Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (123)

Search Parameters:
Keywords = single fibre tests

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 2499 KiB  
Article
Low-Power Vibrothermography for Detecting Barely Visible Impact Damage in CFRP Laminates: A Comparative Imaging Study
by Zulham Hidayat, Muhammet Ebubekir Torbali, Nicolas P. Avdelidis and Henrique Fernandes
Appl. Sci. 2025, 15(15), 8514; https://doi.org/10.3390/app15158514 (registering DOI) - 31 Jul 2025
Viewed by 129
Abstract
This study explores the application of low-power vibrothermography (LVT) for detecting barely visible impact damage (BVID) in carbon fibre-reinforced polymer (CFRP) laminates. Composite specimens with varying impact energies (2.5–20 J) were excited using a single piezoelectric transducer with a nominal centre frequency of [...] Read more.
This study explores the application of low-power vibrothermography (LVT) for detecting barely visible impact damage (BVID) in carbon fibre-reinforced polymer (CFRP) laminates. Composite specimens with varying impact energies (2.5–20 J) were excited using a single piezoelectric transducer with a nominal centre frequency of 28 kHz, operated at a fixed excitation frequency of 28 kHz. Thermal data were captured using an infrared camera. To enhance defect visibility and suppress background noise, the raw thermal sequences were processed using principal component analysis (PCA) and robust principal component analysis (RPCA). In LVT, RPCA and PCA provided comparable signal-to-noise ratios (SNR), with no consistent advantage for either method across all cases. In contrast, for pulsed thermography (PT) data, RPCA consistently resulted in higher SNR values, except for one sample. The LVT results were further validated by comparison with PT and phased array ultrasonic testing (PAUT) data to confirm the location and shape of detected damage. These findings demonstrate that LVT, when combined with PCA or RPCA, offers a reliable method for identifying BVID and can support safer, more efficient structural health monitoring of composite materials. Full article
(This article belongs to the Special Issue Application of Acoustics as a Structural Health Monitoring Technology)
Show Figures

Figure 1

25 pages, 6464 KiB  
Article
Eco-Friendly Sandwich Panels for Energy-Efficient Façades
by Susana P. B. Sousa, Helena C. Teixeira, Giorgia Autretto, Valeria Villamil Cárdenas, Stefano Fantucci, Fabio Favoino, Pamela Voigt, Mario Stelzmann, Robert Böhm, Gabriel Beltrán, Nicolás Escribano, Belén Hernández-Gascón, Matthias Tietze and Andreia Araújo
Sustainability 2025, 17(15), 6848; https://doi.org/10.3390/su17156848 - 28 Jul 2025
Viewed by 267
Abstract
To meet the European Green Deal targets, the construction sector must improve building thermal performance via advanced insulation systems. Eco-friendly sandwich panels offer a promising solution. Therefore, this work aims to develop and validate a new eco-friendly composite sandwich panel (basalt fibres and [...] Read more.
To meet the European Green Deal targets, the construction sector must improve building thermal performance via advanced insulation systems. Eco-friendly sandwich panels offer a promising solution. Therefore, this work aims to develop and validate a new eco-friendly composite sandwich panel (basalt fibres and recycled extruded polystyrene) with enhanced multifunctionality for lightweight and energy-efficient building façades. Two panels were produced via vacuum infusion—a reference panel and a multifunctional panel incorporating phase change materials (PCMs) and silica aerogels (AGs). Their performance was evaluated through lab-based thermal and acoustic tests, numerical simulations, and on-site monitoring in a living laboratory. The test results from all methods were consistent. The PCM-AG panel showed 16% lower periodic thermal transmittance (0.16 W/(m2K) vs. 0.19 W/(m2K)) and a 92% longer time shift (4.26 h vs. 2.22 h), indicating improved thermal inertia. It also achieved a single-number sound insulation rating of 38 dB. These findings confirm the panel’s potential to reduce operational energy demand and support long-term climate goals. Full article
Show Figures

Figure 1

22 pages, 7286 KiB  
Article
Enhancing Mechanical Properties of Three-Dimensional Cementitious Composites Through 3 mm Short Fibre Systems: Single and Hybrid Types
by Han Yao, Yujie Cao, Yangling Mei and Zhixuan Xiong
Buildings 2025, 15(14), 2519; https://doi.org/10.3390/buildings15142519 - 18 Jul 2025
Viewed by 392
Abstract
Three-dimensionally printed cement-based composites emerge as a research hotspot in the fields of construction engineering in recent years. Current research primarily focuses on the reinforcement mechanisms of individually incorporated fibres, while a significant gap remains in the synergistic effects of hybrid fibre systems. [...] Read more.
Three-dimensionally printed cement-based composites emerge as a research hotspot in the fields of construction engineering in recent years. Current research primarily focuses on the reinforcement mechanisms of individually incorporated fibres, while a significant gap remains in the synergistic effects of hybrid fibre systems. This study investigates the effects of mono-doping (0.2 wt.% and 0.4 wt.% by the mass of the cement) and hybrid-doping (0.1 wt.% + 0.1 wt.% by the mass of the cement) with 3 mm polypropylene, basalt, and carbon fibres on the fresh-state properties and mechanical behaviours. Through quantitative characterisation of the flowability and mechanical performance of short-fibre-reinforced 3D-printed cementitious composites (SFR3DPC), coupled with comprehensive testing including digital image correlation, X-ray diffraction, and scanning electron microscopy, several key findings are obtained. The experimental results indicate that the addition of excess fibres reduces fluidity, which affects the mechanical performance and make the anisotropy of the composites more pronounced. While the single addition of 0.2 wt.% CF shows the most significant improvement in flexural and compressive strengths, the hybrid combination of 0.1 wt.% CF and 0.1 wt.% BF shows the greatest increase in interlayer bond strength by 26.7%. The complementary effect of the hybrid fibres contributes to the damage mode of the composites from brittle fracture to quasi-brittle behaviour at the physical level. These findings offer valuable insights into optimising the mechanical performance and improving defects of 3D-printed cementitious composites with short fibres. Full article
(This article belongs to the Special Issue Advanced Research on Cementitious Composites for Construction)
Show Figures

Graphical abstract

29 pages, 4333 KiB  
Article
A Distributed Sensing- and Supervised Deep Learning-Based Novel Approach for Long-Term Structural Health Assessment of Reinforced Concrete Beams
by Minol Jayawickrema, Madhubhashitha Herath, Nandita Hettiarachchi, Harsha Sooriyaarachchi, Sourish Banerjee, Jayantha Epaarachchi and B. Gangadhara Prusty
Metrology 2025, 5(3), 40; https://doi.org/10.3390/metrology5030040 - 3 Jul 2025
Viewed by 263
Abstract
Access to significant amounts of data is typically required to develop structural health monitoring (SHM) systems. In this study, a novel SHM approach was evaluated, with all training data collected solely from a validated finite element analysis (FEA) of a reinforced concrete (RC) [...] Read more.
Access to significant amounts of data is typically required to develop structural health monitoring (SHM) systems. In this study, a novel SHM approach was evaluated, with all training data collected solely from a validated finite element analysis (FEA) of a reinforced concrete (RC) beam and the structural health based on the tension side of a rebar under flexural loading. The developed SHM system was verified by four-point bending experiments on three RC beams cast in the dimensions of 4000 mm × 200 mm × 400 mm. Distributed optical fibre sensors (DOFS) were mounted on the concrete surface and on the bottom rebar to maximise sample points and investigate the reliability of the strain data. The FEA model was validated using a single beam and subsequently used to generate labelled SHM strain data by altering the dilation angle and rebar sizes. The generated strain data were then used to train an artificial neural network (ANN) classifier using deep learning (DL). Training and validation accuracy greater than 98.75% were recorded, and the model was trained to predict the tension state up to 90% of the steel yield limit. The developed model predicts the health condition with the input of strain data acquired from the concrete surface of reinforced concrete beams under various loading regimes. The model predictions were accurate for the experimental DOFS data acquired from the tested beams. Full article
Show Figures

Graphical abstract

31 pages, 810 KiB  
Protocol
Protocol for a Trial to Assess the Efficacy and Applicability of Isometric Strength Training in Older Adults with Sarcopenia and Dynapenia
by Iker López, Juan Mielgo-Ayuso, Juan Ramón Fernández-López, Jose M. Aznar and Arkaitz Castañeda-Babarro
Healthcare 2025, 13(13), 1573; https://doi.org/10.3390/healthcare13131573 - 1 Jul 2025
Cited by 1 | Viewed by 576
Abstract
Background: Sarcopenia (loss of muscle mass) and dynapenia (loss of strength) are prevalent in older adults aged 70 years and over. Both have an impact on their functional ability and quality of life, with type II muscle fibres being particularly affected. Although traditional [...] Read more.
Background: Sarcopenia (loss of muscle mass) and dynapenia (loss of strength) are prevalent in older adults aged 70 years and over. Both have an impact on their functional ability and quality of life, with type II muscle fibres being particularly affected. Although traditional resistance training (TRT) is effective, it presents technical difficulties and an increased risk of injury among this vulnerable population. Isometric strength training (IST) is a potentially safer, more accessible and more effective alternative. Objective: To describe the protocol of a single-arm, pre-post intervention trial designed to evaluate the efficacy and applicability of a 16-week IST programme on muscle strength, skeletal muscle mass, quality of life and applicability (safety, acceptability, perceived difficulty) in 18 older adults aged 70 years and above with a diagnosis of sarcopenia and dynapenia. The influence of genetic and environmental factors on the variability of response to IST will also be explored. Methodology: The participants, who have all been diagnosed with sarcopenia according to EWGSOP2 (European Working Group on Sarcopenia in Older People 2) criteria, will perform two IST sessions per week for 16 weeks. Each 30-min session will consist of one progressive set (total duration 45 s to 90 s) for each of the eight major muscle groups. This series will include phases at 20% and 40% of individual Maximal Voluntary Isometric Contraction (MVIC), culminating in 100% Maximal Effort (ME), using the CIEX SYSTEM machine with visual feedback. The primary outcome variables will be: change in knee extensor MVIC and change in Appendicular Skeletal Muscle Mass Index (ASMMI). Secondary variables will be measured (other components of sarcopenia, quality of life by EQ-5D-5L, use of Likert scales, posture and physiological variables), and saliva samples will be collected for exploratory genetic analyses. The main statistical analyses will be performed with t-tests for related samples or their non-parametric analogues. Discussion: This protocol details a specific IST intervention and a comprehensive evaluation plan. The results are expected to provide evidence on the feasibility and effects of IST among older adults with sarcopenia and dynapenia. Understanding individual variability in response, including genetic influence, could inform the design of more personalised and effective exercise strategies for this population in the future. Full article
Show Figures

Figure 1

35 pages, 10135 KiB  
Article
Constitutive Model for Plain and Steel-Fibre-Reinforced Lightweight Aggregate Concrete Under Direct Tension and Pull-Out
by Hasanain K. Al-Naimi and Ali A. Abbas
Fibers 2025, 13(7), 84; https://doi.org/10.3390/fib13070084 - 23 Jun 2025
Viewed by 436
Abstract
In the present study, a programme of experimental investigations was carried out to examine the direct uniaxial tensile (and pull-out) behaviour of plain and fibre-reinforced lightweight aggregate concrete. The lightweight aggregates were recycled from fly ash waste, also known as Pulverised Fuel Ash [...] Read more.
In the present study, a programme of experimental investigations was carried out to examine the direct uniaxial tensile (and pull-out) behaviour of plain and fibre-reinforced lightweight aggregate concrete. The lightweight aggregates were recycled from fly ash waste, also known as Pulverised Fuel Ash (PFA), which is a by-product of coal-fired electricity power stations. Steel fibres were used with different aspect ratios and hooked ends with single, double and triple bends corresponding to 3D, 4D and 5D types of DRAMIX steel fibres, respectively. Key parameters such as the concrete compressive strength flck, fibre volume fraction Vf, number of bends nb, embedded length LE and inclination angle ϴf were considered. The fibres were added at volume fractions Vf of 1% and 2% to cover the practical range, and a direct tensile test was carried out using a purpose-built pull-out test developed as part of the present study. Thus, the tensile mechanical properties were established, and a generic constitutive tensile stress–crack width σ-ω model for both plain and fibrous lightweight concrete was created and validated against experimental data from the present study and from previous research found in the literature (including RILEM uniaxial tests) involving different types of lightweight aggregates, concrete strengths and steel fibres. It was concluded that the higher the number of bends nb and the higher the volume fraction Vf and concrete strength flck, the stronger the fibre–matrix interfacial bond and thus the more pronounced the enhancement provided by the fibres to the uniaxial tensile residual strength and ductility in the form of work and fracture energy. A fibre optimisation study was also carried out, and design recommendations are provided. Full article
Show Figures

Figure 1

26 pages, 16082 KiB  
Article
Improvement in the Recycled Aggregate Replacement Ratio in Concrete Pavement Bricks by Incorporating Nano-Calcium Carbonate and Basalt Fibre: Model Experiment Investigation
by Biao Zhang, Xueyuan Zhang, Mengyao Wang, Daoming Zhang, Dandan Wang and Xinwu Ma
Buildings 2025, 15(12), 2070; https://doi.org/10.3390/buildings15122070 - 16 Jun 2025
Cited by 2 | Viewed by 465
Abstract
This study focuses on improving the recycled coarse aggregate (RCA) replacement ratio in recycled aggregate concrete products. First, the mix design and compressive performance of recycled aggregate concrete (RAC, RCA replacement percentages of 20%, 35%, and 50%) were evaluated using the monofactor analysis [...] Read more.
This study focuses on improving the recycled coarse aggregate (RCA) replacement ratio in recycled aggregate concrete products. First, the mix design and compressive performance of recycled aggregate concrete (RAC, RCA replacement percentages of 20%, 35%, and 50%) were evaluated using the monofactor analysis method and response surface methodology under three different conditions: single addition of nano-calcium carbonate (NC, dosages of 0.1%, 0.2%, and 0.3%), single addition of basalt fibre (BF, volume content of 0.1%, 0.2%, and 0.3%), and combined addition of both. The results show that the compressive strength of RAC at 7 and 28 days rises as the BF or NC content increases and then falls as the NC content increases. According to the sensitivity analysis, RAC’s compressive strength is significantly impacted by the replacement ratio of RCA, with NC having a more considerable effect on RAC’s 7-day compressive strength than BF, while BF affects the 28-day compressive strength more than NC does. Based on the desirability function, the ideal BF and NC content in RAC was optimised and confirmed by the compressive strength test. It demonstrates that the best compressive performance is achieved by RAC with 1% NC and 0.3% BF. Finally, concrete pavement brick models were created using the ideal mix proportion provided by the compressive strength test. The model compression test results show that RAC pavement bricks (RCA replacement ratio of 60%) with 1% NC and 0.3% BF had a 28d compressive strength of 5.7% and 15.8% higher than NAC and RAC pavement bricks, respectively. Full article
Show Figures

Figure 1

21 pages, 7266 KiB  
Article
High-Performance NIR Laser-Beam Shaping and Materials Processing at 350 W with a Spatial Light Modulator
by Shuchen Zuo, Shuai Wang, Cameron Pulham, Yin Tang, Walter Perrie, Olivier J. Allegre, Yue Tang, Martin Sharp, Jim Leach, David J. Whitehead, Matthew Bilton, Wajira Mirihanage, Paul Mativenga, Stuart P. Edwardson and Geoff Dearden
Photonics 2025, 12(6), 544; https://doi.org/10.3390/photonics12060544 - 28 May 2025
Viewed by 1198
Abstract
Shaping or splitting of a Gaussian beam is often desired to optimise laser–material interactions, improving throughput and quality. This can be achieved holographically using liquid crystal-on-silicon spatial light modulators (LC-SLMs). Until recently, maximum exposure has been limited to circa 120 W average power [...] Read more.
Shaping or splitting of a Gaussian beam is often desired to optimise laser–material interactions, improving throughput and quality. This can be achieved holographically using liquid crystal-on-silicon spatial light modulators (LC-SLMs). Until recently, maximum exposure has been limited to circa 120 W average power with a Gaussian profile, restricting potential applications due to the non-linear (NL) phase response of the liquid crystal above this threshold. In this study, we present experimental tests of a new SLM device, demonstrating high first-order diffraction efficiency of η = 0.98 ± 0.01 at 300 W average power and a phase range Δφ > 2π at P = 383 W, an exceptional performance. The numerically calculated device temperature response with power closely matches that measured, supporting the higher power-handling capability. Surface modification of mild steel and molybdenum up to P = 350 W exposure is demonstrated when employing a single-mode (SM) fibre laser source. Exposure on mild steel with a vortex beam (m = +6) displays numerous ringed regions with varying micro-structures and clear elemental separation created by the radial heat flow. On molybdenum, with multi-spot Gaussian exposure, both MoO3 films and recrystallisation rings were observed, exposure-dependent. The step change in device capability will accelerate new applications for this LC-SLM in both subtractive and additive manufacturing. Full article
(This article belongs to the Special Issue Fundamentals and Applications of Vortex Beams)
Show Figures

Figure 1

11 pages, 3782 KiB  
Article
A Novel Pre-Customized Saddle-Shape Soft Tissue Substitute for Volume Augmentation: An Ex Vivo Study in Pig Mandibles
by Malin Strasding, Irena Sailer, Elizabeth Merino-Higuera, Cristina Zarauz, Joao Pitta, Andrei Latyshev, Udo Wittmann and Dobrila Nesic
Materials 2025, 18(9), 1951; https://doi.org/10.3390/ma18091951 - 25 Apr 2025
Cited by 1 | Viewed by 472
Abstract
Background: Tooth loss results in hard- and soft-tissue volume loss over time. We compared the handling of three different soft tissue substitutes (STS) to the subepithelial connective tissue graft (SCTG) for soft tissue volume augmentation in a pig ex vivo model. Methods: Five [...] Read more.
Background: Tooth loss results in hard- and soft-tissue volume loss over time. We compared the handling of three different soft tissue substitutes (STS) to the subepithelial connective tissue graft (SCTG) for soft tissue volume augmentation in a pig ex vivo model. Methods: Five dentists simultaneously shaped, placed and sutured randomized four graft types in single-tooth soft tissue defects created in pig mandibles. The STS, produced from slightly crosslinked collagen fibres (VCMX), were either 3 mm or 6 mm thick blocks or a newly developed pre-customized saddle-shape. Each graft type was handled 20 times. The time required for shaping, placement, and suturing was recorded. Dentists reported outcomes on the grafts’ handling were evaluated with a visual-analogue-scale (VAS). Statistical analysis included calculating means and medians and testing significance. Results: The mean time of 0.72 min for shaping the pre-customized saddle-shape STS was significantly lower than 1.31 min for SCTG, 1.73 min for 3 mm STS and 2.17 min for 6 mm STS. Placement/suturing time was similar for all grafts. The dentists mainly preferred the saddle-shape STS and the SCTG. Conclusions: The saddle-shape STS required less time for graft-shaping and, therefore, reduced the overall treatment time, suggesting a more efficient and less invasive workflow for soft tissue augmentation. Full article
(This article belongs to the Section Biomaterials)
Show Figures

Figure 1

22 pages, 4812 KiB  
Article
Mechanical Characterization of a Novel Cyclic Olefin-Based Hot-Melt Adhesive
by Vasco C. M. B. Rodrigues, Ana T. F. Venâncio, Eduardo A. S. Marques, Ricardo J. C. Carbas, Armina Klein, Ejiri Kazuhiro, Björn Nelson and Lucas F. M. da Silva
Materials 2025, 18(4), 855; https://doi.org/10.3390/ma18040855 - 15 Feb 2025
Cited by 1 | Viewed by 806
Abstract
A novel hot-melt cyclic olefin-based adhesive was designed as a transparent, non-tacky film of amorphous thermoplastic with a unique polymer micro-structure. The aim of the present paper is to assess the mechanical properties of the 0.1 mm thick COP hot-melt adhesive film through [...] Read more.
A novel hot-melt cyclic olefin-based adhesive was designed as a transparent, non-tacky film of amorphous thermoplastic with a unique polymer micro-structure. The aim of the present paper is to assess the mechanical properties of the 0.1 mm thick COP hot-melt adhesive film through adhesive characterizations tests. The glass transition temperature was determined using dynamic mechanical analysis (DMA). For mechanical characterization, bulk and thick adherend shear specimens were manufactured and tested at a quasi-static rate, where at least three specimens were used to calculate the average and standard deviation values. Tensile tests revealed the effects of molecular chain drawing and reorientation before the onset of strain hardening. Thick adherend shear specimens were used to retrieve shear properties. Fracture behaviour was assessed with the double cantilever beam (DCB) test and end-notched flexure (ENF) test, for characterization under modes I and II, respectively. To study the in-joint behaviour, single lap joints (SLJs) of aluminium and carbon fibre-reinforced polymer (CFRP) were manufactured and tested under different temperatures. Results showed a progressive interfacial failure following adhesive plasticization, allowing deformation prior to failure at 8 MPa. An adhesive failure mode was confirmed through scanning electron microscopy (SEM) analysis of aluminium SLJ. The adhesive exhibits tensile properties comparable to existing adhesives, while demonstrating enhanced lap shear strength and a distinctive failure mechanism. These characteristics suggest potential advantages in applications involving heat and pressure across automotive, electronics and structural bonding sectors. Full article
(This article belongs to the Section Advanced Materials Characterization)
Show Figures

Figure 1

12 pages, 6478 KiB  
Article
Influence of Different Solvents on the Mechanical Properties of Electrospun Scaffolds
by Dovydas Cicėnas and Andžela Šešok
Materials 2025, 18(2), 355; https://doi.org/10.3390/ma18020355 - 14 Jan 2025
Viewed by 977
Abstract
This article investigates the influence of different solvents on the mechanical properties of biocompatible and biodegradable polycaprolactone (PCL) scaffolds. During the research, using electrospinning technology, 27 samples of polycaprolactone nanofibers exposed to different solvents were produced. A tensile test was performed on the [...] Read more.
This article investigates the influence of different solvents on the mechanical properties of biocompatible and biodegradable polycaprolactone (PCL) scaffolds. During the research, using electrospinning technology, 27 samples of polycaprolactone nanofibers exposed to different solvents were produced. A tensile test was performed on the produced nanofiber samples, and the nanofiber mechanical properties, yield strength, elastic modulus, and elastic elongation were calculated, and load–displacement and stress–strain dependence diagrams were compared from the obtained results. The strongest nanofiber was singled out, and its mechanical properties were compared with those of biological tissues and its application in tissue engineering. The structure was determined using a scanning electron microscope, and the structures of nanofibers exposed to different solvents were compared. After calculating the influence of different solvents on the mechanical properties of the nanofibers, the strongest structure was identified, PCL and chloroform, which has an elastic modulus of 9.86 MPa and a yield strength of 1.11 ± 0.32 MPa. The type of solvent used in the production of the solution affects the homogeneity of the fibre and the shape of the filaments. In solvents with lower viscosity, the fibre filaments are more homogeneous and more evenly distributed. Full article
(This article belongs to the Special Issue Modeling and Mechanical Behavior of Advanced Biomaterials)
Show Figures

Figure 1

25 pages, 7197 KiB  
Article
Performance Restoration of Chemically Recycled Carbon Fibres Through Surface Modification with Sizing
by Dionisis Semitekolos, Sofia Terzopoulou, Silvia Zecchi, Dimitrios Marinis, Ergina Farsari, Eleftherios Amanatides, Marcin Sajdak, Szymon Sobek, Weronika Smok, Tomasz Tański, Sebastian Werle, Alberto Tagliaferro and Costas Charitidis
Polymers 2025, 17(1), 33; https://doi.org/10.3390/polym17010033 - 26 Dec 2024
Cited by 3 | Viewed by 1445
Abstract
The recycling of Carbon Fibre-Reinforced Polymers (CFRPs) is becoming increasingly crucial due to the growing demand for sustainability in high-performance industries such as automotive and aerospace. This study investigates the impact of two chemical recycling techniques, chemically assisted solvolysis and plasma-enhanced solvolysis, on [...] Read more.
The recycling of Carbon Fibre-Reinforced Polymers (CFRPs) is becoming increasingly crucial due to the growing demand for sustainability in high-performance industries such as automotive and aerospace. This study investigates the impact of two chemical recycling techniques, chemically assisted solvolysis and plasma-enhanced solvolysis, on the morphology and properties of carbon fibres (CFs) recovered from end-of-life automotive parts. In addition, the effects of fibre sizing are explored to enhance the performance of the recycled carbon fibres (rCFs). The surface morphology of the fibres was characterised using Scanning Electron Microscopy (SEM), and their structural integrity was assessed through Thermogravimetric Analysis (TGA) and Raman spectroscopy. An automatic analysis method based on optical microscopy images was also developed to quantify filament loss during the recycling process. Mechanical testing of single fibres and yarns showed that although rCFs from both recycling methods exhibited a ~20% reduction in tensile strength compared to reference fibres, the application of sizing significantly mitigated these effects (~10% reduction). X-ray Photoelectron Spectroscopy (XPS) further confirmed the introduction of functional oxygen-containing groups on the fibre surface, which improved fibre-matrix adhesion. Overall, the results demonstrate that plasma-enhanced solvolysis was more effective at fully decomposing the resin, while the subsequent application of sizing enhanced the mechanical performance of rCFs, restoring their properties closer to those of virgin fibres. Full article
Show Figures

Figure 1

23 pages, 15584 KiB  
Article
Comparison of GFRP (Glass Fiber-Reinforced Polymer) and CFRP (Carbon Fiber-Reinforced Polymer) Composite Adhesive-Bonded Single-Lap Joints Used in Marine Environments
by Gurcan Atakok and Dudu Mertgenc Yoldas
Sustainability 2024, 16(24), 11105; https://doi.org/10.3390/su162411105 - 18 Dec 2024
Cited by 4 | Viewed by 2465
Abstract
Macroscopic structures consisting of two or more materials are called composites. The decreasing reserves of the world’s oil reserve and the environmental pollution of existing energy and production resources made the use of recycling methods inevitable. There are mechanical, thermal, and chemical recycling [...] Read more.
Macroscopic structures consisting of two or more materials are called composites. The decreasing reserves of the world’s oil reserve and the environmental pollution of existing energy and production resources made the use of recycling methods inevitable. There are mechanical, thermal, and chemical recycling methods for the recycling of thermosets among composite materials. The recycling of thermoset composite materials economically saves resources and energy in the production of reinforcement and matrix materials. Due to the superior properties such as hardness, strength, lightness, corrosion resistance, design width, and the flexibility of epoxy/vinylester/polyester fibre formation composite materials combined with thermoset resin at the macro level, environmentally friendly sustainable development is happening with the increasing use of composite materials in many fields such as the maritime sector, space technology, wind energy, the manufacturing of medical devices, robot technology, the chemical industry, electrical electronic technology, the construction and building sector, the automotive sector, the defence industry, the aviation sector, the food and agriculture sector, and sports equipment manufacturing. Bonded joint studies in composite materials have generally been investigated at the level of a single composite material and single joint. The uncertainty of the long-term effects of different composite materials and environmental factors in single-lap bonded joints is an important obstacle in applications. The aim of this study is to investigate the effects of single-lap bonded GFRP (glass fibre-reinforced polymer) and CFRP (carbon fibre-reinforced polymer) specimens on the material at the end of seawater exposure. In this study, 0/90 orientation twill weave seven-ply GFRP and eight-ply CFRP composite materials were used in dry conditions (without seawater soaking) and the hand lay-up method. Seawater was taken from the Aegean Sea, İzmir province (Selçuk/Pamucak), in September at 23.5 °C. This seawater was kept in different containers in seawater for 1 month (30 days), 2 months (60 days), and 3 months (90 days) separately for GFRP and CFRP composite samples. They were cut according to ASTM D5868-01 for single-lap joint connections. Moisture retention percentages and axial impact tests were performed. Three-point bending tests were then performed according to ASTM D790. Damage to the material was examined with a ZEISS GEMINESEM 560 scanning electron microscope (SEM). The SEM was used to observe the interface properties and microstructure of the fracture surfaces of the composite samples by scanning images with a focused electron beam. Damage analysis imaging was performed on CFRP and GFRP specimens after sputtering with a gold compound. Moisture retention rates (%), axial impact tests, and three-point bending test specimens were kept in seawater with a seawater salinity of 3.3–3.7% and a seawater temperature of 23.5 °C for 1, 2, and 3 months. Moisture retention rates (%) are 0.66%, 3.43%, and 4.16% for GFRP single-lap bonded joints in a dry environment and joints kept for 1, 2, and 3 months, respectively. In CFRP single-lap bonded joints, it is 0.57%, 0.86%, and 0.87%, respectively. As a result of axial impact tests, under a 30 J impact energy level, the fracture toughness of GFRP single-lap bonded joints kept in a dry environment and seawater for 1, 2, and 3 months are 4.6%, 9.1%, 14.7%, and 11.23%, respectively. At the 30 J impact energy level, the fracture toughness values of CFRP single-lap bonded joints in a dry environment and in seawater for 1, 2, and 3 months were 4.2%, 5.3%, 6.4%, and 6.1%, respectively. As a result of three-point bending tests, GFRP single-lap joints showed a 5.94%, 8.90%, and 12.98% decrease in Young’s modulus compared to dry joints kept in seawater for 1, 2, and 3 months, respectively. CFRP single-lap joints showed that Young’s modulus decreased by 1.28%, 3.39%, and 3.74% compared to dry joints kept in seawater for 1, 2, and 3 months, respectively. Comparing the GFRP and CFRP specimens formed by a single-lap bonded connection, the moisture retention percentages of GFRP specimens and the amount of energy absorbed in axial impact tests increased with the soaking time in seawater, while Young’s modulus was less in three-point bending tests, indicating that CFRP specimens have better mechanical properties. Full article
Show Figures

Figure 1

18 pages, 3354 KiB  
Article
Microencapsulation, Cream Development, and Controlled Clinical Study of an Upcycled Polyphenolic Extract Combined with sh-Oligopeptide-1
by Teo Mayayo, Gabriella Russo, Ana Leticia Jiménez-Escobar, Noelia Pérez-González, Beatriz Clares, Adolfina Ruiz, Lidia Tomás-Cobos, Ana Valera, Almudena Gómez-Farto, Salvador Arias-Santiago and Trinidad Montero-Vilchez
Cosmetics 2024, 11(6), 198; https://doi.org/10.3390/cosmetics11060198 - 20 Nov 2024
Viewed by 2371
Abstract
Olive mills produce pomace as a by-product of olive oil production process, which has a negative environmental impact. In this study, the dry extract of pomace (OG2), rich in polyphenols, was used for cosmetic purposes. The polyphenolic extract was encapsulated together with sh-oligopeptide-1 [...] Read more.
Olive mills produce pomace as a by-product of olive oil production process, which has a negative environmental impact. In this study, the dry extract of pomace (OG2), rich in polyphenols, was used for cosmetic purposes. The polyphenolic extract was encapsulated together with sh-oligopeptide-1 using cellulose fibres by spray-drying technology. Cytotoxicity and antistress cell studies were carried out using a modified cell line (THP1). Based on the results, a single, randomised, self-controlled study was conducted to evaluate the cream in thirty healthy volunteers. Statistical analysis was performed using a paired samples t-test. Skin moisture increased in the treated forearm (p-value < 0.000). There was an increase in elasticity in the treated forearm (p-value 0.042). TEWL decreased after one week of cream application (p-value 0.099). The results of this clinical study showed that the cream improved barrier function after one week of application on healthy skin. Full article
(This article belongs to the Special Issue 10th Anniversary of Cosmetics—Recent Advances and Perspectives)
Show Figures

Figure 1

20 pages, 8020 KiB  
Article
Green Synthesis of Nanoparticle-Loaded Bacterial Cellulose Membranes with Antibacterial Properties
by Mohammed Khikani, Gabriela-Olimpia Isopencu, Iuliana-Mihaela Deleanu, Sorin-Ion Jinga and Cristina Busuioc
J. Compos. Sci. 2024, 8(11), 475; https://doi.org/10.3390/jcs8110475 - 16 Nov 2024
Cited by 2 | Viewed by 1391
Abstract
The current work proposes the development of composite membranes based on bacterial cellulose (BC) loaded with silver (Ag) and zinc oxide (ZnO) nanostructures by in situ impregnation. The research involves the production and purification of BC, followed by its loading with different types [...] Read more.
The current work proposes the development of composite membranes based on bacterial cellulose (BC) loaded with silver (Ag) and zinc oxide (ZnO) nanostructures by in situ impregnation. The research involves the production and purification of BC, followed by its loading with different types of phases with the help of different precipitating solutions, turmeric extract (green synthesis) and ammonia (classic route). Additionally, the combination of both antibacterial agents into a single BC matrix to valorise the benefits of each, proposing a novel BC-Ag-ZnO composite with distinct characteristics, was explored. Overall, the synthesis was marked by colour changes from the light beige of the BC membrane to dark brown, dark orange and dark green for BC-Ag, BC-ZnO and BC-Ag-ZnO samples, which is proof of successful composites formation. The results proved that the antibacterial phases are attached as nanoparticles or nanosheets on BC fibres, with Ag being in a crystalline state, while ZnO showed a rather amorphous structure. Regarding the antibacterial efficiency, the BC-ZnO composite obtained by employing two precipitating solutions turned out to be the best material against both tested Gram-negative and Gram-positive bacterial strains. Full article
(This article belongs to the Section Biocomposites)
Show Figures

Figure 1

Back to TopTop