High-Sensitivity Refractive Index Sensing Based on an SNPNS Composite Structure
Abstract
:1. Introduction
2. Sensor Fabrication and Principle
3. Experimental Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Joe, H.E.; Yun, H.; Jo, S.H.; Jun, M.; Min, B. A review on optical fiber sensors for environmental monitoring. Int. J. Precis. Eng. Man. GT 2018, 5, 173–191. [Google Scholar] [CrossRef]
- Chaudhary, V.S.; Kumar, D.; Kumar, S. Gold-immobilized photonic crystal fiber-based SPR biosensor for detection of malaria disease in human body. IEEE Sen. J. 2021, 21, 17800–17807. [Google Scholar] [CrossRef]
- Chen, S.; Zhang, C.; Wang, J.; Li, N.; Song, Y.; Wu, H.; Liu, Y. A fiber Bragg grating sensor based on cladding mode resonance for label-free biosensing. Biosensors 2023, 13, 97. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Wang, G.; Yu, X.; Fan, Y.; Chen, X.; Liu, S. Label-free DNA hybridization detection using a highly sensitive fiber microcavity biosensor. Sensors 2024, 24, 278. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; He, T.; Chen, M.; Zhang, Z.; Tong, R. Ultra-short fiber Bragg grating composed of cascaded microchannels in a microprobe for refractive index measurement. J. Lightwave Technol. 2023, 41, 2555–2561. [Google Scholar] [CrossRef]
- Upadhyay, C.; Dhawan, D. Fiber Bragg grating refractive index sensor based on double D-shaped fiber. Opt. Quantum Electron. 2023, 55, 271. [Google Scholar] [CrossRef]
- Qi, L.; Zhao, C.L.; Yuan, J.; Ye, M.; Wang, J.; Zhang, Z.; Jin, S. Highly reflective long period fiber grating sensor and its application in refractive index sensing. Sens. Actuators B 2014, 193, 185–189. [Google Scholar] [CrossRef]
- Li, H.C.; Liu, J.; He, X.; Yuan, J.; Wu, Q.; Liu, B. Long-period fiber grating based on side-polished optical fiber and its sensing application. IEEE Trans. Instrum. Meas. 2023, 72, 7001109. [Google Scholar] [CrossRef]
- Liu, D.; Mallik, A.K.; Yuan, J.; Yu, C.; Farrell, G.; Semenova, Y.; Wu, Q. High-sensitivity refractive index sensor based on a tapered small core single-mode fiber structure. Opt. Lett. 2015, 40, 4166–4169. [Google Scholar] [CrossRef]
- Lu, Z.; Liu, C.; Ren, J.; Chen, L.; Li, C.; Zhou, W. Temperature-insensitive high-sensitivity refractive index sensor based on tapered no core fiber. Meas. Sci. Technol. 2023, 34, 084001. [Google Scholar] [CrossRef]
- Islam, N.; Arif, M.F.H.; Yousuf, M.A.; Asaduzzaman, S. Highly sensitive open channel-based PCF-SPR sensor for analyte refractive index sensing. Results Phys. 2023, 46, 106266. [Google Scholar] [CrossRef]
- Chaudhary, V.S.; Kumar, D.; Kumar, S. Au-TiO2 coated photonic crystal fiber based SPR refractometric sensor for detection of cancerous cells. IEEE Trans. Nanobiosci. 2023, 22, 562–569. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Qiao, X.; Guo, T.; Wang, R.; Zhang, J.; Weng, Y.; Rong, Q.; Hu, M.; Feng, Z. Temperature-independent refractive index measurement based on Fabry-Perot fiber tip sensor modulated by Fresnel reflection. Chin. Opt. Lett. 2012, 10, 050603. [Google Scholar] [CrossRef]
- Zhou, Y.; Liu, Y.; Zheng, J. Investigation of an inline fiber Mach-Zehnder interferometer based on hybrid joints of core-offset and peanut-shape for refractive index sensing. Opt. Fiber Technol. 2023, 81, 103521. [Google Scholar] [CrossRef]
- Zhao, Y.; Li, X.; Cai, L. A highly sensitive Mach–Zehnder interferometric refractive index sensor based on core-offset single mode fiber. Sens. Actuators A 2015, 223, 119–124. [Google Scholar] [CrossRef]
- Yu, F.; Xue, P.; Zheng, J. Study of a large lateral core-offset in-line fiber modal interferometer for refractive index sensing. Opt. Fiber Technol. 2019, 47, 107–112. [Google Scholar] [CrossRef]
- Dong, R.X.; Sun, X.Y.; Chu, D.K.; Yin, K.; Luo, Z.; Wang, C.; Hu, Y.W.; Duan, J.A. Microcavity Mach–Zehnder interferometer sensors for refractive index sensing. IEEE Photonics Technol. Lett. 2016, 28, 2285–2288. [Google Scholar] [CrossRef]
- Cui, J.; Gunawardena, D.S.; Cheng, X.; Htein, L.; Leong, C.Y.; Lau, A.P.T.; Tam, H.Y. In-line open-cavity Mach-Zehnder interferometric refractive-index sensors based on inter-mode and inter-core-mode interferences. Opt. Lasers Eng. 2024, 172, 107880. [Google Scholar] [CrossRef]
- Azab, M.Y.; Hameed, M.F.O.; Mahdiraji, G.A.; Adikan, M.; Obayya, S.S.A. Experimental and numerical characterization of a D-shaped PCF refractive index sensor. Opt. Quantum Electron. 2022, 54, 846. [Google Scholar] [CrossRef]
- Wu, D.; Zhao, Y.; Li, J. PCF taper-based Mach–Zehnder interferometer for refractive index sensing in a PDMS detection cell. Sens. Actuators B 2015, 213, 1–4. [Google Scholar] [CrossRef]
- Liu, F.; Guo, X.; Zhang, Q.; Fu, X. Dual-hole photonic crystal fiber intermodal interference based refractometer. Opt. Commun. 2017, 405, 147–151. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, B.T.; Kong, L.X.; Zhan, Y. Comparative analyses of bi-tapered fiber Mach–Zehnder interferometer for refractive index sensing. IEEE Trans. Instrum. Meas. 2017, 66, 2483–2489. [Google Scholar] [CrossRef]
- Zhao, Y.; Xia, F.; Hu, H.F.; Chen, M.Q. A novel photonic crystal fiber Mach–Zehnder interferometer for enhancing refractive index measurement sensitivity. Opt. Commun. 2017, 402, 368–374. [Google Scholar] [CrossRef]
- Li, X.G.; Zhao, Y.; Cai, L.; Wang, Q. Simultaneous measurement of RI and temperature based on a composite interferometer. IEEE Photonics Technol. Lett. 2016, 28, 1839–1842. [Google Scholar] [CrossRef]
- Dong, X.; Zeng, L.; Chu, D.; Sun, X.; Duan, J. Highly sensitive refractive index sensing based on a novel Mach-Zehnder interferometer with TCF-PCF composite structure. Infrared Phys. Technol. 2022, 123, 104134. [Google Scholar] [CrossRef]
- Zhao, Y.; Li, X.; Cai, L.; Yang, Y. Refractive index sensing based on photonic crystal fiber interferometer structure with up-tapered joints. Sens. Actuators B 2015, 221, 406–410. [Google Scholar] [CrossRef]
- Wang, Q.; Kong, L.; Dang, Y.; Xia, F.; Zhang, Y.; Zhao, Y.; Hu, H.; Li, J. High sensitivity refractive index sensor based on splicing points tapered SMF-PCF-SMF structure Mach-Zehnder mode interferometer. Sens. Actuators B Chem. 2016, 225, 213–220. [Google Scholar] [CrossRef]
- Ding, J.F.; Zhang, A.P.; Shao, L.Y.; Yan, J.H.; He, S. Fiber-taper seeded long-period grating pair as a highly sensitive refractive-index sensor. IEEE Photonics Technol. Lett. 2005, 17, 1247–1249. [Google Scholar] [CrossRef]
- Tripathi, S.M.; Bock, W.J.; Mikulic, P. A wide-range temperature immune refractive-index sensor using concatenated long-period-fiber-gratings. Sens. Actuators B 2017, 243, 1109–1114. [Google Scholar] [CrossRef]
- Garg, R.; Tripathi, S.M.; Thyagarajan, K.; Bock, W.J. Long period fiber grating based temperature-compensated high performance sensor for bio-chemical sensing applications. Sens. Actuators B Chem. 2013, 176, 1121–1127. [Google Scholar] [CrossRef]
- Chen, J.; Cui, S.; Zhang, S.; Liu, A. Refractive index sensors based on a chirped core long-period fiber grating. IEEE Photonics Technol. Lett. 2024, 36, 771–774. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhang, Y.; Hu, H.; Yang, Y.; Lei, M.; Wang, S. High-sensitive Mach-Zehnder interferometers based on no-core optical fiber with large lateral offset. Sens. Actuators A Phys. 2018, 281, 9–14. [Google Scholar] [CrossRef]
- Li, L.; Zhang, Y.; Han, B.; Lv, R.; Zhao, J.; Zhao, Y. Highly Sensitive and Regulatable Optical Fiber Vernier Sensor Based on Two Integrated Parallel MZIs. J. Light. Technol. 2024, 42, 6318–6325. [Google Scholar] [CrossRef]
- Tian, Z.; Yam, S.S.-H.; Barnes, J.; Bock, W.; Greig, P.; Fraser, J.M.; Loock, H.-P.; Oleschuk, R.D. Refractive index sensing with Mach-Zehnder interferometer based on concatenating two single-mode fiber tapers. IEEE Photon. Technol. Lett. 2008, 20, 626–628. [Google Scholar] [CrossRef]
- Wang, Q.; Wei, W.; Guo, M.; Zhao, Y. Optimization of cascaded fiber tapered Mach-Zehnder interferometer and refractive index sensing technology. Sens. Actuators B Chem. 2016, 222, 159–165. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, M.W.; Wang, D.N.; Liu, S.J.; Lu, P.X. Fiber in-line Mach-Zehnder interferometer fabricated by femtosecond laser micromachining for refractive index measurement with high sensitivity. J. Opt. Soc. Am. B 2010, 27, 370–374. [Google Scholar] [CrossRef]
- Gao, S.C.; Zhang, W.G.; Zhang, H.; Zhang, C.L. Reconfigurable and ultra-sensitive in-line Mach-Zehnder interferometer based on the fusion of microfiber and microfluid. Appl. Phys. Lett. 2015, 106, 084103. [Google Scholar] [CrossRef]
- Gao, S.; Zhang, W.; Bai, Z.; Zhang, H.; Geng, P.; Lin, W.; Li, J. Ultrasensitive refractive index sensor based on microfiber-assisted u-shape cavity. IEEE Photonics Technol. Lett. 2013, 25, 1815–1818. [Google Scholar] [CrossRef]
Parameter | Values |
---|---|
Cladding diameter (μm) | 125 |
Air hole diameter (μm) | 2.576 |
Air hole pitch (μm) | 5.6 |
Core diameter (μm) | 8.3 |
Structures | Sensitivity (nm/RIU) | RI Range | Reference |
---|---|---|---|
Tapered PCF | 51.902 | 1.3411–1.3737 | [20] |
MMF–PCF MZI | 108 | 1.333–1.374 | [24] |
TCF–PCF MZI | 119.29 | 1.3333–1.3735 | [25] |
HTCR–PCF–HTCR MZI | 181.96 | 1.3333–1.3574 | [23] |
Up-tapered MZI | 252 | 1.333–1.379 | [26] |
Tapered SMF–PCF–SMF | 260.8/243.4 | 1.3333–1.3737 | [27] |
SNPNS MZI | 176.90 | 1.3365–1.3767 | This work |
Structures | Sensitivity (nm/RIU) | RI Range | Reference |
---|---|---|---|
Tapered LPFG | 178.87 | 1.3333–1.3624 | [28] |
etched, DRLPFGs | 2577/4681 | 1.333–1.343 | [29] |
etched, DRLPFGs | 2500 | 1.333–1.353 | [30] |
CC–LPFG | >600 | 1.42 | [31] |
Bent SMF-peanut shape- SMF- core-off section-SMF | −167.27 | 1.333–1.373 | [14] |
SMF–NCF-offset NCF–NCF–SMF | −11,078.8 | 1.3320–1.3355 | [32] |
SMF–MMF-offset SSHF–SMF–MMF–SMF | −101,622 | 1.3311–1.3335 | [33] |
Two cascaded SMF tapers | 1570 | 1.315–1.3618 | [34] |
Two cascaded SMF tapers | 1548.4 | 1.3333–1.3792 | [35] |
V-shape | 1437.61 | 1.3333–1.3459 | [17] |
Rectangular-shape | 1489.10 | 1.3371–1.3407 | [17] |
U-shape | 1584.47 | 1.31–1.335 | [36] |
SMF-microfiber-SMF | 1537 | 1.44 | [37] |
SMF-microfiber-SMF | 1376.03 | 1.4444–1.4462 | [38] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, D.; Zhou, J.; Yu, X.; Sun, Y. High-Sensitivity Refractive Index Sensing Based on an SNPNS Composite Structure. Photonics 2024, 11, 941. https://doi.org/10.3390/photonics11100941
Wu D, Zhou J, Yu X, Sun Y. High-Sensitivity Refractive Index Sensing Based on an SNPNS Composite Structure. Photonics. 2024; 11(10):941. https://doi.org/10.3390/photonics11100941
Chicago/Turabian StyleWu, Di, Jingwen Zhou, Xiang Yu, and Yue Sun. 2024. "High-Sensitivity Refractive Index Sensing Based on an SNPNS Composite Structure" Photonics 11, no. 10: 941. https://doi.org/10.3390/photonics11100941
APA StyleWu, D., Zhou, J., Yu, X., & Sun, Y. (2024). High-Sensitivity Refractive Index Sensing Based on an SNPNS Composite Structure. Photonics, 11(10), 941. https://doi.org/10.3390/photonics11100941