Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (9)

Search Parameters:
Keywords = single bubble growth model

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 1557 KiB  
Technical Note
Growth of a Single Bubble Due to Super-Saturation: Comparison of Correlation-Based Modelling with CFD Simulation
by Johannes Manthey, Wei Ding, Hossein Mehdipour, Montadhar Guesmi, Simon Unz, Uwe Hampel and Michael Beckmann
ChemEngineering 2025, 9(3), 63; https://doi.org/10.3390/chemengineering9030063 - 17 Jun 2025
Viewed by 375
Abstract
This paper investigates and assesses the potential applicability of global mass transfer coefficients derived from large-scale experiments to the bubble growth of a single bubble in a super-saturated flow (σ=9). Therefore, it presents, for a specific flow velocity [...] Read more.
This paper investigates and assesses the potential applicability of global mass transfer coefficients derived from large-scale experiments to the bubble growth of a single bubble in a super-saturated flow (σ=9). Therefore, it presents, for a specific flow velocity (u=1ms, Re=10,678), a comparison between correlation-based modelling and 3D Large Eddy Simulation–Volume of Fluid (LES-VOF) Computational Fluid Dynamics (CFD) simulations (minimum cell size of 10 µm, Δt = 10 µs). After the verification of the CFD with pool nucleation bubbles, two cases are regarded: (1) the bubble flowing in the bulk and (2) a bubble on a wall with a crossflow. The correlation-based modelling results in a nearly linear relationship between bubble radius and time; meanwhile, theoretically, the self-similarity rule offers r~Bt0.5. The Avdeev correlation gives the best agreement with the CFD simulation for a bubble in the flow bulk (case 1), while the laminar approach for calculation of the exposure time of the penetration theory shows good agreement with the CFD simulation for the bubble growth at the wall (case 2). This preliminary study provides the first quantitative validation of global mass transfer coefficient correlations at the single-bubble scale, suggesting that computationally intensive CFD simulations may be omitted for rapid estimations. Future work will extend the analysis to a wider range of flow velocities and bubble diameters to further validate these findings. Full article
Show Figures

Figure 1

21 pages, 7127 KiB  
Article
Research on the Evolution Characteristics and Influencing Factors of Foamy Oil Bubbles in Porous Media
by Moxi Zhang, Xinglong Chen and Weifeng Lyu
Molecules 2025, 30(5), 1163; https://doi.org/10.3390/molecules30051163 - 5 Mar 2025
Viewed by 662
Abstract
This study systematically investigates the formation mechanism and development characteristics of the “foamy oil” phenomenon during pressure depletion development of high-viscosity crude oil through a combination of physical experiments and numerical simulations. Using Venezuelan foamy oil as the research subject, an innovative heterogeneous [...] Read more.
This study systematically investigates the formation mechanism and development characteristics of the “foamy oil” phenomenon during pressure depletion development of high-viscosity crude oil through a combination of physical experiments and numerical simulations. Using Venezuelan foamy oil as the research subject, an innovative heterogeneous pore-etched glass model was constructed to simulate the pressure depletion process, revealing for the first time that bubble growth predominantly occurs during the migration stage. Experimental results demonstrate that heavy components significantly delay degassing by stabilizing gas–liquid interfaces, while the continuous gas–liquid diffusion effect explains the unique development characteristics of foamy oil—high oil recovery and delayed phase transition—from a microscopic perspective. A multi-scale coupling analysis method was established: molecular-scale simulations were employed to model component diffusion behavior. By improving the traditional Volume of Fluid (VOF) method and introducing diffusion coefficients, a synergistic model integrating a single momentum equation and fluid volume fraction was developed to quantitatively characterize the dynamic evolution of bubbles. Simulation results indicate significant differences in dominant controlling factors: oil phase viscosity has the greatest influence (accounting for ~50%), followed by gas component content (~35%), and interfacial tension the least (~15%). Based on multi-factor coupling analysis, an empirical formula for bubble growth incorporating diffusion coefficients was proposed, elucidating the intrinsic mechanism by which heavy components induce unique development effects through interfacial stabilization, viscous inhibition, and dynamic diffusion. This research breaks through the limitations of traditional production dynamic analysis, establishing a theoretical model for foamy oil development from the perspective of molecular-phase behavior combined with flow characteristics. It not only provides a rational explanation for the “high oil production, low gas production” phenomenon but also offers theoretical support for optimizing extraction processes (e.g., gas component regulation, viscosity control) through quantified parameter weightings. The findings hold significant scientific value for advancing heavy oil recovery theory and guiding efficient foamy oil development. Future work will extend to studying multiphase flow coupling mechanisms in porous media, laying a theoretical foundation for intelligent control technology development. Full article
Show Figures

Figure 1

18 pages, 3915 KiB  
Article
Charged Cavitation Multibubbles Dynamics Model: Growth Process
by Ahmed K. Abu-Nab, Amerah M. Hakami and Ali F. Abu-Bakr
Mathematics 2024, 12(4), 569; https://doi.org/10.3390/math12040569 - 14 Feb 2024
Cited by 6 | Viewed by 1540
Abstract
The nonlinear dynamics of charged cavitation bubbles are investigated theoretically and analytically in this study through the Rayleigh–Plesset model in dielectric liquids. The physical and mathematical situations consist of two models: the first one is noninteracting charged cavitation bubbles (like single cavitation bubble) [...] Read more.
The nonlinear dynamics of charged cavitation bubbles are investigated theoretically and analytically in this study through the Rayleigh–Plesset model in dielectric liquids. The physical and mathematical situations consist of two models: the first one is noninteracting charged cavitation bubbles (like single cavitation bubble) and the second one is interacting charged cavitation bubbles. The proposed models are formulated and solved analytically based on the Plesset–Zwick technique. The study examines the behaviour of charged cavitation bubble growth processes under the influence of the polytropic exponent, the number of bubbles N, and the distance between the bubbles. From our analysis, it is observed that the radius of charged cavitation bubbles increases with increases in the distance between the bubbles, dimensionless phase transition criteria, and thermal diffusivity, and is inversely proportional to the polytropic exponent and the number of bubbles N. Additionally, it is evident that the growth process of charged cavitation bubbles is enhanced significantly when the number of bubbles is reduced. The electric charges and polytropic exponent weakens the growth process of charged bubbles in dielectric liquids. The obtained results are compared with experimental and theoretical previous works to validate the given solutions of the presented models of noninteraction and interparticle interaction of charged cavitation bubbles. Full article
Show Figures

Figure 1

35 pages, 17858 KiB  
Article
Laser-Produced Cavitation Bubble Behavior in Newtonian and Non-Newtonian Liquid Inside a Rigid Cylinder: Numerical Study of Liquid Disc Microjet Impact Using OpenFOAM
by Amirhossein Hariri, Mohammad T. Shervani-Tabar and Rezayat Parvizi
Micromachines 2023, 14(7), 1416; https://doi.org/10.3390/mi14071416 - 14 Jul 2023
Cited by 1 | Viewed by 2270
Abstract
This study employs OpenFOAM to analyze the behavior of a single laser-produced cavitation bubble in a Newtonian/non-Newtonian fluid inside a rigid cylinder. This research aimed to numerically calculate the impact of liquid disc microjet resulting from the growth and collapse of the laser-produced [...] Read more.
This study employs OpenFOAM to analyze the behavior of a single laser-produced cavitation bubble in a Newtonian/non-Newtonian fluid inside a rigid cylinder. This research aimed to numerically calculate the impact of liquid disc microjet resulting from the growth and collapse of the laser-produced bubble to the cylinder wall to take advantage of the cavitation phenomenon in various industrial and medical applications, such as modeling how to remove calcification lesions in coronary arteries. In addition, by introducing the main study cases in which a single bubble with different initial conditions is produced by a laser in the center/off-center of a cylinder with different orientations relative to the horizon, filled with a stationary or moving Newtonian/Non-Newtonian liquid, the general behavior of the bubble in the stages of growth and collapse and the formation of liquid disk microjet and its impact is examined. The study demonstrates that the presence of initial velocity in water affects the amount of microjet impact proportional to the direction of gravity. Moreover, the relationship between the laser energy and the initial conditions of the bubble and the disk microjet impact on the cylinder wall is expressed. Full article
Show Figures

Figure 1

23 pages, 8321 KiB  
Article
Thin Film Evaporation Modeling of the Liquid Microlayer Region in a Dewetting Water Bubble
by Ermiyas Lakew, Amirhosein Sarchami, Giovanni Giustini, Hyungdae Kim and Kishan Bellur
Fluids 2023, 8(4), 126; https://doi.org/10.3390/fluids8040126 - 4 Apr 2023
Cited by 6 | Viewed by 3909
Abstract
Understanding the mechanism of bubble growth is crucial to modeling boiling heat transfer and enabling the development of technological applications, such as energy systems and thermal management processes, which rely on boiling to achieve the high heat fluxes required for their operation. This [...] Read more.
Understanding the mechanism of bubble growth is crucial to modeling boiling heat transfer and enabling the development of technological applications, such as energy systems and thermal management processes, which rely on boiling to achieve the high heat fluxes required for their operation. This paper presents analyses of the evaporation of “microlayers”, i.e., ultra-thin layers of liquid present beneath steam bubbles growing at the heated surface in the atmospheric pressure nucleate of boiling water. Evaporation of the microlayer is believed to be a major contributor to the phase change heat transfer, but its evolution, spatio-temporal stability, and impact on macroscale bubble dynamics are still poorly understood. Mass, momentum, and energy transfer in the microlayer are modeled with a lubrication theory approach that accounts for capillary and intermolecular forces and interfacial mass transfer. The model is embodied in a third-order nonlinear film evolution equation, which is solved numerically. Variable wall-temperature boundary conditions are applied at the solid–liquid interface to account for conjugate heat transfer due to evaporative heat loss at the liquid–vapor interface. Predictions obtained with the current approach compare favorably with experimental measurements of microlayer evaporation. By comparing film profiles at a sequence of times into the ebullition cycle of a single bubble, likely values of evaporative heat transfer coefficients were inferred and found to fall within the range of previously reported estimates. The result suggests that the coefficients may not be a constant, as previously assumed, but instead something that varies with time during the ebullition cycle. Full article
(This article belongs to the Special Issue Contact Line Dynamics and Droplet Spreading)
Show Figures

Figure 1

63 pages, 5687 KiB  
Review
Modeling and Simulation of Photobioreactors with Computational Fluid Dynamics—A Comprehensive Review
by Giovanni Luzi and Christopher McHardy
Energies 2022, 15(11), 3966; https://doi.org/10.3390/en15113966 - 27 May 2022
Cited by 24 | Viewed by 6103
Abstract
Computational Fluid Dynamics (CFD) have been frequently applied to model the growth conditions in photobioreactors, which are affected in a complex way by multiple, interacting physical processes. We review common photobioreactor types and discuss the processes occurring therein as well as how these [...] Read more.
Computational Fluid Dynamics (CFD) have been frequently applied to model the growth conditions in photobioreactors, which are affected in a complex way by multiple, interacting physical processes. We review common photobioreactor types and discuss the processes occurring therein as well as how these processes have been considered in previous CFD models. The analysis reveals that CFD models of photobioreactors do often not consider state-of-the-art modeling approaches. As a comprehensive photobioreactor model consists of several sub-models, we review the most relevant models for the simulation of fluid flows, light propagation, heat and mass transfer and growth kinetics as well as state-of-the-art models for turbulence and interphase forces, revealing their strength and deficiencies. In addition, we review the population balance equation, breakage and coalescence models and discretization methods since the predicted bubble size distribution critically depends on them. This comprehensive overview of the available models provides a unique toolbox for generating CFD models of photobioreactors. Directions future research should take are also discussed, mainly consisting of an extensive experimental validation of the single models for specific photobioreactor geometries, as well as more complete and sophisticated integrated models by virtue of the constant increase of the computational capacity. Full article
Show Figures

Figure 1

10 pages, 1445 KiB  
Article
Physical Model of a Single Bubble Growth during Nucleate Pool Boiling
by Jure Voglar
Fluids 2022, 7(3), 90; https://doi.org/10.3390/fluids7030090 - 27 Feb 2022
Cited by 3 | Viewed by 3572
Abstract
A simplified physical model of a single bubble growth during nucleate pool boiling was developed. The model was able to correlate the experimentally observed data of the bubble’s growth time and its radius evolution with the use of the appropriate input parameters. The [...] Read more.
A simplified physical model of a single bubble growth during nucleate pool boiling was developed. The model was able to correlate the experimentally observed data of the bubble’s growth time and its radius evolution with the use of the appropriate input parameters. The calculated values of separated heat fluxes from the heater wall, thermal boundary layer, and to the bulk liquid gave us a new insight into the complex mechanisms of the nucleate pool boiling process. The thermal boundary layer was found to supply the majority of the heat to the growing bubble. The heat flux from the thermal boundary layer to the bubble was found to be close to the Zuber’s critical heat flux limit (890 kW/m2). This heat flux was substantially larger than the input heater wall heat flux of 50 kW/m2. The thermal boundary layer acts as a reservoir of energy to be released to the growing bubble, which is filled during the waiting time of the bubble growth cycle. Therefore, the thickness of the thermal boundary layer was found to have a major effect on the bubble’s growth time. Full article
(This article belongs to the Section Heat and Mass Transfer)
Show Figures

Graphical abstract

11 pages, 5286 KiB  
Article
An Experimental and Numerical Investigation on Bubble Growth in Polymeric Foams
by Daniele Tammaro, Massimiliano M. Villone, Gaetano D’Avino and Pier Luca Maffettone
Entropy 2022, 24(2), 183; https://doi.org/10.3390/e24020183 - 26 Jan 2022
Cited by 6 | Viewed by 2945
Abstract
The cellular morphology of thermoplastic polymeric foams is a key factor for their performances. Three possible foam morphologies exist, namely, with closed cells, interconnected cellular structure, and open cells. In the gas foaming technology, a physical blowing agent, e.g., CO2 or [...] Read more.
The cellular morphology of thermoplastic polymeric foams is a key factor for their performances. Three possible foam morphologies exist, namely, with closed cells, interconnected cellular structure, and open cells. In the gas foaming technology, a physical blowing agent, e.g., CO2 or N2, is used to form bubbles at high pressure in softened/melted polymers. As a consequence of a pressure quench, the bubbles grow in the liquid matrix until they impinge and possibly break the thin liquid films among them. If film breakage happens, the broken film may retract due to the elastic energy accumulated by the polymeric liquid during the bubble growth. This, in turn, determines the final morphology of the foam. In this work, we experimentally study the growth of CO2 bubbles in a poly(e-caprolactone) (PCL) matrix under different pressure conditions. In addition, we perform three-dimensional direct numerical simulations to support the experimental findings and rationalize the effects of the process parameters on the elastic energy accumulated in the liquid at the end of the bubble growth, and thus on the expected morphology of the foam. To do that, we also extend the analytic model available in the literature for the growth of a single bubble in a liquid to the case of a liquid with a multi-mode viscoelastic constitutive equation. Full article
(This article belongs to the Special Issue Modeling and Simulation of Complex Fluid Flows)
Show Figures

Figure 1

18 pages, 3657 KiB  
Review
Modelling of Boiling Flows for Nuclear Thermal Hydraulics Applications—A Brief Review
by Giovanni Giustini
Inventions 2020, 5(3), 47; https://doi.org/10.3390/inventions5030047 - 14 Sep 2020
Cited by 20 | Viewed by 5443
Abstract
The boiling process is utterly fundamental to the design and safety of water-cooled fission reactors. Both boiling water reactors and pressurised water reactors use boiling under high-pressure subcooled liquid flow conditions to achieve high surface heat fluxes required for their operation. Liquid water [...] Read more.
The boiling process is utterly fundamental to the design and safety of water-cooled fission reactors. Both boiling water reactors and pressurised water reactors use boiling under high-pressure subcooled liquid flow conditions to achieve high surface heat fluxes required for their operation. Liquid water is an excellent coolant, which is why water-cooled reactors can have such small sizes and high-power densities, yet also have relatively low component temperatures. Steam is in contrast a very poor coolant. A good understanding of how liquid water coolant turns into steam is correspondingly vital. This need is particularly pressing because heat transfer by water when it is only partially steam (‘nucleate boiling’ regime) is particularly effective, providing a great incentive to operate a plant in this regime. Computational modelling of boiling, using computational fluid dynamics (CFD) simulation at the ‘component scale’ typical of nuclear subchannel analysis and at the scale of the single bubbles, is a core activity of current nuclear thermal hydraulics research. This paper gives an overview of recent literature on computational modelling of boiling. The knowledge and capabilities embodied in the surveyed literature entail theoretical, experimental and modelling work, and enabled the scientific community to improve its current understanding of the fundamental heat transfer phenomena in boiling fluids and to develop more accurate tools for the prediction of two-phase cooling in nuclear systems. Data and insights gathered on the fundamental heat transfer processes associated with the behaviour of single bubbles enabled us to develop and apply more capable modelling tools for engineering simulation and to obtain reliable estimates of the heat transfer rates associated with the growth and departure of steam bubbles from heated surfaces. While results so far are promising, much work is still needed in terms of development of fundamental understanding of the physical processes and application of improved modelling capabilities to industrially relevant flows. Full article
(This article belongs to the Special Issue Fluid Mechanics and Transport Phenomena)
Show Figures

Figure 1

Back to TopTop