interface temperature was set at 180 ◦C. Elemental analyses
were performed at the Laboratory of Microanalysis of the A.N. Nesmeyanov Institute of
Organoelement Compounds.

3.1.1. Synthesis of N9-Azidoacridine 2

We added 1 mL of NEt3 to a suspension of 9-methoxyacridine 1 (0.5 g, 2.4 mmol) and
2-azidoethanamine hydrochloride (0.32 g, 2.6 mmol) in 20 mL of CH3CN. The reaction
mixture was stirred under reflux for 15 h and then cooled to room temperature. To the
cooling reaction mixture, a few drops of HCl were added before pH = 3 and left in the air
for 1 h. Then, the solution was evaporated, and residue was crystallized from EtOH. The
product was filtered, washed with cold EtOH (5 mL), and air dried to give pale yellow
crystals of 2 (0.54 g, yield 76%). 1H NMR (400 MHz, D2O) д 7.61 (d, 2H, 2 × CHAr,
J = 9.0 Hz), 7.49 (t, 2H, 2 × CHAr), 7.11(t, 2H, 2 × CHAr), 6.96 (d, 2H, 2 × CHAr, J = 9.0 Hz),
3.72 (CH2), 3.63 (CH2) ppm. 13C NMR (101 MHz, D2O): 158.9 (CAr), 138.6 (CAr), 135.3
(CHAr), 124.0 (2 × CHAr), 118.0 (CHAr), 111.5 (CAr), 57.4 (CAr), 49.7 (NCH2), 47.6 (NCH2)
ppm. IR (KBr, н, cm−1): 2065 (N3). HRMS (ESI) m/z for [C15H13N5]+ calcd 264.1244 [M]+,
found: 264.1246 [M]+.

General Procedure for the Synthesis of the Conjugates of Cobalt Bis(Dicarbollide) with
Acridine 7–10

A mixture of 9-azidoacridine 2 (1 eq.), the alkynyl derivatives of cobalt bis(dicarbollide)
3–6 (1 eq.), diisopropylethylamine (0.5–1 mL), and CuI (0.1 eq.) in 10–15 mL of EtOH was
heated under reflux for 2 h. Then, the reaction mixture was cooled to room temperature,
and inorganic precipitate was filtered. Then, organic solvent was removed in vacuo. The
residue was extracted using EtOAc (100 mL) and washed with 1M HCl (4 × 50 mL) and
brine (2 × 50 mL) and dried (Na2SO4). Then, the ethyl acetate was evaporated. The residue
was dissolved in 5 mL of acetone. To the resulting solution, 1 g of CsCl in 100 mL of water
was added. The crude product was purified on a silica column using CH2Cl2-CH3CN (2/1)
as an eluent to give the desired products 7–10.
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3.1.2. Synthesis of Conjugate 7

Conjugate 7 was prepared from compound 2 (0.09 g, 0.30 mmol), the alkynyl derivative
of cobalt bis(dicarbollide) 3 (0.14 g, 0.30 mmol), diisopropylethylamine (1 mL, 0.74 g,
5.73 mmol), and CuI (0.006 g, 0.03 mmol) in 15 mL of EtOH. The product was obtained
as an orange solid of 4 (0.19 g, yield 73%). 1H NMR (400 MHz, acetone-d6) д 8.52 (d, 2H,
2 × CHAr, J = 9.0 Hz), 8.02 (s, 4H, 4 × CHAr), 7.83 (s, 1H, CHCN3), 7.62 (m, 2H, 2 × CHAr),
5.08 (s, 2H, CH2N), 4.90 (s, 2H, CH2NH), 4.41 (s, 2H, OCH2C), 4.19 (br. s, 2H, CHcarb), 4.11
(br. s, 2H, CHcarb), 3.78 (s, 2H, BOCH2), 3.57 (s, 2H, CH2O), 3.49 (s, 2H, CH2O), 3.22 (s,
2H, CH2O) ppm. 11B NMR (128 MHz, acetone-d6): 23.8 (1B, s), 5.2 (1B, d, J = 144 Hz), 0.3
(1B, d, J = 152), −2.3 (1B, d, J = 164 Hz), −4.5 (2B, d, J = 142 Hz), −7.2 (4B, d, J = 124 Hz),
−9.0 (2B, d, J unsolved), −17.3 (2B, d, J = 164 Hz), −20.2 (2B, d, J = 150 Hz), −22.5 (1B,
d, J = 150 Hz), −28.6 (1B, d, J = 142 Hz) ppm. 13C NMR (101 MHz, acetone-d6): 158.3
(CAr), 144.8 (CAr), 140.2 (CN3CH), 134.9 (CHAr), 125.1 (CHAr), 123.9 (CHAr, CN3CH), 119.9
(CHAr), 113.5 (CAr), 72.2 (OCH2), 70.3 (OCH2), 68.8 (OCH2), 63.8 (OCH2), 59.7 (OCH2), 53.3
(CHcarb), 50.0 (NCH2), 49.6 (NCH2), 46.6 (CHcarb) ppm. IR (KBr, н, cm−1): 2568 (BH), 1581
(triazole). Found: C 36.41, H 5.14, B 22.79, N 8.07; Calc. for C26H45B18CoN5O3Cs C 36.22,
H 5.26, B 22.57, N 8.12. HRMS (ESI) m/z for [C26H45B18CoN5O3]- calcd 729.4658 [M]−,
found 729.4657 [M]−.

3.1.3. Synthesis of Conjugate 8

Conjugate 8 was prepared from compound 2 (0.062 g, 0.21 mmol), alkynyl derivative
of cobalt bis(dicarbollide) 4 (0.10 g, 0.21 mmol), diisopropylethylamine (0.5 mL, 0.37 g,
2.86 mmol), and CuI (0.004 g, 0.02 mmol) in 10 mL of EtOH. The product was obtained
as an orange solid of 4 (0.14 g, yield 75%). 1H NMR (400 MHz, acetone-d6) д 8.54 (d, 2H,
2 × CHAr, J = 9.0 Hz), 8.02 (m, 4H, 4 × CHAr), 7.87 (s, 1H, CHCN3), 7.66 (m, 2H, 2 × CHAr),
5.08 (m, 2H, CH2N), 4.90 (m, 2H, CH2NH), 4.22 (br. s, 2H, CHcarb), 4.19 (br. s, 2H, CHcarb),
3.67 (m, 2H, OCH2CH2C), 3.48 (m, 8H, BOCH2, 3 × CH2O), 2.80 (m, 2H, CH2O) ppm. 11B
NMR (128 MHz, acetone-d6): 23.4 (1B, s), 4.4 (1B, d, J = 145 Hz), 0.6 (1B, d, J = 168), −2.4
(1B, d, J unsolved), −4.3 (2B, d, J = 156 Hz), −7.2 (2B, d, J = 130 Hz), −8.0 (4B, d, J = 124 Hz),
−17.4 (2B, d, J unsolved), −20.4 (2B, d, J = 162 Hz), −21.9 (1B, d, J = 160 Hz), −28.7 (1B, d,
J = 152 Hz) ppm. 13C NMR (101 MHz, acetone-d6): 158.6 (CAr), 145.6 (CAr), 139.9 (CN3CH),
135.6 (CHAr), 125.2 (CHAr), 124.3 (CHAr), 123.4 (CN3CH), 119.2 (CHAr), 112.9 (CAr), 71.9
(OCH2), 70.2 (OCH2), 69.8 (OCH2), 69.4 (OCH2), 68.6 (OCH2), 53.7 (CHcarb), 49.5 (NCH2),
48.8 (NCH2), 46.5 (CHcarb), 29.5 (CH2) ppm. IR (KBr, н, cm−1): 2553 (BH), 1593 (triazole).
Found: C 37.17, H 5.28, B 22.51, N 7.68; Calc. for C27H47B18CoN5O3Cs C 37.01, H 5.41,
B 22.21, N 7.99. HRMS (ESI) m/z for [C27H47B18CoN5O3]- calcd 743.4815 [M]−, found:
743.4818 [M]−.

3.1.4. Synthesis of Conjugate 9

Conjugate 9 was prepared from compound 2 (0.09 g, 0.30 mmol), the alkynyl derivative
of cobalt bis(dicarbollide) 5 (0.14 g, 0.30 mmol), diisopropylethylamine (1 mL, 0.74 g,
5.73 mmol), and CuI (0.006 g, 0.03 mmol) in 15 mL of EtOH. The product was obtained
as an orange solid of 4 (0.18 g, yield 70%). 1H NMR (400 MHz, acetone-d6) д 8.58 (d, 2H,
2 × CHAr, J = 9.0 Hz), 8.07 (m, 2H, 2 × CHAr), 7.99 (m, 3H, 2 × CHAr, CHCN3), 7.67 (t,
2H, 2 × CHAr), 5.14 (m, 2H, CH2N), 4.96 (m, 2H, CH2NH), 4.46 (s, 2H, OCH2C), 4.25 (br.
s, 2H, CHcarb), 4.17 (br. s, 2H, CHcarb), 3.46 (t, 2H, BOCH2), 3.33 (t, 2H, CH2), 1.44 (dq,
4H, 2 × CH2), 1.31 (m, 2H, CH2) ppm. 11B NMR (128 MHz, acetone-d6): 23.4 (1B, s), 4.3
(1B, d, J = 144 Hz), 0.0 (1B, d, J = 152), −2.6 (1B, d, J unsolved), −4.6 (2B, d, J = 162 Hz),
−7.4 (2B, d, J = 122 Hz), −8.2 (4B, d, J = 124 Hz), −17.4 (2B, d, J = 162 Hz), −20.3 (2B,
d, J = 144 Hz), −22.6 (1B, d, J = 158 Hz), −28.4 (1B, d, J = 150 Hz) ppm. 13C NMR (101
MHz, acetone-d6): 158.8 (CAr), 145.6 (CAr), 139.8 (CN3CH), 135.8 (CHAr), 125.3 (CHAr),
124.4 (CHAr), 124.0 (CN3CH), 119.0 (CHAr), 112.9 (CAr), 70.0 (OCH2), 68.8 (OCH2), 63.8
(OCH2), 53.9 (CHcarb), 49.3 (NCH2), 48.9 (NCH2), 46.4 (CHcarb), 31.6 (CH2), 29.6 (CH2), 22.7
(CH2) ppm. IR (KBr, н, cm−1): 2553 (BH), 1583 (triazole). Found: C 37.83, H 5.32, B 22.91,
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N 8.33; Calc. for C27H47B18CoN5O2Cs C 37.70, H 5.51, B 22.62, N 8.14. HRMS (ESI) m/z for
[C27H47B18CoN5O2]- calcd 727.4866 [M]−, found: 727.4868 [M]−.

3.1.5. Synthesis of Conjugate 10

Conjugate 10 was prepared from compound 2 (0.063 g, 0.21 mmol), the alkynyl
derivative of cobalt bis(dicarbollide) 6 (0.10 g, 0.21 mmol), diisopropylethylamine (0.5 mL,
0.37 g, 2.86 mmol), and CuI (0.004 g, 0.02 mmol) in 10 mL of EtOH. The product was
obtained as an orange solid of 4 (0.13 g, yield 71%). 1H NMR (400 MHz, acetone-d6): 8.56
(d, 2H, 2 × CHAr, J = 9.0 Hz), 8.08 (m, 2H, 2 × CHAr), 7.98 (d, 2H, 2 × CHAr, J = 9.1 Hz),
7.83 (s, 1H, -CHCN3), 7.68 (m, 2H, 2 × CHAr), 5.10 (m, 2H, CH2N), 4.91 (m, 2H, CH2NH),
4.25 (br. s, 2H, CHcarb), 4.18 (br. s, 2H, CHcarb), 3.47 (m, 4H, BOCH2, OCH2CH2C), 3.31 (m,
2H, CH2), 2.82 (m, 4H, 2 × CH2), 1.43 (m, 2H, CH2), 1.32 (m, 2H, CH2) ppm. 11B NMR
(128 MHz, acetone-d6): 23.4 (1B, s), 4.3 (1B, d, J = 162 Hz), 0.4 (1B, d, J = 142), −2.6 (1B,
d, J = 146 Hz), −4.6 (2B, d, J = 138 Hz), −7.4 (2B, d, J unsolved), −8.3 (4B, d, J = 134 Hz),
−17.5 (2B, d, J = 164 Hz), −20.4 (2B, d, J = 148 Hz), −22.8 (1B, d, J unsolved), −28.6 (1B, d,
J = 162 Hz) ppm. 13C NMR (101 MHz, acetone-d6): 158.7 (CAr), 145.6 (CAr), 139.9 (CN3CH),
135.8 (CHAr), 125.3 (CHAr), 124.4 (CHAr), 123.2 (CN3CH), 119.0 (CHAr), 112.9 (CAr), 70.5
(OCH2), 69.1 (OCH2), 68.7 (OCH2), 53.9 (CHcarb), 49.4 (NCH2), 48.7 (NCH2), 46.4 (CHcarb),
31.6 (CH2), 29.4 (CH2), 26.3 (CH2), 22.7 (CH2) ppm. IR (KBr, н, cm−1): 2547 (BH), 1583
(triazole). Found: C 38.35, H 5.76, B 22.48, N 8.13; Calc. for C28H49B18CoN5O2Cs C 38.47,
H 5.65, B 22.26, N 8.01. HRMS (ESI) m/z for [C28H49B18CoN5O2]− calcd 741.5023 [M]−,
found: 741.5028 [M]−.

3.2. Absorbance Spectroscopy

Absorption spectra were recorded on a Jasco v550 (Japan) spectrophotometer in a
thermostatted cuvette with 1 cm optical path at 25 ◦C. A solution of 5 mkM compounds
in 10 mM potassium phosphate buffer pH = 8.0 and a calf thymus DNA (Sigma-Aldrich)
concentration in the range 0–80 µM (b.p.) was used to obtain spectral changes in DNA
interactions.

3.3. Cells and MTT Assay

The human HCT116 colorectal carcinoma, MCF7 breast adenocarcinoma, A549 non-
small cell lung carcinoma, and WI38 nonmalignant lung fibroblast cell lines were obtained
from the European collection of authenticated cell cultures (ECACC; Salisbury, UK). All
cells were grown in DMEM medium (Gibco™, Cork, Ireland) supplemented with 10%
fetal bovine serum (Gibco™, Cork, Brazil). The cells were cultured in an incubator at
37 ◦C in a humidified 5% CO2 atmosphere and subcultured 2 times a week. The MTT
(3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay was performed as
described earlier [46]. In brief, the cells were seeded in 96-well plates («TPP», Switzerland)
at a 1 × 104 cells/well in 100 µL. After 24 h incubation at 37 ◦C, the cells were incubated
with the tested compounds in concentrations from 0 to 200 µM.

3.4. Crystallographic Data

At 100K, crystals of 2 (C15H14ClN5, M = 299.76) are orthorhombic, space group
P212121: a = 7.0854(3), b = 11.0430(4), c = 17.4107(7) E, V = 1362.28(9) E3, Z = 4 (Z’ = 1),
dcalc = 1.462 g·cm−3, F(000) = 624. Intensities of 14,766 reflections were measured with a
Bruker D8 Quest diffractometer equipped with the Photon III detector [λ(MoKα) = 0.71072E,
щ-scans, 2θ < 61◦], and 3991 independent reflections [Rint = 0.0451] were used in fur-
ther refinement. The structure was solved using the direct method and refined through
the full-matrix least-squares technique against F2 in the anisotropic–isotropic approxima-
tion. The hydrogen atoms were found from the difference Fourier synthesis of electron
density. All the hydrogen atoms were refined in the isotropic approximation without
constraints imposed on the positional parameters. For 1, the refinement converged to
wR2 = 0.0844 and GOF = 0.959 for all independent reflections (R1 = 0.0364 was calculated
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against F for 3185 observed reflections with I > 2σ(I)). All calculations were performed
using the SHELX [57] and OLEX2 [58] program packages. CCDC 2,257,438 contains the
supplementary crystallographic data for 1. These data can be obtained free of charge via
https://www.ccdc.cam.ac.uk/structures/ (accessed on 3 July 2023) (or from the CCDC,
12 Union Road, Cambridge, CB21EZ, UK; or deposit@ccdc.cam.ac.uk). The X-ray diffraction
study was performed using the equipment of the JRC PMR IGIC RAS.

The DFT calculations for the isolated cation of 1 as well for two conformations (relaxed
and distorted) of the unsubstituted acridinium cation were performed using the Gaussian09
program [59]. The electronic energy calculations were performed using the def2TZVP basis
set [60,61] and the PBE0 functional [62,63] with Grimme’s empirical dispersion correc-
tion [64] and Becke-Johnson damping [65]. The geometry optimization procedures were
performed invoking the standard cutoff criteria and ultrafine grids. According to the
normal mode calculations, both fully relaxed structures (the cation of 1 and the equilibrium
unsubstituted acridinium cation) correspond to energy minima. The RDG and sign(
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The DFT calculations for the isolated cation of 1 as well for two conformations (re-
laxed and distorted) of the unsubstituted acridinium cation were performed using the 
Gaussian09 program [59]. The electronic energy calculations were performed using the 
def2TZVP basis set [60,61] and the PBE0 functional [62,63] with Grimme’s empirical dis-
persion correction [64] and Becke-Johnson damping [65]. The geometry optimization pro-
cedures were performed invoking the standard cutoff criteria and ultrafine grids. Accord-
ing to the normal mode calculations, both fully relaxed structures (the cation of 1 and the 
equilibrium unsubstituted acridinium cation) correspond to energy minima. The RDG 
and sign(л2)·c® functions were calculated using the MultiWFN program [66], whereas the 
topological analysis of electron density function was performed in the AIMAll program 
[67]. 

4. Conclusions 
The copper(I)-catalyzed 1,3-dipolar [3 + 2] cycloaddition reaction of cobalt bis(dicar-

bollide) alkynes derivatives with azidoacridine yield the corresponding products contain-
ing 18 atoms of boron per molecule. The novel conjugates demonstrated antiproliferative 
activity against two tumor and one non-tumor human cell lines. DNA interaction studies 
using absorbance spectroscopy showed the weak binding of the obtained compounds 
with DNA. Among all other compounds, the acridine conjugate obtained from the 1,4-
dioxane derivative of cobalt bis(dicarbollide) and propargyl alcohol showed the best re-
sult (the largest spectral changes were observed for this compound). It should be noted 
that the preliminary results indicated some potential, suggesting binding to DNA. Thus, 
the toxic boronated acridines presented in this work contain novel, unexplored structural 
features whose relevance in the field deserves investigation in order to achieve still-better 
non-toxic BNCT agents, capable of binding to DNA. Further efforts are warranted to ex-
plore the effect of other kinds of boronated substituents on the 9-aminoacridine scaffold 
on the activity and toxicity of boronated acridines. As compounds with a possibly more 
affinitive interaction with DNA, the introduction of active groups carrying a positive 

2)·c®

functions were calculated using the MultiWFN program [66], whereas the topological
analysis of electron density function was performed in the AIMAll program [67].

4. Conclusions

The copper(I)-catalyzed 1,3-dipolar [3 + 2] cycloaddition reaction of cobalt bis(dicarbollide)
alkynes derivatives with azidoacridine yield the corresponding products containing 18 atoms
of boron per molecule. The novel conjugates demonstrated antiproliferative activity against
two tumor and one non-tumor human cell lines. DNA interaction studies using absorbance
spectroscopy showed the weak binding of the obtained compounds with DNA. Among
all other compounds, the acridine conjugate obtained from the 1,4-dioxane derivative of
cobalt bis(dicarbollide) and propargyl alcohol showed the best result (the largest spectral
changes were observed for this compound). It should be noted that the preliminary results
indicated some potential, suggesting binding to DNA. Thus, the toxic boronated acridines
presented in this work contain novel, unexplored structural features whose relevance in
the field deserves investigation in order to achieve still-better non-toxic BNCT agents,
capable of binding to DNA. Further efforts are warranted to explore the effect of other
kinds of boronated substituents on the 9-aminoacridine scaffold on the activity and toxicity
of boronated acridines. As compounds with a possibly more affinitive interaction with
DNA, the introduction of active groups carrying a positive charge could be suggested,
which would increase water solubility and make the acridine core more affinitive to DNA,
possibly enhancing binding to DNA as a target.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules28186636/s1, Figure S1 with main crystallographic data
for 2. Figure S2 with the area of substituent in the isolated optimized cation from 2. Figure S3 with
changes of absorbance spectra upon DNA interaction for conjugates 7,9,10. Figures S4–S8: ESI-HRMS
spectra of compounds 2, 7–10, Figures S9–S13: IR spectra of compounds 2, 7–10, Figures S14–S31: 1H,
11B{1H}, 11B and 13C{1H} spectra of compounds 2, 7–10.
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κ3O2,N,O6)ferrate(III) tetrahydrate. Acta Cryst. E 2012, 68, m761–m762. [CrossRef] [PubMed]

https://doi.org/10.1016/j.bioorg.2019.103432
https://doi.org/10.3390/ijms22052772
https://www.ncbi.nlm.nih.gov/pubmed/33803403
https://doi.org/10.1016/j.jorganchem.2021.122186
https://doi.org/10.1039/D1CC07075D
https://www.ncbi.nlm.nih.gov/pubmed/35098961
https://doi.org/10.3390/ijms23094598
https://doi.org/10.1080/14756366.2023.2171028
https://doi.org/10.1021/jm00316a047
https://doi.org/10.1016/S0040-4020(98)00114-8
https://doi.org/10.1002/cmdc.202200666
https://doi.org/10.26434/chemrxiv-2022-t2g39-v2
https://doi.org/10.1016/j.bmcl.2010.09.128
https://doi.org/10.1002/cmdc.201200060
https://www.ncbi.nlm.nih.gov/pubmed/22378532
https://doi.org/10.1021/jm00345a015
https://www.ncbi.nlm.nih.gov/pubmed/7069706
https://doi.org/10.1016/j.antiviral.2011.05.005
https://www.ncbi.nlm.nih.gov/pubmed/21619897
https://doi.org/10.1002/1521-3773(20020715)41:14%3C2596::AID-ANIE2596%3E3.0.CO;2-4
https://doi.org/10.1039/C9RA09510A
https://www.ncbi.nlm.nih.gov/pubmed/35497465
https://doi.org/10.1021/acs.organomet.0c00478
https://doi.org/10.1002/aoc.1521
https://doi.org/10.1002/chem.200801053
https://doi.org/10.1070/RCR5000
https://doi.org/10.1107/S2052520616003954
https://doi.org/10.1107/S1600536810037499
https://www.ncbi.nlm.nih.gov/pubmed/21587453
https://doi.org/10.1107/S1600536811036981
https://www.ncbi.nlm.nih.gov/pubmed/22058707
https://doi.org/10.1107/S160053681401023X
https://www.ncbi.nlm.nih.gov/pubmed/24940241
https://doi.org/10.1107/S1600536812020247
https://www.ncbi.nlm.nih.gov/pubmed/22719319


Molecules 2023, 28, 6636 14 of 14

48. Mirzaei, M.; Eshtiagh-Hosseini, H.; Eydizadeh, E.; Yousefi, Z.; Molčanov, K. Bis(9-aminoacridinium) bis(pyridine-2,6-
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