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Abstract: A novel photonic crystal fiber (PCF) sensor for refractive index detection based on poly-
dimethylsiloxane (PDMS) is presented in this research, as well as designs for single-channel and
dual-channel structures for this PDMS-PCF sensor. The proposed structures can be used to develop
sensors with biocompatible polymers. The performance of the single-channel PDMS-PCF sensor was
studied, and it was found that adjusting parameters such as pore diameter, lattice constant, distance
between the D-shaped structure and the fiber core, and the radius of gold nanoparticles can optimize
the sensor’s performance. The findings indicate that the detection range of the single-channel pho-
tonic crystal is 1.21–1.27. The maximum wavelength sensitivity is 10,000 nm/RIU with a resolution
of 1 × 10−5 RIU, which is gained when the refractive index is set to 1.27. Based on the results of the
single-channel PCF, a dual-channel PDMS-PCF sensor is designed. The refractive index detection
range of the proposed sensor is 1.2–1.28. The proposed sensor has a maximum wavelength sensitivity
of 13,000 nm/RIU and a maximum resolution of 7.69 × 10−6 RIU at a refractive index of 1.28. The
designed PDMS-PCF holds tremendous potential for applications in the analysis and detection of
substances in the human body in the future.

Keywords: PDMS-PCF; gold nanospheres; LSPR; dual-channel detection

1. Introduction

Researchers have been paying close attention to polymer materials in the field of
optical fiber sensing. Polymer optical fibers (POFs) are composed of polymer materials,
offering several advantages including low Young’s modulus, high levels of failure strain,
high flexibility, and biocompatibility [1]. Photonic devices with biocompatibility have
recently received increased attention because of their potential in biomedical applications.
PCFs based on surface plasmon resonance (SPR) are used to detect and prevent diseases of
human health because of their small size, high sensitivity, and high measurement accuracy.
Combining polymers with PCF-SPR creates a structure that is highly flexible and harmless
to the body and is used for the detection of medical drugs [2].

The pioneering work on the SPR technique was conducted by Liedberg et al. [3] in 1983,
and SPR has since found extensive use in optical bio-sensing applications. The SPR effect
refers to the phenomenon that occurs when the angle of incident light exceeding the critical
angle results in evanescent waves that resonate with surface plasmon waves at a specific
wavelength, and an obvious resonant peak appears [4]. The collective vibration of electrons
at the interface between gold nanofilm and a dielectric medium is known as plasmon
coupling. This interaction results in a reduction in the intensity of reflected light and exhibits
high sensitivity towards variations in the analyte refractive index. Thus, it provides a stable
and powerful technique for detecting analytes. LSPR is a new-generation SPR technology
with gold nanoparticles as the unit of detection. As with SPR, the incident light’s electric
field may be concentrated to collectively stimulate electrons in a conduction band [5]. LSPR
sensors use the inherent LSPR effect of gold nanoparticles to amplify the effect of resonance
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modes varying with the analyte refractive index, thereby increasing the sensitivity of
sensors. Differences in the dimensions and configurations of gold nanoparticles result in
unique properties, contributing to the flexibility of LSPR fiber sensors. SPR-PCF refers to a
novel type of micro-structured optical fiber featuring cladding with periodically arranged
air holes. PCFs, known for their excellent guidance, large mode area, continuously single-
mode nature, and adjustable geometrical parameters, have been applied in SPR-based
sensors [6]. The integration of PCF and SPR technology can significantly enhance the
refractive index sensitivity of optical fiber sensors. The PCF-SPR sensor was first introduced
by A. Hassani et al. [7], and its structure is shown in Figure 1a. A 40 nm gold film was
deposited in the air holes, facilitating the achievement of matching conditions between
the surface plasmon polariton mode (SPP) and the core mode. The sensitivity of this
hexagonal solid-core PCF-SPR sensor structure reaches 520 nm/RIU, with a resolution of
1.2 × 10−4 RIU. Researchers have developed a number of polymer PCF-based chemical
sensors and biosensors. Vijay Shanker Chaudhary et al. [8] introduced a novel porous core
structure PCF in combination with TOPAS as the substrate material for detecting various
chemicals, including ethanol, benzene, and water. N. Cennamo et al. [9] introduced an
optical chemical sensor utilizing SPR in a POF for the specific detection and analysis of
trinitrotoluene (TNT) in aqueous solution, as shown in Figure 1c. N. Ayyanar [10] proposed
a new cancer sensor utilizing a dual-core photonic crystal fiber for the identification of
cancer cells in cervical, breast, and basal parts, as shown in Figure 1d.
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Figure 1. PCF-LSPR sensors have been proposed [8,10]. (a) The first PCF-SPR sensor proposed by
A. Hassani et al. (b) A novel porous core structure PCF with TOPAS proposed by Vijay Shanker
Chaudhary et al. (c) An optical chemical sensor utilizing SPR in a POF introduced by N. Cennamo
et al. (d) A dual-core photonic crystal fiber proposed by N. Ayyanar.

A D-shaped PCF sensor based on polydimethylsiloxane (PDMS) was introduced for
biomedical detection. PDMS is a commonly employed silicone-based polymer known
for its strong chemical and thermal stability, biocompatibility, corrosion resistance, and
flexibility [11,12]. The proposed dual-channel structure can enhance plasmon resonance
and improve the sensor sensitivity. Due to the energy leakage from the fundamental
mode in PCF, the energy couples with the surface of gold nanospheres and excites plasmon
waves [13]. When the fundamental mode and SPP mode meet the phase-matching condition
KSPP = Kcore, the LSPR effect is the strongest, and the resonant wavelength corresponds
to the wavelength of the loss peak in the loss spectrum of the PCF sensor [14]. The
detection range for aerogels and sevoflurane (an important component of anesthetics) is



Polymers 2024, 16, 1042 3 of 14

1.21–1.27, the maximum spectral sensitivity is 10,000 nm/RIU, and the maximum resolution
is 1 × 10−5 RIU, when the refractive index of the analyte is 1.27.

2. Sensor Structure and Modeling

In this article, the designed D-shaped PCF-LSPR sensor is displayed in Figure 2. There
are two hexagonal rings and three kinds of air holes, d1 = 1.2 µm, d2 = 1.5 µm, and
d3 = 1.8 µm. The distance between the air holes is Λ = 3 µm, and the radius of the PCF
is 2.75Λ. The radius of the D-shaped channel is rs = 1 µm. The center position of the
D-shaped channel is y = h − 0.75rs, where h = 6 µm is the distance between the D-shaped
cross-section and the fiber core. The gold nanospheres with a radius of rd = 25 nm were
deposited on the open-ring surface and tightly fitted along the annular surface. The analyte
refractive index is na.
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Figure 2. The proposed PDMS-PCF sensor.

During actual manufacturing, the D-shaped PCF sensor forms the D-shaped surface
through the side polishing method [15]. Golden nanoparticles form a certain size and shape
by etching [16]. The prepared gold nanoparticles are scattered in appropriate solvents, and
they are placed directly on the surface of the sensor using coating, spraying, dripping, or
deposition technologies [17]. In this way, nanoparticles can interact with the surface of the
sensor and use their special properties to achieve the sensor’s function.

In this research, the designed PCF-LSPR sensor employs a substrate material known
as PDMS, which possesses a refractive index of 1.443 [18].

The dielectric constant of gold nanospheres can be expressed with the Drude model [19]:

ε(ω) = ε1 + iε2 = ε∞ −
ω2

P
ω(ω + iωC)

(1)

where ε∞ = 9.75 refers to the dielectric constant of the nanospheres, ωP = 1.36 × 1016

is the oscillation frequency of the plasmon, ω represents the angular frequency of the
incident electromagnetic wave, and ωc = 1.45 × 1014 represents the scattering frequency
of electrons.

The sensor’s loss is associated with the imaginary component of the effective refractive
index of the fundamental mode, which can be expressed as follows [20]:

αLoss ≈ 8.686 × k0·Im(ne f f )× 104(dB/cm) (2)

where λ represents the incident light wavelength, k0 = 2π/λ is the wave number in a
vacuum, and Im(ne f f ) is the imaginary component of the effective refractive index. The
PCF-LSPR sensor characteristics can be represented by the curve depicting the interrela-
tionship between loss and wavelength.
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3. Results and Discussions

In this work, the finite element method (FEM) [21] is employed to analyze the cross-
sectional mode field of the designed PCF-LSPR sensor. A perfectly matched layer (PML) is
introduced at the boundaries of the computational domain to absorb radiation energy [22].
This determines the effective refractive index of a mode field within the complex domain,
where the real component represents the conventional refractive index concept, and the
imaginary component represents the fiber mode attenuation [23]. By studying the inter-
relationship between the effective mode refractive index and the wavelength, this study
discusses the detection capabilities of the LSPR-based sensor, with the refractive index
ranging from 1.21 to 1.27. This section investigates the influence of changing the radius
of the gold nanospheres and other structural parameters, d1, d2, d3, Λ, rs, h, on the LSPR
effect and sensor sensitivity. Then, these parameters are systematically analyzed to obtain
the best-performing sensor structure.

3.1. LSPR-Based Sensing Performance of PCF-LSPR Sensors

This section analyzes the interrelationship between real and imaginary components
of effective mode refractive index (Re(ne f f ) and Im(ne f f )) of the PCF-LSPR sensor and
wavelength. In order to verify that the sensor is capable of an LSPR effect and sensing
refractive index. When the LSPR effect occurs, Re(ne f f ) of the fundamental mode and the
SPP mode are equal. The majority of the core energy is moved to the metal dielectric layer,
which results in an increased loss of the fundamental mode. It is possible to locate the
resonance wavelength by searching for the extreme value of loss outline of the fundamental
mode, which is taken as the size of the LSPR intensity.

Figure 3 shows the interrelationship between Re(ne f f ) and wavelength as the analyte
refractive index is 1.25. The black outline depicts the SPP mode, the blue outline depicts
the fundamental mode, and the red outline depicts the propagation loss of the effective
refractive index of the fundamental mode. It is apparent that Re(ne f f ) of the SPP mode
and the fundamental mode are equal at λ = 2.68 µm, which satisfies the phase-matching
condition. Meanwhile, most of the energy of the fiber core in the PCF is conveyed to the
vicinity of the gold nanospheres, and the loss spectrum shows an obvious peak, producing
a strong LSPR. The images corresponding to the blue arrows indicate how the electric field
of fundamental mode changes from a wavelength of 2.55 µm − 2.75 µm, where the red
arrows demonstrate electric field direction. The black arrows indicate how the electric
field of the SPP mode changes from a wavelength of 2.55 µm − 2.75 µm. In Figure 4, it
can be seen that Im(ne f f ) of the fundamental mode and the wavelength interrelationship
curve has the same trend as the fundamental mode loss spectrum curve, so the loss is
proportional to the fundamental mode imaginary component, as shown in Equation (2).
At λ = 2.68 µm, the fundamental mode and the SPP mode have different Im(ne f f ) values,
which prevents a full coupling to produce the strongest LSPR. From Figure 3, the resonance
wavelength is 2.68 µm, observed at na = 1.25, while the LSPR is not the strongest. The
result demonstrates that this designed sensor is capable of an LSPR effect and detects
changes in the refractive index.

Figure 5a demonstrates the fundamental mode loss in relation to wavelength for the
analyte refractive index ranging from 1.21 to 1.27. As the analyte refractive index increases
gradually, the loss peak wavelength moves towards longer wavelengths. Additionally, the
loss of the peak increases gradually, and this is accompanied by a continuous transfer of
energy from the fundamental mode to the SPP mode. The loss of its maximum occurs at
na = 1.26, when the LSPR effect of the sensor is strongest and full coupling is obtained. So,
Figure 5a,b exhibit the interrelationship between Re(ne f f ) and Im(ne f f ) as the wavelength
is fully coupled. As illustrated in Figure 5b, the coupling between the fundamental mode
and the SPP mode occurs near the anti-crossing point, where the Re(ne f f ) of both modes
turns, and the peak wavelength of the loss curve corresponds to this turning point. With
the increasing wavelength, the energy of the fundamental mode shifts to the SPP mode,
which has an exact opposite change in energy. Subsequently, these two modes will separate
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into two distinct modes at longer wavelengths, as shown in Figure 5c. At λ = 2.75 µm,
the values of Im(ne f f ) are equal for both modes, and electric field distributions of the
fundamental mode and the SPP mode are essentially the same. From Figure 5a, the loss
peak remains relatively constant at na ≥ 1.26, which indicates that the anti-crossing effect
only occurs at na ≥ 1.26.
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To further improve the detection capabilities, the key parameters include wavelength
sensitivity and refractive index resolution to optimize the sensor performance. Both are
obtained by studying the sensing characteristics of the PCF-LSPR sensor in the refractive in-
dex ranging from 1.21 to 1.27. Since the LSPR effect affects sensor sensitivity and resolution,
these two parameters are an effective measure of the PCF-LSPR sensor.
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The maximum wavelength sensitivity can be stated as follows [24]:

Sλ(nm/RIU) =
∆λPeak

∆na
(3)

where ∆na refers to the transformation in the refractive index, and ∆λPeak is the movement
of the resonant wavelength. The maximum wavelength sensitivity of 10,000 nm/RIU can
be obtained at na = 1.27.

The average sensor wavelength sensitivity was determined by linearly fitting the
resonant wavelength with the analyte refractive index, as displayed in Figure 6. The
representation of slop in the equation is indicative of an average wavelength sensitivity of
5285.71 nm/RIU in the range of 1.21–1.27, and the adjusted R2 = 0.9283. It shows that the
fit is good, and the sensor measures the refractive index with high accuracy.
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The expression for the maximum refractive index resolution is as [25]:

R =
∆na∆λmin

∆λPeak
(4)

Assuming a minimum value of ∆λmin as 0.1 nm. A maximum refractive index resolu-
tion of 1 × 10−5 RIU is achieved at na = 1.27.

In addition, the sensor refractometer quality factor (FOM) was calculated as the
proportion of the average sensitivity Sλ to the full width at half peak (FWHM) [26]:

FOM =
Sλ

FWHM
(5)

From the loss spectrum, the FWHM is known to be a maximum of 75 nm. So, the
refractometer quality factor for the single-channel sensor is 70.4613 RIU−1.

3.2. Changing Structural Parameters to Optimize Sensing Performance

The structural parameters of plasmon material and the geometric structure of the
sensor have important effects on the sensing characteristics. In order to obtain the strongest
LSPR effect and enable a higher sensitivity of the sensor, it is necessary to modify the
structural parameters to enhance the sensing performance.

3.2.1. Optimizing Metal Material

To achieve optimal sensor performance, the radius of the gold nanospheres was
changed at values of 15 nm, 25 nm, 50 nm, and 100 nm.

As rd = 15 nm, the results show that no LSPR phenomenon occurs within the refractive
index ranging from 1.21 to 1.27 for the PCF-LSPR sensor, which indicates that rd = 15 nm
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is not suitable for the designed sensor in this research. The results for the gold nanospheres
with rd = 25 nm are described in Section 3.1.

Figure 7 shows the research results of the PCF-LSPR sensor at rd = 50 nm. With an
increase in the analyte refractive index, the LSPR resonance wavelength progresses towards
longer wavelengths. The loss peak remains relatively constant at na ≥ 1.26, and the anti-
crossing effect occurs. Meanwhile, the sensor detects an expanded refractive index ranging
from 1.21 to 1.28. At na = 1.28, the maximum wavelength sensitivity is 8000 nm/RIU,
and the maximum refractive index resolution is 1.25 × 10−5 RIU. The refractive index
range was limited to 1.21–1.27 for comparing the average wavelength sensitivity of the
sensor at several different radii. The sensor obtained an average wavelength sensitivity
of 3821.43 nm/RIU, and the adjusted R2 = 0.97707. It shows that the fit is good, and the
sensor measures the refractive index with high accuracy.
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Figure 8 exhibits the findings at rd = 100 nm. Figure 8a shows the spectral loss
of analyte refractive index ranging from 1.21 to 1.27. The peak loss rises as the analyte
refractive index increases. The maximum peak loss and the strongest LSPR effect is obtained
at na = 1.26. When the analyte refractive index is at a maximum value of 1.27, the sensor
achieves a maximum wavelength sensitivity of 6000 nm/RIU and a maximum refractive
index resolution of 1.67 × 10−5 RIU. The result of linear fitting for the resonant wavelength
and the refractive index is illustrated in Figure 8b. When the refractive index is in the
range of 1.21–1.27, the average wavelength sensitivity of the sensor can be reached at
3714.29 nm/RIU, and the adjusted R2 = 0.9879. The fitting result is excellent, and the
sensor measures the refractive index with good accuracy.
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Comparing the above research results of gold nanospheres with different radii, under
the condition that the analyte refractive index range is the same, the radius of the gold
nanoparticle increases from 25 nm to 100 nm. It is evident that the resonance peak of the
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fundamental loss spectrum gradually shifts towards shorter wavelengths, and the size
of the core confinement loss decreases significantly. To obtain a higher PCF-LSPR sensor
sensitivity and the strongest LSPR effect, it can be finally determined that the sensor obtains
the best sensing performance at rd = 25 nm, when the wavelength sensitivity and refractive
index resolution are the highest. Figure 9 shows the change in sensor sensitivity when
different radii of gold nanoparticles are deposited separately.
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3.2.2. Optimizing Geometric Structure

The internal geometric structure parameters of PCF also influence the detection capa-
bilities. The presence of air holes ensures the transmission of incident light within the core,
satisfying the conditions necessary for phase matching between the fundamental mode
and the SPP mode. Therefore, the optimized PCF structure can be determined by changing
the size of the air hole diameters and other geometrical parameters, and by considering the
effect of both on LSPR resonance wavelength as well as the sensor sensitivity.

(1) Changing air hole diameters

The impact of the air hole diameters d1, d2, d3 on sensor performance is researched for
na = 1.26, rd = 25 nm.

The research findings for changing the air hole diameter d1 are depicted in Figure 10a.
The resonant wavelength gradually shifts towards longer wavelengths as d1 increases from
1.1 µm to 1.3 µm. When d1 = 1.15 µm, the loss peak is at a maximum. Meanwhile, the
evanescent wave exhibits strong affinity towards the surface of gold nanospheres, leading
to efficient interaction with the analyte. This interaction results in the observed anti-crossing
effect, as depicted in Figure 10b. The interaction between the fundamental mode and the
SPP mode achieves its peak, with the energy of the fundamental mode being completely
moved to the energy of the SPP mode. Thus, the strongest LSPR effect can be obtained at
d1 = 1.15 µm.

Figure 11a, Figure 11b, and Figure 11c, respectively, show the influences of changing
d2, d3, Λ on the resonance spectrum of the fundamental mode. In Figure 11a,b, the resonant
wavelength shifts towards shorter wavelengths with d2, d3 increases. This is because the
larger air holes d2, d3 surrounding the D-shaped open-ring channel make the leakage
channel of evanescent waves from the fiber core to the dielectric-metal become narrower,
making the leakage more difficult. The narrowing of the leakage channel makes the
effective refractive index of the SPP mode smaller, leading to loss peak shifts towards
shorter wavelengths. When the loss peak reaches a maximum at d2 = 1.5 µm, d3 = 1.8 µm,
the strongest LSPR effect happened at these points. In Figure 11c, the air hole distance
Λ increases from 2.96 µm to 3.04 µm, and the resonance curve is significantly shifted at
Λ = 3.02 µm. The resonance wavelength is moved to longer wavelengths and reaches the
resonance peak.
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Sensor sensitivity is another important parameter for evaluating its performance.
Therefore, the following comparison examines the changes in sensitivity after changing
d1, d2, d3.

Figure 12a, Figure 12b, and Figure 12c, respectively, show the linear fitting results
relating the resonant wavelength to the refractive index at different values of d1, d2, d3.
Figure 12a depicts the sensitivity of the designed D-shaped PDMS-PCF sensor in the d1
range of 1.1 µm–1.3 µm. The sensor sensitivity uniformly increases as d1 increases, and the
maximum sensitivity of 7067.8 nm/RIU is obtained at d1 = 1.3 µm. Figure 12b shows the
influence of changing d2 on sensor sensitivity. It is evident that the sensitivity reduces as d2
increases. However, at d2 = 1.6 µm and d2 = 1.65 µm, the sensitivity will have unusual
values, which can have a great impact on the sensor’s stability. Therefore, for the designed
D-shaped PDMS-PCF sensor, the size of the air hole d2 should be smaller than 1.55 µm.
Once it exceeds 1.55 µm, the sensor sensitivity will exhibit abnormal fluctuations, thereby
affecting the accuracy of the refractive index detection. In Figure 12c, the sensor sensitivity
decreases as d3 increases, and at d3 = 1.9 µm, the sensitivity increases abnormally, so the
size of the air hole d3 should be smaller than 1.85 µm.

Considering the effect of the air hole diameter on LSPR strength as well as sensor
sensitivity, the suitable air hole diameters are selected by respectively comparing the mode
coupling strength and detection accuracy of the PCF sensor. The air hole diameter of the
PCF d1 = 1.15 µm was chosen as the appropriate diameter. Because the LSPR effect is
strongest at this time, even though the sensor sensitivity is not the greatest, the goodness of
fit is up to 0.97022. The sensor has the ability to accurately detect the refractive index of the
analyte. Based on the same method, it can be determined that d2 = 1.5 µm, d3 = 1.8 µm is
the appropriate air hole diameter.
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(2) Changing other geometric parameters

Similarly, under the conditions of na = 1.26 and rd = 25 nm, varying the other
geometric parameters in the PCF, including the radius of the open-ring channel rs and
the distance between the D-shaped cross-section and core h. This chapter explores the
impact of these two parameters on LSPR effect and sensor sensitivity to identify the suitable
geometric parameters for the PCF-LSPR sensor.

The loss spectra for different rs are shown in Figure 13a. The resonant wavelength
gradually shifts towards shorter wavelengths and the loss peak gradually decreases as
rs increases. When rs = 1 µm, the resonance peak is at a maximum. This is because
an anti-crossing occurs at rs = 1 µm, resulting in the most robust coupling relating the
fundamental mode to the SPP mode, generating resonance at λ = 2.75 µm. Figure 13b
shows the loss spectra as h increases from 5.95 µm to 6.05 µm. The resonant wavelength
shifts towards shorter wavelengths as h increases. Meanwhile, the loss peak reaches a
maximum at h = 5.95 µm, corresponding to the resonance wavelength at λ = 2.8 µm. By
comparing the strength of its LSPR effect, rs = 1 µm, h = 5.95 µm is obtained as the most
suitable geometry for this sensor.
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Compare the sensor sensitivity change after changing rs and h. Figure 14a and
Figure 14b, respectively, show the linear fitting results relating the resonant wavelength to
the refractive index under different values of rs and h. Figure 14a shows that the sensor
sensitivity gradually decreases as rs increases. The sensor sensitivity appears abnormal
at rs = 1.075 µm, which is harmful to the stability of the sensor, so rs should be less than
1.075 µm. In Figure 14b, the sensor sensitivity gradually increases as h increases from
5.925 µm to 5.975 µm. When h ≥ 6 µm, the sensor sensitivity shows abnormal fluctuations,
so h should be less than 6 µm. Considering that rs and h influence LSPR intensity as well as
the sensor sensitivity, rs = 1 µm and h = 5.95 µm were, respectively, chosen as the optimal
geometries. Because the LSPR effect is strongest and the sensor sensitivity is higher in both
situations, the linear curve fitting shows a high correlation, enabling the accurate detection
of the analyte refractive index.
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On the basis of studying the detection capabilities of this designed PCF-LSPR sensor,
it was found that when the Im(ne f f ) of the fundamental mode and the SPP mode are equal,
an anti-crossing effect appears, and the fundamental mode and the SPP mode are fully
coupled at the anti-crossing point. Comparing the average wavelength sensitivity and
maximum resolution of the PCF-LSPR sensor, the sensor performs best when rd = 25 nm.
Furthermore, the optimization of sensor performance can be achieved by changing the
structural parameters of the PCF. In summary, adjusting d1 = 1.15 µm, d2 = 1.5 µm,
d3 = 1.8 µm, rs = 1 µm, h = 5.95 µm can greatly optimize the sensor performance with
high sensitivity and a strong LSPR effect of the PCF-LSPR sensor.

Based on the above analysis, a dual-channel photonic crystal fiber sensor is proposed.
The D-shaped surfaces of the PCF are symmetrical, and this sensor utilizes two D-shaped
channels, one on the upper surface and one on the lower surface, for measurements, as
illustrated in Figure 15. Gold nanospheres of equal size are uniformly arranged on both the
upper and lower D-shaped surfaces to form a dual sensing channel.
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Figure 16a shows the relationship between core mode loss and wavelength for the
analyte refractive index ranging from 1.2 to 1.28. With the increase in the refractive index,
the peak wavelength of the loss spectrum shifts towards longer wavelengths. However,
there is no significant fluctuation in the peak loss. The average wavelength sensitivity
was derived by linearly fitting the resonant wavelength with the analyte refractive index,
as shown in Figure 16b. The average wavelength sensitivity of 5316.67 nm/RIU in the
refractive index range of 1.2–1.28 and the adjusted R2 = 0.91466 shows that the fit is good
and that the sensor measures the refractive index with high accuracy. It has a maximum
wavelength sensitivity of 13,000 nm/RIU and a maximum resolution of 7.69 × 10−6 RIU at
a refractive index of 1.28. From the loss spectrum, the FWHM is known to be a maximum
of 140 nm. So, the refractometer quality factor for the dual-channel sensor is 37.976 RIU−1.



Polymers 2024, 16, 1042 12 of 14

Polymers 2024, 16, x FOR PEER REVIEW 12 of 15 
 

 

structural parameters of the PCF. In summary, adjusting 1 1.15μmd = , 2 1.5μmd = , 

3 1.8μmd = , 1μmsr = , 5.95μmh =  can greatly optimize the sensor performance with 
high sensitivity and a strong LSPR effect of the PCF-LSPR sensor. 

Based on the above analysis, a dual-channel photonic crystal fiber sensor is proposed. 
The D-shaped surfaces of the PCF are symmetrical, and this sensor utilizes two D-shaped 
channels, one on the upper surface and one on the lower surface, for measurements, as 
illustrated in Figure 15. Gold nanospheres of equal size are uniformly arranged on both 
the upper and lower D-shaped surfaces to form a dual sensing channel. 

 
Figure 15. The designed dual-channel PCF sensor. 

Figure 16a shows the relationship between core mode loss and wavelength for the 
analyte refractive index ranging from 1.2 to 1.28. With the increase in the refractive index, 
the peak wavelength of the loss spectrum shifts towards longer wavelengths. However, 
there is no significant fluctuation in the peak loss. The average wavelength sensitivity was 
derived by linearly fitting the resonant wavelength with the analyte refractive index, as 
shown in Figure 16b. The average wavelength sensitivity of 5316.67 nm/RIU in the refrac-
tive index range of 1.2–1.28 and the adjusted 2 0.91466R =  shows that the fit is good and 
that the sensor measures the refractive index with high accuracy. It has a maximum wave-
length sensitivity of 13,000 nm/RIU and a maximum resolution of 67.69 10−×  RIU at a 
refractive index of 1.28. From the loss spectrum, the FWHM is known to be a maximum 
of 140 nm. So, the refractometer quality factor for the dual-channel sensor is 37.976 RIU−1. 

Comparing the performance of single-channel and dual-channel photonic crystal fi-
ber sensors, the dual-channel sensor has a smaller resolution, making it easier to complete 
inspections. Furthermore, it has a higher wavelength sensitivity than the single-channel 
sensor and a high accuracy. From this, if more precise detection results are desired, a dual-
channel sensor should be selected. Sensors can also be selected according to different 
needs. Table 1 illustrates the performance of this sensor in comparison with recently doc-
umented ones. According to Table 1, the single-channel sensor design enables the detec-
tion of the analyte refractive index within the range of 1.21 to 1.27, while the dual-channel 
sensor exhibits a detection range of 1.2–1.28. 
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Comparing the performance of single-channel and dual-channel photonic crystal fiber
sensors, the dual-channel sensor has a smaller resolution, making it easier to complete
inspections. Furthermore, it has a higher wavelength sensitivity than the single-channel
sensor and a high accuracy. From this, if more precise detection results are desired, a dual-
channel sensor should be selected. Sensors can also be selected according to different needs.
Table 1 illustrates the performance of this sensor in comparison with recently documented
ones. According to Table 1, the single-channel sensor design enables the detection of the
analyte refractive index within the range of 1.21 to 1.27, while the dual-channel sensor
exhibits a detection range of 1.2–1.28.

Table 1. Performance metrics for existing PCF-LSPR sensors.

Ref. Reported Sensor Structure Maximum Wavelength
Sensitivity/(nm/RIU)

Range of Refractive
Index Resolution/RIU

[27] PCF coated with a gold
nanowire <2350 1.28–1.32 4.26 × 10−8

[28] Dual-polarized spiral PCF 4600 1.33–1.38 2.3 × 10−7

[29] Dual-channel D-shaped PCF 5500 1.23–1.29 7.69 × 10−6

[30] Elliptical hole PCF 9000 1.34–1.37 1.11 × 10−5

[31] D-shaped PCF 66,666.67 1.36–1.39 9.66 × 10−4

[32] Liquid-infiltrated elliptical
core PCF

9.17/W/m
(Nonlinearity) / 1.41 × 10−13 m2

(effective mode area)

our Single-channel PDMS-PCF
based on LSPR 10,000 1.2–1.28 7.69 × 10−6

our Dual-channel PDMS-PCF
based on LSPR 13,000 1.21–1.27 1.0 × 10−5

4. Conclusions

A novel dual-channel PCF sensor for refractive index detection based on PDMS is
proposed to design a higher-performance dual-channel sensor for bio-chemicals such as
aerogel and sevoflurane. FEM is used to conduct numerical simulations of the coupling
properties and sensing performance. The sensitivity of the designed PDMS-PCF-LSPR
sensor is enhanced by depositing gold nanospheres on the D-shaped open-ring channel
to excite the LSPR effect. By comparing the sensitivity of the sensor when depositing
gold nanospheres of different radii, the research findings demonstrate that the designed
sensor exhibits high wavelength sensitivity and can effectively detect low refractive indices
within the range of 1.21–1.27. A maximum wavelength sensitivity of 10,000 nm/RIU and a
resolution of 1 × 10−5 RIU are achieved when the refractive index is set to 1.27. To enhance
the functionality of the D-shaped PCF sensor structure, a novel dual-channel PCF sensor
is proposed, which offers an extended range for refractive index detection. Furthermore,
it has a maximum wavelength sensitivity of 13,000 nm/RIU and a maximum resolution
of 7.69 × 10−6 RIU at a refractive index of 1.28. Since there is some interference between
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the dual channels, it results in a little higher sensitivity than the single-channel sensor, not
achieving the desired effect. The designed sensors can be used to monitor and analyze
molecules, cells, and tissues in biological samples. By measuring changes in the analyte
refractive index, information can be obtained about sample composition, concentration,
mass, and interactions. For example, it can measure the refractive index changes in cells to
understand their form, density, and transparency. In addition, the refractive index fiber
sensor can also be used to evaluate the growth and quality of the artificial organization or
organs built in the organization engineering. The designed sensors are of great significance
in bio-medical applications.
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