Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (149)

Search Parameters:
Keywords = single-crystal fiber

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 7143 KiB  
Article
Substrate Bias-Driven Structural and Mechanical Evolution of AlCrN and AlCrSiN Coatings via Reactive Magnetron Sputtering
by Du-Cheng Tsai, Rong-Hsin Huang, Zue-Chin Chang, Erh-Chiang Chen, Yen-Lin Huang and Fuh-Sheng Shieu
Materials 2025, 18(7), 1671; https://doi.org/10.3390/ma18071671 - 5 Apr 2025
Viewed by 528
Abstract
AlCrN and AlCrSiN coatings were deposited via reactive magnetron sputtering. This study investigates the effects of radio frequency (RF) substrate bias, ranging from 0 V to 200 V, on the chemical composition, microstructure, and mechanical properties of the coatings. All crystalline coatings exhibited [...] Read more.
AlCrN and AlCrSiN coatings were deposited via reactive magnetron sputtering. This study investigates the effects of radio frequency (RF) substrate bias, ranging from 0 V to 200 V, on the chemical composition, microstructure, and mechanical properties of the coatings. All crystalline coatings exhibited a single wurtzite-type hexagonal close-packed (hcp) structure. At a 0 V substrate bias, the AlCrN coating consisted of porous V-shaped columnar crystallites, while the AlCrSiN coating exhibited a porous, fiber-like amorphous structure. As the substrate bias increased, crystal growth was promoted, void density decreased, and the surface morphology transitioned from a textured to a more rounded appearance. Additionally, the preferred orientation shifted toward the (101) direction. However, at excessively high substrate bias, re-nucleation occurred, leading to grain refinement and increased film densification, which in turn caused a further shift in the preferred orientation toward the (002) plane. Due to its multi-element composition and the low solubility of Si in nitrides, AlCrSiN coatings tend to exhibit an amorphous growth tendency during sputtering. As a result, their microstructure is more sensitive to substrate bias. This sensitivity results in the formation of a highly dense structure with an optimal crystallite size at a substrate bias of 100 V, leading to a hardness of 22.6 GPa—surpassing that of the AlCrN coating. Full article
Show Figures

Figure 1

10 pages, 1544 KiB  
Article
Rapid Solidification of Plant Latices from Campanula glomerata Driven by a Sudden Decrease in Hydrostatic Pressure
by Arne Langhoff, Astrid Peschel, Christian Leppin, Sebastian Kruppert, Thomas Speck and Diethelm Johannsmann
Plants 2025, 14(5), 798; https://doi.org/10.3390/plants14050798 - 4 Mar 2025
Cited by 1 | Viewed by 838
Abstract
By monitoring the solidification of droplets of plant latices with a fast quartz crystal microbalance with dissipation monitoring (QCM-D), droplets from Campanula glomerata were found to solidify much faster than droplets from Euphorbia characias and also faster than droplets from all technical latices tested. [...] Read more.
By monitoring the solidification of droplets of plant latices with a fast quartz crystal microbalance with dissipation monitoring (QCM-D), droplets from Campanula glomerata were found to solidify much faster than droplets from Euphorbia characias and also faster than droplets from all technical latices tested. A similar conclusion was drawn from optical videos, where the plants were injured and the milky fluid was stretched (sometimes forming fibers) after the cut. Rapid solidification cannot be explained with physical drying because physical drying is transport-limited and therefore is inherently slow. It can, however, be explained with coagulation being triggered by a sudden decrease in hydrostatic pressure. A mechanism based on a pressure drop is corroborated by optical videos of both plants being injured under water. While the liquid exuded by E. characias keeps streaming away, the liquid exuded by C. glomerata quickly forms a plug even under water. Presumably, the pressure drop causes an influx of serum into the laticifers. The serum, in turn, triggers a transition from a liquid–liquid phase separated state (an LLPS state) of a resin and hardener to a single-phase state. QCM measurements, optical videos, and cryo-SEM images suggest that LLPS plays a role in the solidification of C. glomerata. Full article
(This article belongs to the Section Plant Physiology and Metabolism)
Show Figures

Figure 1

13 pages, 5542 KiB  
Article
Microstructure and Texture Evolution of High Permeability Grain-Oriented Silicon Steel
by Yujie Fu and Lifeng Fan
Metals 2025, 15(3), 268; https://doi.org/10.3390/met15030268 - 28 Feb 2025
Cited by 1 | Viewed by 626
Abstract
Industrialization trial production of high permeability (Hi-B) steel was carried out by “one cold rolled + decarburization and nitridation technologies”. The finished product reached the level of 23Q100 with an average grain size of 5.47 cm, magnetic flux density B8 of 1.902T, [...] Read more.
Industrialization trial production of high permeability (Hi-B) steel was carried out by “one cold rolled + decarburization and nitridation technologies”. The finished product reached the level of 23Q100 with an average grain size of 5.47 cm, magnetic flux density B8 of 1.902T, and the iron loss P1.7/50 of 0.975 W/Kg. The evolution law of the microstructure and texture under different processes was analyzed with the help of OM, EBSD, and XRD. The results showed that the microstructure of the hot rolled plate was equiaxed crystals in the surface layer, a mixture of recrystallization grains and banded fiber in the quarter of the thickness layer, and banded fiber in the center layer. The texture gradient of the hot rolled plate from the surface layer to the center layer was {112}<111> + {110}<114> → {441}<014> → {001}~{111}<110>. The texture of the normalized plate was in major {110}<113> in the surface layer, diffuse α-fiber texture and {441}<014> in the quarter of the thickness layer, and sharp α texture {001}~{111}<110> in the center layer. The texture of the cold-rolled sheet was concentrated in {001}~{332}<110>. The average grain size of the decarburizing and nitriding sheet was 26.4 μm, and the texture of the first recrystallization is sharp α*-fiber and weak {111}<112>. The finished product has a sharp single Goss texture. For Hi-B steel, the Goss secondary nucleus originated from the surface layer to 1/4 layer of the hot rolled plate and reached the highest content of 11.5% in the quarter of the thickness. The content of the Goss texture decreased with the subsequent normalization and cold rolling, then the Goss grains nucleated again during the decarburization annealing and high temperature annealing processes. Full article
Show Figures

Figure 1

11 pages, 6537 KiB  
Article
Cavity Wavelength on Erbium-Doped Fiber Ring Laser Depending on Fabry–Pérot Etalon Steering Angle
by Cheng-Kai Yao, Ting-Po Fan, Ming-Che Chan and Peng-Chun Peng
Appl. Sci. 2025, 15(2), 822; https://doi.org/10.3390/app15020822 - 15 Jan 2025
Viewed by 1010
Abstract
This study presents the liquid crystal Fabry–Pérot etalon (LC-FP) as the preferred laser wavelength tuning solution within a erbium-doped fiber ring laser architecture. The laser cavity wavelength can be adjusted by applying varying voltages to the LC-FP. Furthermore, tuning the laser wavelength can [...] Read more.
This study presents the liquid crystal Fabry–Pérot etalon (LC-FP) as the preferred laser wavelength tuning solution within a erbium-doped fiber ring laser architecture. The laser cavity wavelength can be adjusted by applying varying voltages to the LC-FP. Furthermore, tuning the laser wavelength can be facilitated by modifying the incident light through changes in the steering angle of the LC-FP, which is attributed to the angular dispersion characteristics of the device. The operational range for the steering angle of the LC-FP is ± 4 to 18 degrees. This architectural framework is adept at facilitating the generation of single-wavelength and dual-wavelength lasers within the C band. The tunable range for a single wavelength is approximately 13 nm, while the tunable range for dual wavelengths is around 14 nm, with a wavelength spacing of approximately 17.5 nm. These capabilities are primarily influenced by the operational wavelength of the erbium-doped fiber amplifier (EDFA), the operating wavelength of the collimator that directs the fiber optic beam into the LC-FP, and the fixed thickness of the LC-FP. Full article
(This article belongs to the Section Optics and Lasers)
Show Figures

Figure 1

14 pages, 9062 KiB  
Article
Dual-Band High-Throughput and High-Contrast All-Optical Topology Logic Gates
by Jinying Zhang, Yulin Si, Yexiaotong Zhang, Bingnan Wang and Xinye Wang
Micromachines 2024, 15(12), 1492; https://doi.org/10.3390/mi15121492 - 13 Dec 2024
Cited by 3 | Viewed by 1278
Abstract
Optical computing offers advantages such as high bandwidth and low loss, playing a crucial role in signal processing, communication, and sensing applications. Traditional optical logic gates, based on nonlinear fibers and optical amplifiers, suffer from poor robustness and large footprints, hindering their on-chip [...] Read more.
Optical computing offers advantages such as high bandwidth and low loss, playing a crucial role in signal processing, communication, and sensing applications. Traditional optical logic gates, based on nonlinear fibers and optical amplifiers, suffer from poor robustness and large footprints, hindering their on-chip integration. All-optical logic gates based on topological photonic crystals have emerged as a promising approach for developing robust and monolithic optical computing systems. Expanding topological photonic crystal logic gates from a single operating band to dual bands can achieve high throughput, significantly enhancing parallel computing capabilities. This study integrates the topological protection offered by valley photonic crystals with linear interference effects to design and implement seven optical computing logic gates on a silicon substrate. These gates, based on dual-band valley photonic crystal topological protection, include OR, XOR, NOT, NAND, NOR, and AND. The robustness of the implemented OR logic gates was verified in the presence of boundary defects. The results demonstrate that multi-band parallel computing all-optical logic gates can be achieved using topological photonic crystals, and these gates exhibit high robustness. The all-optical logic gates designed in this study hold significant potential for future applications in optical signal processing, optical communication, optical sensing, and other related areas. Full article
(This article belongs to the Special Issue Photonic and Optoelectronic Devices and Systems, Second Edition)
Show Figures

Figure 1

16 pages, 4175 KiB  
Article
Antioxidant Behavior of Carbon/Carbon Composites with Hot Dip Plating and Electroplating for Single-Crystal Furnaces
by Zuxing Qi, Chaofan Du, Guoying Bao, Shan Wang, Dedong Gao, Haixing Lin and Yan An
Materials 2024, 17(23), 5798; https://doi.org/10.3390/ma17235798 - 26 Nov 2024
Viewed by 685
Abstract
In the Czochralski single-crystal silicon manufacturing industry, single-crystal furnaces often experience corrosion from silicon vapor, which reduces their operational lifespan. However, the preparation of metal coatings on the surface of C/C composites is challenging due to their low coefficient of thermal expansion and [...] Read more.
In the Czochralski single-crystal silicon manufacturing industry, single-crystal furnaces often experience corrosion from silicon vapor, which reduces their operational lifespan. However, the preparation of metal coatings on the surface of C/C composites is challenging due to their low coefficient of thermal expansion and the intricate structure of carbon fibers. To address this issue and achieve high-quality alloy coatings, Ni-Al and Ni-Al/Si composite coatings are successfully prepared on the surface of C/C composites through a combination of electroplating and hot-dip plating, and their oxidation behavior at elevated temperatures is thoroughly investigated. The experimental results indicate that the Ni-Al composite coatings exhibit superior antioxidant properties compared to Ni coatings following thermal shock experiments, thereby significantly enhancing the antioxidant performance of C/C composites. This improvement is attributed to the preferential oxidation of surface aluminum, which forms a dense Al2O3 layer in aerobic and high-temperature environments, effectively preventing oxygen from reaching the underlying matrix. During the oxidation process, coating elements migrate outward along the concentration gradient, while oxygen molecules diffuse inward. Simultaneously, aluminum atoms diffuse inward, and Ni atoms diffuse outward, where they partially dissolve with oxygen. The inner coating’s Ni enhances the bonding of the coating by connecting the substrate to the outer layer. Meanwhile, the added Si in the Ni-Al/Si composite coating further improves the antioxidant properties of the coating. Full article
(This article belongs to the Topic Advanced Manufacturing and Surface Technology)
Show Figures

Figure 1

10 pages, 3690 KiB  
Article
Design of Magnetic Fluid-Enhanced Optical Fiber Polarization Filter
by Haixu Chen, Lianzhen Zhang and Xin Ding
Micromachines 2024, 15(11), 1364; https://doi.org/10.3390/mi15111364 - 11 Nov 2024
Cited by 2 | Viewed by 1073
Abstract
In this paper, we demonstrated a method of filling the air holes of a photonic crystal fiber (PCF), coated with gold film, with magnetic fluid (MF) to enhance the Surface Plasmon Resonance (SPR). The simulation results show that at the wavelength of 1260–1675 [...] Read more.
In this paper, we demonstrated a method of filling the air holes of a photonic crystal fiber (PCF), coated with gold film, with magnetic fluid (MF) to enhance the Surface Plasmon Resonance (SPR). The simulation results show that at the wavelength of 1260–1675 nm, the minimum loss coefficient of the y-polarization mode is 4.7 times that before filling with MF, and the x-polarization mode is 0.45 times greater. Then, based on this method, we designed a polarizing filter with a core diameter of 9 µm. The numerical simulation results indicate that it not only maintains the same core diameter as the single-mode fiber, but also has a larger bandwidth and a higher extinction ratio (ER). Additionally, we can optimize its ER at a specific wavelength by adjusting the magnetic field. Full article
(This article belongs to the Special Issue Photonic and Optoelectronic Devices and Systems, Second Edition)
Show Figures

Figure 1

21 pages, 17491 KiB  
Article
Effect of Fiber Cross-Sectional and Surface Properties on the Degradation of Biobased Polymers
by Simon Schick, Andreas Weinberger, Robert Groten and Gunnar H. Seide
Polymers 2024, 16(21), 3096; https://doi.org/10.3390/polym16213096 - 2 Nov 2024
Cited by 2 | Viewed by 3604
Abstract
Biobased polymers such as polylactic acid (PLA) and polybutylene succinate (PBS) break down naturally under certain environmental conditions. The efficiency of degradation can be linked directly to fiber surface properties, which influence polymer accessibility. Here, the degradation of PLA and PBS fibers with [...] Read more.
Biobased polymers such as polylactic acid (PLA) and polybutylene succinate (PBS) break down naturally under certain environmental conditions. The efficiency of degradation can be linked directly to fiber surface properties, which influence polymer accessibility. Here, the degradation of PLA and PBS fibers with six different cross-sections was investigated. The fibers were aged by hydrolysis and UV exposure in an accelerated weathering test, followed by an ISO 20200 laboratory-scale disintegration test with non-aged fibers as controls. The polymers were analyzed by differential scanning calorimetry, Fourier transform infrared spectroscopy, and gel permeation chromatography, comparing the polymer granulate, virgin fibers, and UV-exposed fibers. It was found that the molecular mass and crystallinity of PBS changed more than PLA during spinning. Several PLA samples were completely degraded, whereas all the PBS samples remained intact. Furthermore, surface openings appeared on the PLA fibers during weathering, suggesting greater sensitivity to UV exposure and hydrolysis than PBS. A clear correlation between the fiber surface area and the degradation rate was observed for all samples, but the correlation was positive for PLA and negative for PBS. The slower degradation of PBS fibers with a larger surface area may reflect the ability of PBS to preserve itself by further crystallization during degradation processes at temperatures higher than the glass transition point. The data clearly show that the analysis of single degradation mechanisms is insufficient to predict the behavior of material under real-world conditions, where different degradation mechanisms may work in parallel or consecutively, and may show interdependencies. Full article
(This article belongs to the Special Issue Biodegradable Polymers: Synthesis, Characterization and Applications)
Show Figures

Figure 1

12 pages, 2097 KiB  
Article
Development of a Composite Filament Based on Polypropylene and Garlic Husk Particles for 3D Printing Applications
by Cynthia Graciela Flores-Hernández, Juventino López-Barroso, Claudia Esmeralda Ramos-Galván, Beatriz Adriana Salazar-Cruz, María Yolanda Chávez-Cinco and José Luis Rivera-Armenta
Appl. Sci. 2024, 14(19), 9139; https://doi.org/10.3390/app14199139 - 9 Oct 2024
Cited by 2 | Viewed by 2063
Abstract
Lignocellulosic waste materials are among the most abundant raw materials on Earth, and they have been widely studied as natural additives in materials, especially for polymer composites, with interesting results when it comes to improving physiochemical properties. The main components of these materials [...] Read more.
Lignocellulosic waste materials are among the most abundant raw materials on Earth, and they have been widely studied as natural additives in materials, especially for polymer composites, with interesting results when it comes to improving physiochemical properties. The main components of these materials are cellulose, hemicellulose, and lignin, as well as small amounts of other polysaccharides, proteins, and other extractives. Several kinds of lignocellulosic materials, mainly fibers, have been evaluated in polymer matrices, and recently, the use of particles has increased due to their high surface area. Garlic is a spice seed that generates a waste husk that does not have applications, and there are no reports of industrial use of this kind of lignocellulosic material. Additive manufacturing, also known as 3D printing, is a polymer processing technique that allows for obtaining complex shapes that are hard to obtain with ordinary techniques. The use of composites based on synthetic polymers and lignocellulosic materials is a growing field of research. In the present work, the elaboration and evaluation of 3D-printed polypropylene–garlic husk particle (PP-GHP) composites are reported. First, the process of obtaining a filament by means of a single extrusion was carried out, using different GHP contents in the composites. Once the filament was obtained, it was taken to a 3D printer to obtain probes that were characterized using differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA) was performed with the aim of evaluating the thermal behavior of the 3D-printed PP-GHP composites. According to the obtained results, the crystallization process and thermal stability of the PP-GHP composites were modified with the presence of GHP compared with pristine PP. Dynamic mechanical analysis (DMA) showed that the addition of GHP decreased the storage modulus of the printed composites and that the Tan δ peak width increased, which was associated with an increase in toughness and a more complex structure of the 3D-printed composites. X-ray diffraction (XRD) showed that the addition of GHP favored the presence of the β-phase of PP in the printed composites. Full article
(This article belongs to the Special Issue Advanced Composites Processing and Manufacturing)
Show Figures

Graphical abstract

11 pages, 5235 KiB  
Article
High-Sensitivity Refractive Index Sensing Based on an SNPNS Composite Structure
by Di Wu, Jingwen Zhou, Xiang Yu and Yue Sun
Photonics 2024, 11(10), 941; https://doi.org/10.3390/photonics11100941 - 7 Oct 2024
Cited by 1 | Viewed by 991
Abstract
In this paper, we design and demonstrate an all-fiber-sensitive refractive index (RI) sensor based on the Mach–Zehnder interferometer (MZI). It is constructed by splicing two no-core fibers (NCFs) and a photonic crystal fiber (PCF) between two single-mode fibers (SMFs) to obtain an SMF–NCF–PCF–NCF–SMF [...] Read more.
In this paper, we design and demonstrate an all-fiber-sensitive refractive index (RI) sensor based on the Mach–Zehnder interferometer (MZI). It is constructed by splicing two no-core fibers (NCFs) and a photonic crystal fiber (PCF) between two single-mode fibers (SMFs) to obtain an SMF–NCF–PCF–NCF–SMF composite structure (SNPNS). A study of the effect of varying PCF lengths on the RI reveals that the shorter the length, the higher the sensitivity. The maximum RI sensitivity of 176.9 nm/RIU is attained within the RI range of 1.3365–1.3767 when the PCF length in the SNPNS structure is 3 cm. Meanwhile, the sensor exhibits a high stability in water, with an RSD of only 0.0019% for the interference trough over a duration of two hours. This proposed sensing structure offers the advantages of a large extinction ratio, small size, low temperature sensitivity, and simple fabrication, exhibiting a great potential in RI measurements. Full article
(This article belongs to the Section Lasers, Light Sources and Sensors)
Show Figures

Figure 1

11 pages, 5039 KiB  
Article
Temperature-Decoupled Single-Crystal MgO Fiber-Optic Fabry–Perot Vibration Sensor Based on MEMS Technology for Harsh Environments
by Chengxin Su, Pinggang Jia, Aihao Zhao, Jiacheng Tu, Jia Liu, Qianyu Ren and Jijun Xiong
Micromachines 2024, 15(5), 616; https://doi.org/10.3390/mi15050616 - 1 May 2024
Cited by 2 | Viewed by 4314
Abstract
A high-temperature-resistance single-crystal magnesium oxide (MgO) extrinsic Fabry–Perot (FP) interferometer (EFPI) fiber-optic vibration sensor is proposed and experimentally demonstrated at 1000 °C. Due to the excellent thermal properties (melting point > 2800 °C) and optical properties (transmittance ≥ 90%), MgO is chosen as [...] Read more.
A high-temperature-resistance single-crystal magnesium oxide (MgO) extrinsic Fabry–Perot (FP) interferometer (EFPI) fiber-optic vibration sensor is proposed and experimentally demonstrated at 1000 °C. Due to the excellent thermal properties (melting point > 2800 °C) and optical properties (transmittance ≥ 90%), MgO is chosen as the ideal material to be placed in the high-temperature testing area. The combination of wet chemical etching and direct bonding is used to construct an all-MgO sensor head, which is favorable to reduce the temperature gradient inside the sensor structure and avoid sensor failure. A temperature decoupling method is proposed to eliminate the cross-sensitivity between temperature and vibration, improving the accuracy of vibration detection. The experimental results show that the sensor is stable at 20–1000 °C and 2–20 g, with a sensitivity of 0.0073 rad (20 °C). The maximum nonlinearity error of the vibration sensor measurement after temperature decoupling is 1.17%. The sensor with a high temperature resistance and outstanding dynamic performance has the potential for applications in testing aero-engines and gas turbine engines. Full article
(This article belongs to the Special Issue Micro/Nano Sensors: Fabrication and Applications)
Show Figures

Figure 1

17 pages, 8680 KiB  
Article
Double-Clad Antiresonant Hollow-Core Fiber and Its Comparison with Other Fibers for Multiphoton Micro-Endoscopy
by Marzanna Szwaj, Ian A. Davidson, Peter B. Johnson, Greg Jasion, Yongmin Jung, Seyed Reza Sandoghchi, Krzysztof P. Herdzik, Konstantinos N. Bourdakos, Natalie V. Wheeler, Hans Christian Mulvad, David J. Richardson, Francesco Poletti and Sumeet Mahajan
Sensors 2024, 24(8), 2482; https://doi.org/10.3390/s24082482 - 12 Apr 2024
Cited by 4 | Viewed by 1969
Abstract
Label-free and multiphoton micro-endoscopy can transform clinical histopathology by providing an in situ tool for diagnostic imaging and surgical treatment in diseases such as cancer. Key to a multiphoton imaging-based micro-endoscopic device is the optical fiber, for distortion-free and efficient delivery of ultra-short [...] Read more.
Label-free and multiphoton micro-endoscopy can transform clinical histopathology by providing an in situ tool for diagnostic imaging and surgical treatment in diseases such as cancer. Key to a multiphoton imaging-based micro-endoscopic device is the optical fiber, for distortion-free and efficient delivery of ultra-short laser pulses to the sample and effective signal collection. In this work, we study a new hollow-core (air-filled) double-clad anti-resonant fiber (DC-ARF) as a high-performance candidate for multiphoton micro-endoscopy. We compare the fiber characteristics of the DC-ARF with a single-clad anti-resonant fiber (SC-ARF) and a solid core fiber (SCF). In this work, while the DC-ARF and the SC-ARF enable low-loss (<0.2 dBm−1), close to dispersion-free excitation pulse delivery (<10% pulse width increase at 900 nm per 1 m fiber) without any induced non-linearities, the SCF resulted in spectral broadening and pulse-stretching (>2000% of pulse width increase at 900 nm per 1 m fiber). An ideal optical fiber endoscope needs to be several meters long and should enable both excitation and collection through the fiber. Therefore, we performed multiphoton imaging on endoscopy-compatible 1 m and 3 m lengths of fiber in the back-scattered geometry, wherein the signals were collected either directly (non-descanned detection) or through the fiber (descanned detection). Second harmonic images were collected from barium titanate crystals as well as from biological samples (mouse tail tendon). In non-descanned detection conditions, the ARFs outperformed the SCF by up to 10 times in terms of signal-to-noise ratio of images. Significantly, only the DC-ARF, due to its high numerical aperture (NA) of 0.45 and wide-collection bandwidth (>1 µm), could provide images in the de-scanned detection configuration desirable for endoscopy. Thus, our systematic characterization and comparison of different optical fibers under different image collection configurations, confirms and establishes the utility of DC-ARFs for high-performing label-free multiphoton imaging-based micro-endoscopy. Full article
(This article belongs to the Special Issue Advances in Optical Fiber Sensors and Fiber Lasers)
Show Figures

Figure 1

14 pages, 12984 KiB  
Article
A PCF Sensor Design Using Biocompatible PDMS for Biosensing
by Yanxin Yang, Jinze Li, Hao Sun, Jiawei Xi, Li Deng, Xin Liu and Xiang Li
Polymers 2024, 16(8), 1042; https://doi.org/10.3390/polym16081042 - 10 Apr 2024
Cited by 2 | Viewed by 2241
Abstract
A novel photonic crystal fiber (PCF) sensor for refractive index detection based on polydimethylsiloxane (PDMS) is presented in this research, as well as designs for single-channel and dual-channel structures for this PDMS-PCF sensor. The proposed structures can be used to develop sensors with [...] Read more.
A novel photonic crystal fiber (PCF) sensor for refractive index detection based on polydimethylsiloxane (PDMS) is presented in this research, as well as designs for single-channel and dual-channel structures for this PDMS-PCF sensor. The proposed structures can be used to develop sensors with biocompatible polymers. The performance of the single-channel PDMS-PCF sensor was studied, and it was found that adjusting parameters such as pore diameter, lattice constant, distance between the D-shaped structure and the fiber core, and the radius of gold nanoparticles can optimize the sensor’s performance. The findings indicate that the detection range of the single-channel photonic crystal is 1.21–1.27. The maximum wavelength sensitivity is 10,000 nm/RIU with a resolution of 1×105 RIU, which is gained when the refractive index is set to 1.27. Based on the results of the single-channel PCF, a dual-channel PDMS-PCF sensor is designed. The refractive index detection range of the proposed sensor is 1.2–1.28. The proposed sensor has a maximum wavelength sensitivity of 13,000 nm/RIU and a maximum resolution of 7.69×106 RIU at a refractive index of 1.28. The designed PDMS-PCF holds tremendous potential for applications in the analysis and detection of substances in the human body in the future. Full article
(This article belongs to the Special Issue Polymer-Based Sensors and Actuators)
Show Figures

Figure 1

7 pages, 2307 KiB  
Communication
Kerr-Lens Mode-Locked Yb:BaF2 Laser
by Zhi-Qiang Li, Zhang-Lang Lin, Pavel Loiko, Huang-Jun Zeng, Ge Zhang, Hai-Yu Nie, Simone Normani, Abdelmjid Benayad, Patrice Camy, Xavier Mateos, Valentin Petrov and Weidong Chen
Photonics 2024, 11(4), 322; https://doi.org/10.3390/photonics11040322 - 30 Mar 2024
Cited by 4 | Viewed by 1599
Abstract
We present sub-50 fs soliton pulse generation from a diode-pumped Kerr-lens mode-locked laser based on an Yb3+-doped BaF2 crystal. Utilizing a spatially single-mode, fiber-coupled InGaAs laser diode at 976 nm as a pump source, the Yb:BaF2 laser generates pulses [...] Read more.
We present sub-50 fs soliton pulse generation from a diode-pumped Kerr-lens mode-locked laser based on an Yb3+-doped BaF2 crystal. Utilizing a spatially single-mode, fiber-coupled InGaAs laser diode at 976 nm as a pump source, the Yb:BaF2 laser generates pulses as short as 46 fs at 1060.1 nm with an average output power of 45 mW at a pulse repetition rate of ~65.6 MHz via soft-aperture Kerr-lens mode locking. To the best of our knowledge, this represents the first demonstration of Kerr-lens mode-locked operation of the Yb:BaF2 crystal, as well as the shortest pulse duration ever achieved from any diode-pumped mode-locked laser based on an Yb3+-doped alkaline-earth fluoride crystal. Full article
(This article belongs to the Special Issue Advances and Applications of Solid State Lasers)
Show Figures

Figure 1

14 pages, 4533 KiB  
Article
Structure–Piezoelectric Property Relationships of Thin Films Composed of Electrospun Aligned Poly(vinylidene fluoride) Nanofibers
by Priangga Perdana Putra, Shuichi Akasaka, Yuichi Konosu, Shaoling Zhang, Akihiko Tanioka and Hidetoshi Matsumoto
Nanomaterials 2024, 14(6), 491; https://doi.org/10.3390/nano14060491 - 8 Mar 2024
Cited by 7 | Viewed by 1989
Abstract
In the past two decades, many studies on piezoelectric nanofibers (NFs) prepared from poly(vinylidene fluoride) (PVDF) and its copolymers, including single NFs, randomly oriented nonwoven mats, and aligned NFs, have been reported. However, studies on the relationships between the PVDF NF diameter, the [...] Read more.
In the past two decades, many studies on piezoelectric nanofibers (NFs) prepared from poly(vinylidene fluoride) (PVDF) and its copolymers, including single NFs, randomly oriented nonwoven mats, and aligned NFs, have been reported. However, studies on the relationships between the PVDF NF diameter, the orientation of the β-phase crystals inside NFs, and the piezoelectric properties of the NFs are still limited. In this study, the effect of the fiber diameter on the internal molecular packing/orientation and piezoelectric properties of aligned PVDF NF thin films was investigated. Herein, piezoelectric thin films composed of densely packed, uniaxially aligned, PVDF NFs with diameters ranging from 228 to 1315 nm were prepared by means of electrospinning with a rotating collector and successive hot-pressing and poling. The effect of the diameters of PVDF NFs on their internal structures, as well as the piezoelectric properties of the thin films, was investigated. All prepared NFs mainly contained β-phase crystals with a similar total crystallinity. The orientation of the β-phase crystals inside the NFs increased with an increase in the fiber diameter, resulting in an improved transverse piezoelectric coefficient (d31) for the thin films. The output voltage of the prepared thin films reached a maximum of 2.7 V at 104 Hz. Full article
Show Figures

Figure 1

Back to TopTop