Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (41)

Search Parameters:
Keywords = single input multiple output (SIMO)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 3711 KiB  
Article
Topology Analysis and Modeling Comparison of SI-SIMO Boost Converter Used in Multiple Output Applications
by Yilin Yan, Honghong Wang, Ping Ma and Jianquan Liao
Energies 2025, 18(13), 3585; https://doi.org/10.3390/en18133585 - 7 Jul 2025
Viewed by 289
Abstract
This paper presents the analysis and modeling of a single-input, single-inductor, multiple-output (SI-SIMO) boost converter to address limitations of conventional SISO converters in distributed power supply applications. Based on switching-state analysis, a sequential PWM modulation strategy is proposed to achieve independent voltage regulation [...] Read more.
This paper presents the analysis and modeling of a single-input, single-inductor, multiple-output (SI-SIMO) boost converter to address limitations of conventional SISO converters in distributed power supply applications. Based on switching-state analysis, a sequential PWM modulation strategy is proposed to achieve independent voltage regulation across multiple outputs using a single inductor. An average circuit model is developed considering steady-state characteristics. Inductor conduction mode boundaries and the critical inductor value are derived. A complete modeling process is introduced, transitioning from nonlinear dynamics to small-signal approximation at the steady-state operating point. PSIM and MATLAB Simulink experiment results validate the proposed control method and confirm the theoretical analysis under various operating conditions. Full article
Show Figures

Figure 1

25 pages, 3084 KiB  
Article
Channel Modeling for Multi-Receiver Molecular Communication System by Impulsive Force in Internet of Nano Things
by Pengfei Zhang, Pengfei Lu, Xuening Liao, Xiaofang Wang and Ping Zhou
Sensors 2025, 25(11), 3472; https://doi.org/10.3390/s25113472 - 30 May 2025
Viewed by 924
Abstract
When studying molecular communication (MC) systems within fluid environments of the Internet of Nano Things (IoNT), fluid resistance has a significant impact on molecular transmission characteristics. In single-input multiple-output (SIMO) scenarios with multiple receivers, the interaction between fluid effects and inter-receiver interference complicates [...] Read more.
When studying molecular communication (MC) systems within fluid environments of the Internet of Nano Things (IoNT), fluid resistance has a significant impact on molecular transmission characteristics. In single-input multiple-output (SIMO) scenarios with multiple receivers, the interaction between fluid effects and inter-receiver interference complicates the modeling process. To address these challenges, this paper incorporates fluid resistance into a three-dimensional SIMO model and investigates the impact of the angle between receivers and the direction of the molecular pulse—considering both azimuth and polar angles—on the number of molecules received. Additionally, the interference from other receivers on the primary receiver is analyzed, and a mathematical expression for the number of received molecules is derived. Simulation results validate the model’s accuracy. The experiments show that as the distance between the interfering receiver and the transmitter increases from 0.10 m to 0.95 m, the number of molecules received by the primary receiver first rises and then falls, exhibiting a nonlinear interference pattern. Moreover, reception efficiency peaks when the receiver is positioned at a polar angle of 90° and an azimuth of 0°, with deviations from these angles leading to performance degradation. The spatial arrangement of receivers and transmitters, the number of receivers, and the initial velocity of molecules all significantly influence reception performance. Full article
Show Figures

Figure 1

34 pages, 904 KiB  
Article
Line-of-Sight Probability Analysis of Underground Mining Visible Light Communication Diversity Schemes Under Random Receiver Orientation
by Julián Solís, Iván Sánchez, Cesar Azurdia-Meza, Pablo Palacios Játiva, David Zabala-Blanco and Ali Dehghan Firoozabadi
Sensors 2025, 25(9), 2890; https://doi.org/10.3390/s25092890 - 3 May 2025
Viewed by 387
Abstract
Visiblelightcommunication (VLC) is an emerging technology that offers an alternative to traditional wireless communications systems. However, the technology presents limitations related to the impact of the receiver’s orientation, which can significantly impact its performance. To address this issue, VLC systems use [...] Read more.
Visiblelightcommunication (VLC) is an emerging technology that offers an alternative to traditional wireless communications systems. However, the technology presents limitations related to the impact of the receiver’s orientation, which can significantly impact its performance. To address this issue, VLC systems use diversity schemes, such as transmitter and receiver diversity. In this paper, we derive an analytical expression for the probability of maintaining a line-of-sight (LoS) link in an underground mining visible light communication (UM-VLC) system with a receiver embedded in an object, such as a helmet, by considering user mobility. We show that the angle of incidence depends on the distance from the source and derive the probability accordingly for single-input single-output (SISO), multiple-input single-output (MISO), and single-input multiple-output cases (SIMO). Our results show that the analytical results fit with the simulated results. Furthermore, the resulting probabilities show that the angular position of the receiver significantly affects the channel’s quality, with the optimal position dependent on the field-of-view characteristics. These findings can provide an appropriate framework for receiver and transmitter diversity design through analytical expression. Full article
Show Figures

Figure 1

21 pages, 1285 KiB  
Article
Modeling of Respiratory Virus Transmission Using Single-Input- Multiple-Output Molecular Communication Techniques
by Pengfei Zhang, Pengfei Lu, Xiaofang Wang and Xuening Liao
Electronics 2025, 14(1), 213; https://doi.org/10.3390/electronics14010213 - 6 Jan 2025
Cited by 1 | Viewed by 1569
Abstract
Respiratory diseases pose a significant threat to global public health, as exemplified by the COVID-19 pandemic. Molecular communication (MC), as a new method in communication systems, provides a framework for the modeling of diseases. Current studies, however, largely restrict MC models to transmission [...] Read more.
Respiratory diseases pose a significant threat to global public health, as exemplified by the COVID-19 pandemic. Molecular communication (MC), as a new method in communication systems, provides a framework for the modeling of diseases. Current studies, however, largely restrict MC models to transmission scenarios involving a single source and single receiver, leaving scenarios with multiple receivers insufficiently explored. This study investigates respiratory virus transmission through air, applying a single-input-multiple-output (SIMO) MC model to analyze the in vitro transmission process. In this context, a COVID-19-positive individual can transmit the virus to multiple recipients, modeled as a SIMO MC system where the affected person is the transmitter, susceptible individuals are receivers, and the intervening air serves as the communication channel. A theoretical model is developed to elucidate the virus transmission process, yielding foundational analytical expressions for the absorption probability. Numerical data validate the model and reveal factors influencing the cumulative reception probability. The results indicate that both the distance and angle between the transmitter and receiver significantly impact the absorption probability, which decreases with increasing distance and angle. Optimal absorption occurs when the receiver is directly in front of the emitter. These findings introduce a new perspective on viral transmission mechanisms and provide a scientific basis for future prevention and control measures. Full article
(This article belongs to the Section Microwave and Wireless Communications)
Show Figures

Figure 1

19 pages, 5230 KiB  
Article
Investigation of Multi-Output Single-Switch Forward Converter in Terms of Cross-Regulation Using Weighted Control Method
by Salih Dindar, Fırat Hardalac, Ertugrul Aksoy and Kubilay Ayturan
Appl. Sci. 2025, 15(1), 365; https://doi.org/10.3390/app15010365 - 2 Jan 2025
Viewed by 1109
Abstract
In a single-switch forward converter, which is a type of single-input multiple-output (SIMO) DC–DC converter, voltage changes are observed at the outputs due to the current passing through the diodes, the difficulty of winding the transformer in full and half windings, differences in [...] Read more.
In a single-switch forward converter, which is a type of single-input multiple-output (SIMO) DC–DC converter, voltage changes are observed at the outputs due to the current passing through the diodes, the difficulty of winding the transformer in full and half windings, differences in resistance in the windings, the presence of leakage inductance and the existence of common inductance between the windings. These voltage changes are undesirable, and cross-regulation techniques have been developed to keep the outputs at the desired value. One of these techniques, the weighted control method, in which voltage information is received from many outputs, is addressed in this article. The reason we apply this technique is to avoid additional components and their control problems. In addition, this technique is simpler and cheaper than other cross-regulation techniques. In this way, we will contribute to the literature on cross-regulation, showing that cross-regulation remains below 3.33% and circuit efficiency reaches 86.83% by using the weighted control method. Full article
Show Figures

Figure 1

9 pages, 3125 KiB  
Communication
Single-Input Multiple-Output (SIMO) Cascode Low-Noise Amplifier with Switchable Degeneration Inductor for Carrier Aggregation
by Min-Su Kim
Sensors 2024, 24(20), 6606; https://doi.org/10.3390/s24206606 - 14 Oct 2024
Cited by 1 | Viewed by 1291
Abstract
This paper presents a single-input multiple-output (SIMO) cascode low-noise amplifier with inductive degeneration for inter- and intra-band carrier aggregation. The proposed low-noise amplifier has two output ports for flexible operation in carrier aggregation combinations for band 30 and band 7. However, during inter- [...] Read more.
This paper presents a single-input multiple-output (SIMO) cascode low-noise amplifier with inductive degeneration for inter- and intra-band carrier aggregation. The proposed low-noise amplifier has two output ports for flexible operation in carrier aggregation combinations for band 30 and band 7. However, during inter- and intra-band operation, gain variation occurs depending on the output mode. To compensate for this, a switching circuit is proposed to adjust the degeneration inductor, optimizing gain performance for both modes. The switching operation can minimize the control for the dynamic range in the receiver system to support carrier aggregation. The designed low-noise amplifier was fabricated using a 65 nm CMOS process, occupying an area of 2.1 mm2. In inter-band operation, the small-signal gain was measured by 18.9 dB for band 30 and 18.6 dB for band 7, with the noise figures of 1.03 dB and 1.07 dB, respectively. For intra-band operation, the small-signal gain was 17.3 dB and 17.2 dB, with the noise figures of 1.3 dB and 1.41 dB. The IIP3 values were measured by −7.6 dBm and −6.7 dBm for inter-band, and −6.3 dBm and −6.2 dBm for intra-band. Power consumption was 8.04 mW and 7.68 mW in inter-band, and 17.04 mW and 17.64 mW in intra-band depending on the output configuration. Full article
(This article belongs to the Section Sensor Networks)
Show Figures

Figure 1

12 pages, 1465 KiB  
Article
Analysis of Optimal Diversity Combining with Imperfect Channel State Information for Cooperative Jamming-Aided Internet of Things Security
by Yu Mao, Weishi Li, Wenjing Wang, Hongzhi Zhao and Shihai Shao
Electronics 2024, 13(20), 4026; https://doi.org/10.3390/electronics13204026 - 13 Oct 2024
Viewed by 853
Abstract
Cooperative jamming (CJ) combined with single-input multiple-output (SIMO) technology can effectively improve the security and reliability of Internet of Things (IoT) systems. However, imperfect main channel state information (CSI) leads to incomplete CJ cancellation, which degrades the performance after combining. In this paper, [...] Read more.
Cooperative jamming (CJ) combined with single-input multiple-output (SIMO) technology can effectively improve the security and reliability of Internet of Things (IoT) systems. However, imperfect main channel state information (CSI) leads to incomplete CJ cancellation, which degrades the performance after combining. In this paper, by considering channel estimation errors and residual CJ at each receiving antenna, the residual CJ power after jamming suppression is analyzed, and the optimal combining coefficient for maximizing the signal-to-jamming-noise ratio (SJNR) is derived. The output SJNR of optimal diversity combining is given, and the achievable secrecy rate is analyzed on this basis. The theoretical and simulation results verify the combined effect of channel estimation errors and residual CJ on the combining performance. Moreover, it is worth noting that the combining performance is closely related to the spatial correlation of residual CJ. Full article
Show Figures

Figure 1

35 pages, 28009 KiB  
Article
Optoelectronics Interfaces for a VLC System for UHD Audio-Visual Content Transmission in a Passenger Van: HW Design
by Carlos Iván del Valle Morales, Juan Sebastián Betancourt Perlaza, Juan Carlos Torres Zafra, Iñaki Martinez-Sarriegui and José Manuel Sánchez-Pena
Sensors 2024, 24(17), 5829; https://doi.org/10.3390/s24175829 - 8 Sep 2024
Cited by 2 | Viewed by 2005
Abstract
This work aims to provide the hardware (HW) design of the optoelectronics interfaces for a visible-light communication (VLC) system that can be employed for several use cases. Potential applications include the transmission of ultra-high-definition (UHD) streaming video through existing reading lamps installed in [...] Read more.
This work aims to provide the hardware (HW) design of the optoelectronics interfaces for a visible-light communication (VLC) system that can be employed for several use cases. Potential applications include the transmission of ultra-high-definition (UHD) streaming video through existing reading lamps installed in passenger vans. In this use case, visible light is employed for the downlink, while infrared light is used for the uplink channel, acting as a remote controller. Two primary components -a Light Fidelity (LiFi) router and a USB dongle—were designed and implemented. The ‘LiFi Router’, handling the downlink channel, comprises components such as a visible Light-Emitting Diode (LED) and an infrared receiver. Operating at a supply voltage of 12 V and consuming current at 920 mA, it is compatible with standard voltage buses found in transport vehicles. The ‘USB dongle’, responsible for the uplink, incorporates an infrared LED and a receiver optimized for visible light. The USB dongle works at a supply voltage of 5 V and shows a current consumption of 1.12 A, making it well suited for direct connection to a universal serial bus (USB) port. The bandwidth achieved for the downlink is 11.66 MHz, while the uplink’s bandwidth is 12.27 MHz. A system competent at streaming UHD video with the feature of being single-input multiple-output (SIMO) was successfully implemented via the custom hardware design of the optical transceivers and optoelectronics interfaces. To ensure the system’s correct performance at a distance of 110 cm, the minimum signal-to-noise ratio (SNRmin) for both optical links was maintained at 10.74 dB. We conducted a proof-of-concept test of the VLC system in a passenger van and verified its optimal operation, effectively illustrating its performance in a real operating environment. Exemplifying potential implementations possible with the hardware system designed in this work, a bit rate of 15.2 Mbps was reached with On–Off Keying (OOK), and 11.25 Mbps was obtained with Quadrature Phase Shift Keying (QPSK) using Orthogonal Frequency-Division Multiplexing (OFDM) obtaining a bit-error rate (BER) of 3.3259 × 10−5 in a passenger van at a distance of 72.5 cm between the LiFi router and the USB dongle. As a final addition, a solar panel was installed on the passenger van’s roof to power the user’s laptop and the USB dongle via a power bank battery. It took 13.4 h to charge the battery, yielding a battery life of 22.3 h. This characteristic renders the user’s side of the system entirely self-powered. Full article
(This article belongs to the Special Issue Sensing Technologies and Optical Communication)
Show Figures

Figure 1

15 pages, 8532 KiB  
Article
Data-Aided Maximum Likelihood Joint Angle and Delay Estimator Over Orthogonal Frequency Division Multiplex Single-Input Multiple-Output Channels Based on New Gray Wolf Optimization Embedding Importance Sampling
by Maha Abdelkhalek, Souheib Ben Amor and Sofiène Affes
Sensors 2024, 24(17), 5821; https://doi.org/10.3390/s24175821 - 7 Sep 2024
Viewed by 1208
Abstract
In this paper, we propose a new data-aided (DA) joint angle and delay (JADE) maximum likelihood (ML) estimator. The latter consists of a substantially modified and, hence, significantly improved gray wolf optimization (GWO) technique by fully integrating and embedding within it the powerful [...] Read more.
In this paper, we propose a new data-aided (DA) joint angle and delay (JADE) maximum likelihood (ML) estimator. The latter consists of a substantially modified and, hence, significantly improved gray wolf optimization (GWO) technique by fully integrating and embedding within it the powerful importance sampling (IS) concept. This new approach, referred to hereafter as GWOEIS (for “GWO embedding IS”), guarantees global optimality, and offers higher resolution capabilities over orthogonal frequency division multiplex (OFDM) (i.e., multi-carrier and multi-path) single-input multiple-output (SIMO) channels. The traditional GWO randomly initializes the wolfs’ positions (angles and delays) and, hence, requires larger packs and longer hunting (iterations) to catch the prey, i.e., find the correct angles of arrival (AoAs) and time delays (TDs), thereby affecting its search efficiency, whereas GWOEIS ensures faster convergence by providing reliable initial estimates based on a simplified importance function. More importantly, and beyond simple initialization of GWO with IS (coined as IS-GWO hereafter), we modify and dynamically update the conventional simple expression for the convergence factor of the GWO algorithm that entirely drives its hunting and tracking mechanisms by accounting for new cumulative distribution functions (CDFs) derived from the IS technique. Simulations unequivocally confirm these significant benefits in terms of increased accuracy and speed Moreover, GWOEIS reaches the Cramér–Rao lower bound (CRLB), even at low SNR levels. Full article
(This article belongs to the Special Issue Feature Papers in the 'Sensor Networks' Section 2024)
Show Figures

Figure 1

14 pages, 3920 KiB  
Article
Verification and Validation of Advanced Control Systems for a Spinal Joint Wear Simulator
by Kaushikk Ravender Iyer, David Keeling and Richard M. Hall
Bioengineering 2024, 11(8), 779; https://doi.org/10.3390/bioengineering11080779 - 1 Aug 2024
Viewed by 1489
Abstract
Wear simulation aims to assess wear rates and their dependence on factors like load, kinematics, temperature, and implant orientation. Despite its significance, there is a notable gap in research concerning advancements in simulator control systems and the testing of clinically relevant waveforms. This [...] Read more.
Wear simulation aims to assess wear rates and their dependence on factors like load, kinematics, temperature, and implant orientation. Despite its significance, there is a notable gap in research concerning advancements in simulator control systems and the testing of clinically relevant waveforms. This study addresses this gap by focusing on enhancing the conventional proportional–integral–derivative (PID) controller used in joint simulators through the development of a fuzzy logic-based controller. Leveraging a single-input multiple-output (SIMO) fuzzy logic control system, this study aimed to improve displacement control, augmenting the traditional proportional–integral (PI) tuning approach. The implementation and evaluation of a novel Fuzzy-PI control algorithm were conducted on the Leeds spine wear simulator. This study also included the testing of dailyliving (DL) profiles, particularly from the hip joint, to broaden the scope of simulation scenarios. While both the conventional PI controller and the Fuzzy-PI controller met ISO tolerance criteria for the spine flexion–extension (FE) profile at 1 Hz, the Fuzzy-PI controller demonstrated superior performance at higher frequencies and with DL profiles due to its real-time adaptive tuning capability. The Fuzzy-PI controller represents a significant advancement in joint wear simulation, offering improved control functionalities and more accurate emulation of real-world physiological dynamics. Full article
(This article belongs to the Special Issue Advanced Assessment of Medical Devices)
Show Figures

Figure 1

20 pages, 5427 KiB  
Article
Development of a High-Sensitivity Millimeter-Wave Radar Imaging System for Non-Destructive Testing
by Hironaru Murakami, Taiga Fukuda, Hiroshi Otera, Hiroyuki Kamo and Akito Miyoshi
Sensors 2024, 24(15), 4781; https://doi.org/10.3390/s24154781 - 23 Jul 2024
Viewed by 2794
Abstract
There is an urgent need to develop non-destructive testing (NDT) methods for infrastructure facilities and residences, etc., where human lives are at stake, to prevent collapse due to aging or natural disasters such as earthquakes before they occur. In such inspections, it is [...] Read more.
There is an urgent need to develop non-destructive testing (NDT) methods for infrastructure facilities and residences, etc., where human lives are at stake, to prevent collapse due to aging or natural disasters such as earthquakes before they occur. In such inspections, it is desirable to develop a remote, non-contact, non-destructive inspection method that can inspect cracks as small as 0.1 mm on the surface of a structure and damage inside and on the surface of the structure that cannot be seen by the human eye with high sensitivity, while ensuring the safety of the engineers inspecting the structure. Based on this perspective, we developed a radar module (absolute gain of the transmitting antenna: 13.5 dB; absolute gain of the receiving antenna: 14.5 dB) with very high directivity and minimal loss in the signal transmission path between the radar chip and the array antenna, using our previously developed technology. A single-input, multiple-output (SIMO) synthetic aperture radar (SAR) imaging system was developed using this module. As a result of various performance evaluations using this system, we were able to demonstrate that this system has a performance that fully satisfies the abovementioned indices. First, the SNR in millimeter-wave (MM-wave) imaging was improved by 5.4 dB compared to the previously constructed imaging system using the IWR1443BOOST EVM, even though the measured distance was 2.66 times longer. As a specific example of the results of measurements on infrastructure facilities, the system successfully observed cracks as small as 0.1 mm in concrete materials hidden under glass fiber-reinforced tape and black acrylic paint. In this case, measurements were also made from a distance of about 3 m to meet the remote observation requirements, but the radar module with its high-directivity and high-gain antenna proved to be more sensitive in detecting crack structures than measurements made from a distance of 780 mm. In order to estimate the penetration length of MM waves into concrete, an experiment was conducted to measure the penetration of MM waves through a thin concrete slab with a thickness of 3.7 mm. As a result, Λexp = 6.0 mm was obtained as the attenuation distance of MM waves in the concrete slab used. In addition, transmission measurement experiments using a composite material consisting of ceramic tiles and fireproof board, which is a component of a house, and experiments using composite plywood, which is used as a general housing construction material in Japan, succeeded in making perspective observations of defects in the internal structure, etc., which are invisible to the human eye. Full article
(This article belongs to the Special Issue Radar Imaging, Communications and Sensing)
Show Figures

Figure 1

17 pages, 3567 KiB  
Article
Analysis and Mitigating Methods for Jamming in the Optical Reconfigurable Intelligent Surfaces-Assisted Dual-Hop FSO Communication Systems
by Jingyu Wang, Dingshan Gao, Juan Li, Linhe Huang, Haiyang Ding and Shaohua Zhou
Electronics 2024, 13(9), 1730; https://doi.org/10.3390/electronics13091730 - 30 Apr 2024
Cited by 3 | Viewed by 1570
Abstract
In this paper, we present a study investigating the impact of jamming in a Dual-Hop free-space optical (FSO) communication system assisted by reconfigurable intelligent surfaces (RIS) in the presence of a malicious jammer. We analyze the combined effects of atmospheric turbulence (AT), pointing [...] Read more.
In this paper, we present a study investigating the impact of jamming in a Dual-Hop free-space optical (FSO) communication system assisted by reconfigurable intelligent surfaces (RIS) in the presence of a malicious jammer. We analyze the combined effects of atmospheric turbulence (AT), pointing error (PE), and angle of arrival (AoA) fluctuation of unmanned aerial vehicles (UAVs). Closed-form expressions for the overall average bit error rate (ABER) are derived while considering these impairments. To mitigate the jamming effect, we explore a Single-Input Multiple-Output (SIMO) FSO system and derive the end-to-end Average Bit Error Rate (ABER) under various jamming scenarios. Additionally, we conduct a comprehensive study by examining different placements of the malicious UAV jammer and RIS, drawing insightful conclusions on system performance. The analytically derived expressions are validated through Monte Carlo simulations. Full article
Show Figures

Figure 1

13 pages, 3580 KiB  
Article
Spatial Mode Division Multiplexing of Free-Space Optical Communications Using a Pair of Multiplane Light Converters and a Micromirror Array for Turbulence Emulation
by David Benton, Yiming Li, Antonin Billaud and Andrew Ellis
Photonics 2024, 11(3), 241; https://doi.org/10.3390/photonics11030241 - 6 Mar 2024
Cited by 4 | Viewed by 3149
Abstract
Multi-plane light converters (MPLC) are a means of deconstructing a wavefront into constituent modes that are focused at specific spatial locations, and the reverse—that specific inputs result in controlled modal output. We have used a pair of MPLCs with 21 Hermite–Gaussian modes to [...] Read more.
Multi-plane light converters (MPLC) are a means of deconstructing a wavefront into constituent modes that are focused at specific spatial locations, and the reverse—that specific inputs result in controlled modal output. We have used a pair of MPLCs with 21 Hermite–Gaussian modes to represent a free-space optical connection. The effects of strong atmospheric turbulence (Cn2 = 10−13 m−2/3) are emulated using a micromirror array producing a time sequence of aberrating frames. The modal crosstalk between transmitter and receiver modes induced by the turbulence is presented by measuring the intensity in receiver channels for the same turbulence. Six receiver modes are used for optical communication channels with a rate of 137 Gbits/s displaying the benefits of single input multiple output (SIMO) operation for overcoming the deleterious effects of turbulence. Full article
(This article belongs to the Special Issue Micro-Mirror Arrays as Versatile Photonic Tools)
Show Figures

Figure 1

16 pages, 15311 KiB  
Article
A Circularly Polarized Millimeter Wave Radar for Wind Turbine Sensing
by Jiayi Chen, Bin Guo, Yitong Jin, Zhijian Bao, Lijun Wang, Siye Wang, Guangli Yang, Rui Wang and Yong Luo
Electronics 2024, 13(2), 462; https://doi.org/10.3390/electronics13020462 - 22 Jan 2024
Cited by 1 | Viewed by 2460
Abstract
Wind power is a crucial direction for new energy transition technology in response to the challenges of global warming. However, the potential for collisions between the blades and the tower barrel remains a significant concern. To address this issue, a large number of [...] Read more.
Wind power is a crucial direction for new energy transition technology in response to the challenges of global warming. However, the potential for collisions between the blades and the tower barrel remains a significant concern. To address this issue, a large number of sensors, such as lasers and cameras, are attached to the structure, but they struggle to operate in complex weather and at night. This paper presents a method of employing a 79 GHz FMCW (frequency-modulated continuous wave) mmWave (millimeter-wave) radar with circularly polarization on the top of the tower. During the design, two main considerations are raised: (1) Since the small-RCS (radar cross-section) blade experiences an oblique incidence from more than 70 m away, the channel SNR (signal-to-noise ratio) is low, so high-gain antennas and SIMO (single-input multiple-output) radar configurations are designed to increase the Pt (transmitting power). (2) Wind turbines are often located in offshore or mountainous areas with a high level of weather interference, so a pair of circularly polarized antenna is used to reduce the interference of meteorological particles to the radar. Finally, test results from a practical wind turbine in different weather conditions prove its practicality. During tests, the wind turbine operates at a rotor speed of 6 to 12 rounds per minute, and the clearance range has an obvious inverse relationship with it, ranging from 6 to 12 m. This technology enhances safety, maximizes efficiency, and enables optimal length and weight determination during design for improved power generation. Full article
(This article belongs to the Special Issue Feature Papers in Microwave and Wireless Communications Section)
Show Figures

Figure 1

21 pages, 387 KiB  
Article
Design of Multi-User Noncoherent Massive SIMO Systems for Scalable URLLC
by Zheng Dong, He Chen and Jian-Kang Zhang
Entropy 2023, 25(9), 1325; https://doi.org/10.3390/e25091325 - 12 Sep 2023
Cited by 3 | Viewed by 1779
Abstract
This paper develops and optimizes a non-orthogonal and noncoherent multi-user massive single-input multiple-output (SIMO) framework, with the objective of enabling scalable ultra-reliable low-latency communications (sURLLC) in Beyond-5G (B5G)/6G wireless communication systems. In this framework, the huge diversity gain associated with the large-scale antenna [...] Read more.
This paper develops and optimizes a non-orthogonal and noncoherent multi-user massive single-input multiple-output (SIMO) framework, with the objective of enabling scalable ultra-reliable low-latency communications (sURLLC) in Beyond-5G (B5G)/6G wireless communication systems. In this framework, the huge diversity gain associated with the large-scale antenna array in the massive SIMO system is leveraged to ensure ultra-high reliability. To reduce the overhead and latency induced by the channel estimation process, we advocate for the noncoherent communication technique, which does not need the knowledge of instantaneous channel state information (CSI) but only relies on large-scale fading coefficients for message decoding. To boost the scalability of noncoherent massive SIMO systems, we enable the non-orthogonal channel access of multiple users by devising a new differential modulation scheme to ensure that each transmitted signal matrix can be uniquely determined in the noise-free case and be reliably estimated in noisy cases when the antenna array size is scaled up. The key idea is to make the transmitted signals from multiple geographically separated users be superimposed properly over the air, such that when the sum signal is correctly detected, the signal sent by each individual user can be uniquely determined. To further enhance the average error performance when the array antenna number is large, we propose a max–min Kullback–Leibler (KL) divergence-based design by jointly optimizing the transmitted powers of all users and the sub-constellation assignments among them. The simulation results show that the proposed design significantly outperforms the existing max–min Euclidean distance-based counterpart in terms of error performance. Moreover, our proposed approach also has a better error performance compared to the conventional coherent zero-forcing (ZF) receiver with orthogonal channel training, particularly for cell-edge users. Full article
(This article belongs to the Special Issue Advances in Multiuser Information Theory)
Show Figures

Figure 1

Back to TopTop