A PCF Sensor Design Using Biocompatible PDMS for Biosensing
Abstract
:1. Introduction
2. Sensor Structure and Modeling
3. Results and Discussions
3.1. LSPR-Based Sensing Performance of PCF-LSPR Sensors
3.2. Changing Structural Parameters to Optimize Sensing Performance
3.2.1. Optimizing Metal Material
3.2.2. Optimizing Geometric Structure
- (1)
- Changing air hole diameters
- (2)
- Changing other geometric parameters
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Min, R.; Hu, X.; Pereira, L.; Soares, M.S.; Silva, L.C.; Wang, G.; Martins, L.; Qu, H.; Antunes, P.; Marques, C.; et al. Polymer optical fiber for monitoring human physiological and body function: A comprehensive review on mechanisms, materials, and applications. Opt. Laser Technol. 2022, 147, 107626. [Google Scholar] [CrossRef]
- Liu, Y.; Li, S.; Chen, H.; Li, J.; Zhang, W.; Wang, M. Surface Plasmon Resonance Induced High Sensitivity Temperature and Refractive Index Sensor Based on Evanescent Field Enhanced Photonic Crystal Fiber. J. Light. Technol. 2020, 38, 919–928. [Google Scholar] [CrossRef]
- Liedberg, B.; Nylander, C.; Lunström, I. Surface plasmon resonance for gas detection and biosensing. Sens. Actuators 1983, 4, 299–304. [Google Scholar] [CrossRef]
- Kushwaha, A.S.; Kumar, A.; Kumar, R.; Srivastava, S. A study of surface plasmon resonance (SPR) based biosensor with improved sensitivity. Photonics-Nanostruct.-Fundam. Appl. 2018, 31, 99–106. [Google Scholar] [CrossRef]
- Eleonora, P.; Krull, U.J. Localized surface plasmon resonance: Nanostructures, bioassays and biosensing—A review. Anal. Chim. Acta 2011, 706, 8–24. [Google Scholar]
- Jitendra Narayan, D.; Jha, R. Highly sensitive D shaped PCF sensor based on LSPR for near IR. Opt. Quantum Electron. 2016, 48, 1–7. [Google Scholar]
- Hassani, A.; Skorobogatiy, M. Design of the microstructured optical fiber-based surface plasmon resonance sensors with enhanced microfluidics. Opt. Express 2006, 14, 11616–11621. [Google Scholar] [CrossRef]
- Chaudhary, V.S.; Kumar, D. TOPAS based porous core photonic crystal fiber for terahertz chemical sensor. Optik 2020, 223, 165562. [Google Scholar] [CrossRef]
- Cennamo, N.; D’agostino, G.; Galatus, R.; Bibbò, L.; Pesavento, M.; Zeni, L. Sensors based on surface plasmon resonance in a plastic optical fiber for the detection of trinitrotoluene. Sens. Actuators B Chem. 2013, 188, 221–226. [Google Scholar] [CrossRef]
- Ayyanar, N.; Raja, G.T.; Sharma, M.; Kumar, D.S. Photonic Crystal Fiber-Based Refractive Index Sensor for Early Detection of Cancer. IEEE Sens. J. 2018, 18, 7093–7099. [Google Scholar] [CrossRef]
- Zeng, Z.; Wei, S.; Taylor, S.E. Facile preparation of superhydrophobic melamine sponge for efficient underwater oil-water separation. Sep. Purif. Technol. 2020, 247, 116996. [Google Scholar] [CrossRef]
- Pinho, D.; Muñoz-Sánchez, B.; Anes, C.; Vega, E.J.; Lima, R. Flexible PDMS microparticles to mimic RBCs in blood particulate analogue fluids. Mech. Res. Commun. 2019, 100, 18–20. [Google Scholar] [CrossRef]
- Otupiri, R.; Akowuah, E.K.; Haxha, S. Multi-channel LSPR biosensor based on PCF for multi-analyte sensing applications. Opt. Express 2015, 23, 15716–15727. [Google Scholar] [CrossRef] [PubMed]
- Luo, G.; Zhang, X.; Zhu, X.-S.; Shi, Y.-W. Experimental study of the copper-coated hollow fiber surface plasmon resonance sensor. Opt. Commun. 2022, 520, 128481. [Google Scholar] [CrossRef]
- Bai, G.; Yin, Z.; Li, S.; Jing, X.; Chen, Q.; Zhang, M.; Shao, P. Enhancement of SPR effect and sensing characteristics in D-shaped polished grapefruit microstructured optical fiber with silver film. Opt. Commun. 2023, 530, 129204. [Google Scholar] [CrossRef]
- Kimia, K.; Yadegar, A.; Ghourchian, H. Gold nanorods etching as a powerful signaling process for plasmonic multicolorimetric chemo-/biosensors: Strategies and applications. Coord. Chem. Rev. 2021, 442, 213934. [Google Scholar]
- Siciliano, G.; Alsadig, A.; Chiriacò, M.S.; Turco, A.; Foscarini, A.; Ferrara, F.; Gigli, G.; Primiceri, E. Beyond traditional biosensors: Recent advances in gold nanoparticles modified electrodes for biosensing applications. Talanta 2023, 268, 125280. [Google Scholar] [CrossRef] [PubMed]
- Jabeen, F.; Chen, M.; Rasulev, B.; Ossowski, M.; Boudjouk, P. Refractive indices of diverse data set of polymers: A computational QSPR based study. Comput. Mater. Sci. 2017, 137, 215–224. [Google Scholar] [CrossRef]
- Anastasiya, D.; Kolwas, K.; Demchenko, I. Dielectric function for gold in plasmonics applications: Size dependence of plasmon resonance frequencies and dam** rates for nanospheres. Plasmonics 2016, 11, 941–951. [Google Scholar]
- Wang, F.; Sun, Z.; Liu, C.; Sun, T.; Chu, P.K. A highly sensitive dual-core photonic crystal fiber based on a surface plasmon resonance biosensor with silver-graphene layer. Plasmonics 2017, 12, 1847–1853. [Google Scholar] [CrossRef]
- Yasli, A.; Ademgil, H. Geometrical comparison of photonic crystal fiber-based surface plasmon resonance sensors. Opt. Eng. 2018, 57, 030801. [Google Scholar] [CrossRef]
- Bermúdez, A.; Hervella–Nieto, L.; Prieto, A.; Rodríguez, R. Perfectly matched layers. Comput. Acoust. Noise Propag. Fluids-Finite Bound. Elem. Methods 2008, 167–196. [Google Scholar] [CrossRef]
- Kim, J.Y.; Kim, H.; Kim, B.H.; Chang, T.; Lim, J.; Jin, H.M.; Mun, J.H.; Choi, Y.J.; Chung, K.; Shin, J.; et al. Highly tunable refractive index visible-light metasurface from block copolymer self-assembly. Nat. Commun. 2016, 7, 12911. [Google Scholar] [CrossRef]
- Veerpal, K.; Singh, S. Design of titanium nitride coated PCF-LSPR sensor for liquid sensing applications. Opt. Fiber Technol. 2019, 48, 159–164. [Google Scholar]
- Gao, D.; Guan, C.; Wen, Y.; Zhong, X.; Yuan, L. Multi-hole fiber based surface plasmon resonance sensor operated at near-infrared wavelengths. Opt. Commun. 2013, 313, 94–98. [Google Scholar] [CrossRef]
- Ameling, R.; Langguth, L.; Hentschel, M.; Mesch, M.; Braun, P.V.; Giessen, H. Cavity-enhanced localized plasmon resonance sensing. Appl. Phys. Lett. 2010, 97, 253116. [Google Scholar] [CrossRef]
- Liu, C.; Yang, L.; Liu, Q.; Wang, F.; Sun, Z.; Sun, T.; Mu, H.; Chu, P.K. Analysis of a surface plasmon resonance probe based on photonic crystal fibers for low refractive index detection. Plasmonics 2018, 13, 779–784. [Google Scholar] [CrossRef]
- Hasan, M.R.; Akter, S.; Rifat, A.A.; Rana, S.; Ahmed, K.; Ahmed, R.; Subbaraman, H.; Abbott, D. Spiral Photonic Crystal Fiber-Based Dual-Polarized Surface Plasmon Resonance Biosensor. IEEE Sens. J. 2017, 18, 133–140. [Google Scholar] [CrossRef]
- Liu, C.; Yang, L.; Lu, X.; Liu, Q.; Wang, F.; Lv, J.; Sun, T.; Mu, H.; Chu, P.K. Mid-infrared surface plasmon resonance sensor based on photonic crystal fibers. Opt. Express 2017, 25, 14227–14237. [Google Scholar] [CrossRef] [PubMed]
- Chakma, S.; Khalek, A.; Paul, B.K.; Ahmed, K.; Hasan, R.; Bahar, A.N. Gold-coated photonic crystal fiber biosensor based on surface plasmon resonance: Design and analysis. Sens. Bio-Sens. Res. 2018, 18, 7–12. [Google Scholar] [CrossRef]
- Khan, S.; Ahmed, K.; Hossain, N.; Paul, B.K.; Nguyen, T.K.; Dhasarathan, V. Exploring refractive index sensor using gold coated D-shaped photonic crystal fiber for biosensing applications. Optik 2020, 202, 163649. [Google Scholar] [CrossRef]
- Shanthi, M.; Seyezhai, R.; Ayyanar, N.; Rajan, M.S.M. Optical Characteristics of Liquid-Infiltrated Elliptical Core Photonic Crystal Fiber. Plasmonics 2023, 18, 1103–1116. [Google Scholar] [CrossRef]
Ref. | Reported Sensor Structure | Maximum Wavelength Sensitivity/(nm/RIU) | Range of Refractive Index | Resolution/RIU |
---|---|---|---|---|
[27] | PCF coated with a gold nanowire | <2350 | 1.28–1.32 | 4.26 × 10−8 |
[28] | Dual-polarized spiral PCF | 4600 | 1.33–1.38 | 2.3 × 10−7 |
[29] | Dual-channel D-shaped PCF | 5500 | 1.23–1.29 | 7.69 × 10−6 |
[30] | Elliptical hole PCF | 9000 | 1.34–1.37 | 1.11 × 10−5 |
[31] | D-shaped PCF | 66,666.67 | 1.36–1.39 | 9.66 × 10−4 |
[32] | Liquid-infiltrated elliptical core PCF | 9.17/W/m (Nonlinearity) | / | 1.41 × 10−13 m2 (effective mode area) |
our | Single-channel PDMS-PCF based on LSPR | 10,000 | 1.2–1.28 | 7.69 × 10−6 |
our | Dual-channel PDMS-PCF based on LSPR | 13,000 | 1.21–1.27 | 1.0 × 10−5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Y.; Li, J.; Sun, H.; Xi, J.; Deng, L.; Liu, X.; Li, X. A PCF Sensor Design Using Biocompatible PDMS for Biosensing. Polymers 2024, 16, 1042. https://doi.org/10.3390/polym16081042
Yang Y, Li J, Sun H, Xi J, Deng L, Liu X, Li X. A PCF Sensor Design Using Biocompatible PDMS for Biosensing. Polymers. 2024; 16(8):1042. https://doi.org/10.3390/polym16081042
Chicago/Turabian StyleYang, Yanxin, Jinze Li, Hao Sun, Jiawei Xi, Li Deng, Xin Liu, and Xiang Li. 2024. "A PCF Sensor Design Using Biocompatible PDMS for Biosensing" Polymers 16, no. 8: 1042. https://doi.org/10.3390/polym16081042
APA StyleYang, Y., Li, J., Sun, H., Xi, J., Deng, L., Liu, X., & Li, X. (2024). A PCF Sensor Design Using Biocompatible PDMS for Biosensing. Polymers, 16(8), 1042. https://doi.org/10.3390/polym16081042