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Abstract: This study employs OpenFOAM to analyze the behavior of a single laser-produced cavi-
tation bubble in a Newtonian/non-Newtonian fluid inside a rigid cylinder. This research aimed to
numerically calculate the impact of liquid disc microjet resulting from the growth and collapse of
the laser-produced bubble to the cylinder wall to take advantage of the cavitation phenomenon in
various industrial and medical applications, such as modeling how to remove calcification lesions in
coronary arteries. In addition, by introducing the main study cases in which a single bubble with
different initial conditions is produced by a laser in the center/off-center of a cylinder with different
orientations relative to the horizon, filled with a stationary or moving Newtonian/Non-Newtonian
liquid, the general behavior of the bubble in the stages of growth and collapse and the formation
of liquid disk microjet and its impact is examined. The study demonstrates that the presence of
initial velocity in water affects the amount of microjet impact proportional to the direction of gravity.
Moreover, the relationship between the laser energy and the initial conditions of the bubble and the
disk microjet impact on the cylinder wall is expressed.

Keywords: laser-produced cavitation bubble growth; laser-produced cavitation bubble collapse; a
rigid cylinder; liquid disc microjet; OpenFOAM open source CFD software; water hammer impact;
Non-Newtonian fluid

1. Introduction

The cavitation phenomenon has piqued the interest of researchers for over a century.
This phenomenon has significant advantages besides its destructive effects, such as erosion,
high noise, part damage, vibration, and efficiency loss, primarily occurring in engines
and pumps. The dynamics of cavitation bubbles are commonly employed in various
branches of engineering, including nanomaterials [1,2], chemical [3,4], mechanical [5,6],
shipbuilding [7,8], ocean [9–11], environmental engineering [12], and important practical
issues, such as surface cleaning [13]. In the medical field, this phenomenon can be used
to break up kidney stones [14], deliver drugs and genes to cells [15], and treat cancerous
tumors [16].

The first analytical studies on cavitation bubbles return to the dynamic studies of the
spherical bubble, where the pressure field is always symmetrical around the sphere (like the
conditions of the infinite environment). To this end, the Rayleigh model [17] investigated
an empty bubble or a bubble filled with a gas in an inviscid and incompressible fluid and
expressed the relationship between changes in the bubble’s radius and time as an ODE.
Considering surface tension and fluid viscosity, the Rayleigh model was upgraded to the
Rayleigh–Plesset model [18]. The effects of fluid compressibility were also formulated
in the models of Gilmore [19] and Keller–Miksis [20]. In the study of the dynamics of
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non-spherical bubbles, the boundary integral method (BIM), finite element method (FEM),
and finite volume method (FVM) have been used extensively.

Due to the potential for more precise flow analysis, FVM has been the basis for more
recent studies. In the dynamics of non-spherical bubbles, the dynamic behavior of a
single bubble or a group of bubbles is typically investigated near a boundary with varying
geometries. Depending on the desired problem, the phenomenon of interest is analyzed
from the growth stage of the cavitation bubble to its collapse, jet formation, and impact
on the boundary. Free surfaces [21–23], solid surfaces [24–27], perforated plates [28,29],
and elastic surfaces [30,31] are among the boundaries of interest for researchers. Various
geometries are observed in the research, such as the investigation of the behavior of the
jet formed by the cavitation bubble collapse in a rectangular channel [32], the study of
the dynamics of a cavitation bubble in the middle of two parallel horizontal rigid walls
with a vertically-closed rigid wall at one end [33], the investigation of the behavior of a
laser-induced cavitation bubble near two rigid walls perpendicular to one another [34],
and the dynamic analysis of a laser-induced cavitation bubble in the upper part of a rigid
cylinder [35].

Cylinder geometry is discussed in this article as an important topic of interest to
researchers. Sun et al. [36] examined the movement and evolution of cavitation bubbles in
a cylinder during high-speed water entry (HSWE) using the fluid-solid interaction (FSI)
method. Bao et al. [37] investigated experimentally the dynamics of a single cavitation
bubble subjected to a transient acceleration within a water-filled tube. Rouzbahani et al. [38]
evaluated the growth and collapse of a cavitation bubble inside a rigid cylinder with a
compliant coating (a model of human vessels) using boundary integral equation methods
and finite difference techniques. The elastic coating was represented as a membrane with a
spring base.

Numerous studies have been conducted on the jet impact category caused by the
cavitation bubble’s collapse into the wall. Zhang et al. [39] studied the influence of stand-
off distance on the counter jet and high impact pressure on the dynamics of the laser-
induced cavitation bubble near the wall. Tzanakis et al. [40] conducted an incubation pit
analysis and calculated the hydrodynamic impact pressure caused by an acoustic cavitation
bubble explosion near a solid boundary. Using the impact method, Rodriguez et al. [41]
investigated the dynamic behavior of a collapsing bubble between two parallel and rigid
walls. Ye et al. [42] first proposed a formula for the cavitation threshold and microjet speed
to examine the effect of the microjet caused by the collapse of the acoustic bubble adjacent
to the wall on the 1060 aluminum sheet. They found that cavitation occurs significantly in
the liquid under the ultrasonic field because the applied ultrasonic pressure range is much
larger than the liquid cavitation threshold.

In the current research, the growth and collapse of a cavitation bubble created by
a laser inside a rigid cylinder are studied numerically to investigate the behavior of a
microjet disc formed by bubble collapse, particularly the impact of a jet disc on the wall.
It is demonstrated that, under particular initial conditions, the growth and collapse of
the bubble, the formation of the disc liquid microjet, and the microjet impact proceed as
depicted in Figure 1. Certain initial conditions indicate that if the initial pressure is low,
the bubble may not reach the stage of collapse. After several growths and rebounds, it
will either reach equilibrium or a disk microjet will form and disintegrate before reaching
the wall.

OpenFOAM is used to perform the simulation, and modifications are made to the
compressible InterFoam solver to enable the simulation of non-Newtonian fluid behaviors
for the liquid phase, considering the effects of nonlinear compressibility in the liquid phase,
as well as the use of the Noble–Abel equation of state for the gas phase. In Section 2,
the theoretical model is presented. In Section 3, the specifics of the numerical model are
discussed. The results and discussion are presented in Section 4, while the conclusion is
presented in Section 5.
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Surface tension, gas, and liquid viscosity are considered in this study. Their effect on the 
bubble dynamics in an asymmetric collapse adjacent to a solid wall affects the jet for-
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bubble, whose electrodes influence dynamics. In general, laser-induced bubble formation 
involves two distinct steps: plasma formation and plasma conversion to the gas/vapor 
content of the bubble. Because an electron can absorb many photons, the molecule may 
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in the incredibly early moment of cavitation bubble generation, and this period of time 
needs a different equation of state describing a plasma. However, a bubble’s plasma-to-
gas/vapor content conversion occurs in a matter of nanoseconds, and this brief period does 
not require special treatment [45].  
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Figure 1. (a) Initial bubble formation, (b) bubble growth, (c) bubble contraction, (d) bubble collapse
and disk microjet formation, (e) disk microjet impact on the other wall of the bubble, (f) disk microjet
impact on the cylinder wall.

2. Theoretical Model
2.1. Bubble Model and Physical Assumptions

The current study assumes that the initial temperature of a laser-induced bubble is
well below its boiling point. In addition, heat diffusion across the interface of the bubble
is disregarded. Neglecting heat diffusion is justified by considering the experiments in
Söhnholz [43]. Mass diffusion through the bubble wall can also be ignored, as the diffusion
time scale is much greater than the time scale considered here for bubble dynamics. In
addition, phase change effects are excluded because of their obscurity. The substance con-
tained within the bubble is considered air, and the content of a bubble can be approximated
as a non-condensable gas with constant mass undergoing adiabatic state changes. Surface
tension, gas, and liquid viscosity are considered in this study. Their effect on the bubble
dynamics in an asymmetric collapse adjacent to a solid wall affects the jet formation and
dynamics [27]. Moreover, the gravitational effect is considered.

2.2. Characteristics of the Cavitation Bubble

In the current research, it is assumed that a laser in water creates a bubble. The laser-
induced bubble can be considered relatively non-invasive compared to the spark-induced
bubble, whose electrodes influence dynamics. In general, laser-induced bubble formation
involves two distinct steps: plasma formation and plasma conversion to the gas/vapor
content of the bubble. Because an electron can absorb many photons, the molecule may
be ionized in the focal region of the laser in water with high photon densities. The free
electron can then absorb bremsstrahlung when colliding with another molecule, inducing
cascade ionization and plasma expansion [44]. The plasma formation and growth occur in
the incredibly early moment of cavitation bubble generation, and this period of time needs
a different equation of state describing a plasma. However, a bubble’s plasma-to-gas/vapor
content conversion occurs in a matter of nanoseconds, and this brief period does not require
special treatment [45].

After forming a cavitation bubble, its evolution can be precisely described using the
relevant parameters and initial and boundary conditions. Due to the high initial pressure
compared to the pressure of the surrounding environment and the existence of a pressure
gradient in the radial direction, the initial single bubble, which is spherical at the beginning
of its formation, grows, and its radius and volume increase with time. If the initial bubble
is situated in an infinite environment, its growth is symmetrical and retains its spherical
shape. As the volume of the bubble increases, the internal pressure gradually decreases and
becomes less than the pressure of the surrounding fluid. The radial velocity of the bubble
wall eventually reaches zero. The bubble then contracts due to reversing the pressure
gradient’s direction.
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Multiple cycles of expansion and contraction cause the bubble’s radius to decrease
at each stage due to viscous forces and energy loss. Eventually, the bubble reaches a
radius of equilibrium. Due to the initial bubble’s proximity to the boundary, the bubble’s
growth is asymmetric. The dynamics of the bubble will be entirely influenced by the
geometry of the boundary and the proximity of the bubble’s center to the boundary due
to the asymmetry of the bubble. Typically, the liquid disc microjet is directed toward the
boundary in asymmetric conditions due to the pressure asymmetry surrounding the bubble.

2.3. Governing Equations

The VOF method [46] is effective for simulating the free surface flows of two immis-
cible liquids and a liquid and a gas. In this method, density ρ, viscosity µ, and thermal
conductivity k for the entire field are expressed as functions of the physical properties
of each phase and volume fraction α. The global density field ρ

(→
x , t
)

is defined as

ρ
(→

x , t
)

= αl

(→
x , t
)

ρl

(→
x , t
)
+ αg

(→
x , t
)

ρg

(→
x , t
)

where ρl and ρg, are, respectively, the
densities of the liquid and gas phases. The general viscosity field is also derived from the
equation µ

(→
x , t
)
= αl

(→
x , t
)

µl + αg

(→
x , t
)

µg, where µl and µg are the dynamic viscosities

of the liquid and gas phases, respectively. The global thermal conductivity field k
(→

x , t
)

is calculated from the equation k
(→

x , t
)
= αl

(→
x , t
)

kl + αg

(→
x , t
)

kg where kl the thermal
conductivity of the liquid phase and the gas phase’s thermal conductivity.

In the above three equations, the interface’s position is implicitly determined by the
transition αl from 1 to 0. Using the VOF method, the fluid can be formulated separately with

the density field ρ
(→

x , t
)

, velocity field
→
U
(→

x , t
)

, and pressure field P
(→

x , t
)

, such that the
continuity and Navier–Stokes equations are satisfied in the form of Equations (1) and (2):

∂ρ

∂t
+∇ ·

(
ρ
→
U
)
= 0 (1)

∂

(
ρ
→
U
)

∂t
+∇ ·

(
ρ
→
U ⊗

→
U
)
= −∇p +∇ · T +

∫
S(t)

σκ
(→

x
′)→̂

n
(→

x
′)

δ
(→

x −→x
′)

dS′ (2)

where ∇ represents gradient, ∇· denotes divergence, ⊗ is tensor multiplication, σ denotes

the surface tension coefficient, κ is twice the average curvature of the interface of the
→̂
n

vector perpendicular to the interface from gas to a liquid, δ
(→

x −→x
′)

is the Dirac delta in

three dimensions,
→
x
′
∈ S(t) is a point on the interface,

→
x
′

is the point where the equation
is evaluated, and T is the viscosity stress tensor of a Newtonian fluid defined as follows:

T := µ

(
∇
→
U +

(
∇
→
U
)T
− 2

3

(
∇ ·

→
U
)

I

)
(3)

where I is the unit tensor. Assuming there is no mass transfer between the gas phase
(within the bubble) and the liquid phase (outside the bubble), the continuity Equation holds
separately for both fluids:

∂(αiρi)

∂t
+∇ ·

(
αiρi

→
U
)
= 0, i = l, g. (4)

The energy equation is expressed as Equation (5):

∂
(
ρCpT

)
∂t

+∇ ·
(

ρ
→
UCpT

)
= ∇ · (k∇T) + ST (5)
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where Cp denotes the specific heat at constant pressure, T is the temperature field, and ST
represents the source term.

2.4. Equations of State
2.4.1. Liquid Phase Equation of State

For the liquid phase and if the liquid surrounding the bubble is water, the Tait equation
of state [47] for water is utilized—the Tait equation of state accounts for the nonlinear effects
of compressibility.

P(ρ) = (P∞ + B)
(

ρ

ρ∞

)nT

− B, (6)

2.4.2. Gas Phase Equation of State

Lofstedt et al. [48] demonstrated that the size of gas molecules affects severe bubble
collapses, where the equivalent bubble radius reaches a few micrometers. To account
for this effect, the co-volume is incorporated into the equation of state, and the resulting
Equation, which is sometimes referred to as the Nobel bremsstrahlung Abel equation of
state, is as follows:

RspecT = P
(

1
ρ
− β

ρn

)
(7)

In the above Equation, Rspec denotes the specific gas constant, T represents temperature,
β is the co-volume, and ρn is the equilibrium density of the bubble, which measures the
gas mass inside the bubble. The following Equation can be derived assuming the adiabatic
state change of the gas within the bubble:

P
(

1
ρg
− β

ρn

)γg

= const (8)

For air, the ratio of specific heats is γg = 1.4 and β = 0.0015.

3. Numerical Model
3.1. Mesh Gridding

In the following sections, except for Section 4.4, a rigid cylinder with a diameter of
1 mm and a height of 20 mm filled with water is selected for the study. A laser bubble with
initial radii of 0.15, 0.2, and 0.25 mm and pressures of 50, 65, and 80 MPa is assumed to
exist inside the cylinder. This problem is modeled both as a complete cylinder, as depicted
in Figure 2, and as a wedge with a 5◦ vertex angle, as shown in Figure 3. The complete
cylinder model is used to compare with the wedge model and to investigate states in which
axial symmetry is not established, such as when the cylinder is not upright and a bubble
forms outside the cylinder’s center.

In the complete cylinder geometry, the local refinement region size is considered
equal to the cylinder diameter, and using mesh trimming tools, including topoSetDict and
extrudeMeshDict in OpenFOAM, the grid is refined to ∆x = 2.57 µm and ∆z = 2.85 µm.
Outside the refined domain, the grid spacing increases with a progression factor of 1.12.
The time step is set to 1 × 10−14 s, and the total number of cells is 6,545,760. Due to
the substantial number of cells and the volume of calculations, OpenFOAM employs the
parallel processing capability of eight processors.

A wedge with an angle of 5◦ is considered for states with axial symmetry. The initial
geometry is divided into 40 radial segments and 400 vertical segments. Since the main
phenomena occur in the center of the cylinder, the region above is locally trimmed using
the OpenFOAM mesh trimming tools, including topoSetDict and extrudeMesh. The local
refinement region size is considered 1.5 times the cylinder diameter, and the grid is refined
to ∆x = 1.56 µm and ∆z = 1.63 µm. Outside the refined region, the grade spacing is
∆x = 12.5 µm and ∆x = 42.5 µm. The total number of cells in the wedge geometry is
389,680, and the time step is 1 × 10−14 s.
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3.2. Initial Conditions

Due to the rapid nature of cavitation, it is difficult to determine the initial bubble
conditions experimentally. Xie et al. [49] employed an approximate model to estimate the
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initial bubble conditions (temperature and pressure). The following Equation can express
the bubble’s initial specific internal energy:

e = e0 + ∆e (9)

where e0 denotes the initial specific internal energy of the liquid, e represents the initial
specific internal energy of the gas, and ∆e indicates the increase in the internal energy of the
gas after absorbing the laser energy. The increase in internal energy is defined as follows:

∆e =
Ea

M
=

Ea
4
3 πR03ρ0

(10)

where Ea denotes the laser energy the liquid absorbs and ρ0 is the initial gas density inside
the bubble. Similar to the research conducted by Zhang et al. [50], it is assumed that the
laser energy is completely converted into bubble energy in this study. Assuming that the
gas within the bubble is ideal, we have the following:

e =
i
2

vP =
i
2

RT (11)

In the above Equation, v denotes the specific volume of gas, i is the degree of freedom
of gas (i = 6 for polyatomic molecules), R represents the specific ideal gas constant for
water steam (R = 461.5 J

kg·K ), and T0 is the initial temperature. Combining the equations
above yields the following relations between bubble pressure and initial temperature:

P0 =
2e
iv

=
2e0

iv
+

3Ea

2πR03ρ0iv
(12)

T0 =
2e
iR

=
2e0

iR
+

3Ea

2πR03ρ0iR
(13)

This study assumes that the laser pulse’s energy Ea creates a focal region in the liquid
with the radius Rlaser, which becomes the initial bubble at the initial pressure Pinit, radius
Rinit, and temperature Tinit. Under these initial conditions, if the bubble is placed in an
infinite environment, after several isentropic processes, it will reach the equilibrium radius
Rn and reference temperature of the environment. The laser energy is calculated in nine
modes to produce a bubble with three initial radii of 0.15, 0.20, and 0.25 mm and at three
pressure levels of 50, 65, and 80 MPa within a cylinder with a diameter of 1 mm and a
height of 20 mm, respectively.

4. Results and Discussion
4.1. Experimental and Analytic Validation of Numerical Code

To validate the numerical code with laboratory results and analytical methods, bubble
growth in an infinite environment is modeled and compared to Gilmore’s equation and
experimental results. In Gilmore’s 1952 seminal paper [19], the author describes the
development of the bubble radius in an infinite medium using the following ordinary
differential Equation.(

1−
.
R
C

)
R

..
R +

1
2

(
3−

.
R
C

)
.
R

2
=

(
1 +

.
R
C

)
H +

(
1−

.
R
C

)
R
C

dH
dt

(14)

where
.
R denotes the bubble wall velocity, C represents the instantaneous sound propagation

velocity in the liquid in the bubble wall, and H is the enthalpy. Per the study cited above,

this equation is accurate until O
(

.
R

2
/C2

)
.
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According to the experimental findings of Han et al. [51], a bubble with an initial
radius of 0.2 mm, an initial pressure of 10 MPa, and an initial temperature of 293 K will
reach its maximum 1125 µm radius in a finite amount of time if placed in an infinite
environment. Koch et al. [45] demonstrated that the field dimensions must be at least
100 times the maximum radius of the bubble to simulate an infinite environment. Simulating
bubble growth in an infinite environment with the current code and considering the initial
conditions of Han et al.’s research [51] leads to a bubble with a maximum radius 1115 µm
in microsecond time 112.6 µs. Figure 4 depicts the dimensionless radius-dimensionless
time diagram of the growth and first rebound of the bubble in an infinite environment,
along with a comparison to the experimental results of Han et al. and Gilmore’s solution.
Dimensionless radius is defined as R∗ = R

Rmax
, and dimensionless time is defined as

t∗ = t
tRmax

. It can be seen that there is a good agreement between numerical and laboratory
results and the Gilmore model.
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4.2. Simulating a Bubble’s Behavior inside a Rigid Cylinder While the Liquid Is Still

The growth, collapse, and dynamics of the disc liquid microjet were studied by creating
three bubbles with initial radii of 0.15, 0.2, and 0.25 mm inside a cylinder filled with water
with a diameter of 1 mm and a height of 20 mm at three pressure levels of 50, 65, and
80 MPa. The relationship between the initial values of radius and pressure is linear. The
following Equation can be used to calculate the impact of the disk microjet on a non-rigid
solid wall [52]:

Pwh = v
ρ1C1ρ2C2

ρ1C1 + ρ2C2
(15)

where v denotes the relative velocity between the microjet and the solid surface, ρ1 and
C1 represent the density and velocity of sound in the fluid, respectively, and ρ2 and C2
are the density and velocity of sound in the solid, respectively. In the event that the solid
wall is rigid, the ρ1C1 � ρ2C2 relationship is established; thus, Equation (15) is simplified
as follows.

Pwh = vρ1C1 (16)

For water, ρ1 = 998 kg
m3 and C1 = 1483 m

s [53]. Since the microjet velocity is equal to 0
on the rigid wall due to the no-slip condition, the velocity and, consequently, the microjet
impact could not be calculated in the wall itself. Instead, the velocity and impact were
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calculated in three intervals of 96%, 98%, and 99% of the cylinder radius. Figure 5 shows
the velocity and pressure contour for the growth and collapse stages of the bubble with a
radius of 0.25 mm and a pressure of 80 MPa in seven stages. For the initial formation of the
bubble, laser energy is calculated as. Under these initial conditions, the maximum radius
0.39 mm of the bubble is reached after 12.4 µs.
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Figure 5. Velocity and pressure contour for a bubble with an initial radius of 0.25 mm and an initial
pressure of 80 MPa located in a vertical cylinder with a diameter of 1 mm and a height of 20 mm filled
with water; (a) the moment of the beginning of bubble growth, (b) the moment of maximum bubble
growth, (c) the moment of liquid disc microjet formation, (d) the moment of disc microjet impact on
the opposite wall of the bubble, (e) The moment of liquid disc microjet impact at 96% of the radius of
the cylinder, (f) the moment of liquid disc microjet impact at 98% of the radius of the cylinder, and
(g) the moment of liquid disc microjet impact at a distance of 99% of the cylinder radius.

Equivalent radius refers to the radius of the sphere whose volume is equal to that of
the deformed bubble. After reaching its maximum volume, the bubble begins to shrink
and splits into two distinct areas at 17 µs. At this point, a liquid disc microjet with an initial
velocity of 304.9 m

s and a final velocity of 91.7 m
s reaches the opposite bubble wall after

2.5 µs. At this stage, the bubble wall velocity is 10.4 m
s . The microjet is located at 96, 98,
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and 99% distances from the cylinder’s center at 21.9, 22.3, and, respectively, and the water
hammer impact generates 71.2 MPa, 69.9 MPa, and 52.7 MPa, respectively.

Due to the inclusion of the Tait equation of state for water, it is evident from the
pressure contour that the pressure wave is also entirely captured. Figure 6 compares the
impact of the liquid disc microjet on the opposite wall of the bubble and the impact at 96, 98,
and 99% distances from the center of the cylinder. In each of the bubbles with initial radii of
0.15, 0.20, and 0.25 mm, the amount of water hammer impact on the opposite bubble wall
and the distances of 96, 98, and 99% from the center of the cylinder increase almost linearly
as the initial pressure inside the bubble increases from 50 to 80 MPa. In addition, for each
bubble with an initial pressure between 50 and 80 MPa and an initial radius between 0.15
and 0.25 mm, the increase in the water hammer impact on the opposite bubble wall and
the distances of 96, 98, and 99% from the center of the cylinder are approximately linear. It
can also be observed that the percentage of change in impact with a change in radius is
highest at 50 MPa pressure and lowest at 80 MPa pressure.

Table 1 summarizes the amount of energy and initial radius of the laser area that results
in bubble formation, the initial conditions of the problem samples, and the final impact.

Table 1. Initial conditions of laser, bubble, and water hammer impact at different distances.

Rlaser
(mm)

Elaser
(mj)

Rinit
(mm)

Tinit
(K)

Pinit
(MPa)

Water Hammer
Impact on Other

Bubble Wall

Water Hammer
Impact in 96% of
Cylinder Radius

Water Hammer
Impact in 98% of
Cylinder Radius

Water Hammer
Impact in 99% of
Cylinder Radius

Pwh
(MPa) t (µs) Pwh

(MPa) t (µs) Pwh
(MPa) t (µs) Pwh

(MPa) t (µs)

0.06 2.0 0.15 1721 50 80.5 23.1 16.0 45.1 9.3 50.4 3.7 52.7

0.06 2.6 0.15 1855 65 101.6 22.2 16.8 35.4 9.9 36.9 6.1 37.5

0.06 3.3 0.15 1969 80 111.5 21.6 22.4 32.7 17.3 33.5 14.3 34.3

0.08 4.8 0.2 1722 50 94.6 22.3 24.5 29.4 26.2 30.3 19.9 30.6

0.08 6.3 0.2 1856 65 103.2 21.2 36.7 27.8 30.4 33.4 21.8 36.3

0.08 7.7 0.2 1970 80 113.0 21.1 47.4 25.5 44.4 26.4 35.3 26.6

0.1 9.4 0.25 1722 50 111.0 21.5 62.0 25.1 52.6 25.5 46.9 25.8

0.1 12.2 0.25 1857 65 118.0 20.2 66.1 23.4 55.4 24.6 49.3 27.4

0.1 15.1 0.25 1970 80 120.4 19.5 71.2 21.9 69.9 22.3 52.7 22.5

4.3. Simulating Bubble Behavior in a Rigid Cylinder Assuming a Flowing Liquid

In many real-world situations, we may be interested in creating a cavitation bubble
inside a fluid-moving duct to take advantage of cavitation. Therefore, the growth and
collapse of a cavitation bubble with an initial radius of 0.25 mm and an initial pressure of
80 MPa inside a cylinder with a diameter of 1 mm and a height of 20 mm is investigated at
three velocities of 1, 2, and 3 mm/s and in two modes of upward and downward flows.
Consequently, the difference in the water hammer impact of the disc microjets of the two
mentioned states must be characterized by the state where the fluid is still. Figure 7 depicts
the velocity and pressure contour for a bubble with an initial radius of 0.25 mm and an
initial pressure of 80 MPa inside a vertical cylinder with a diameter of 1 mm and a height of
20 mm filled with water moving upward at a velocity of 3 mm/s. Figure 8 also illustrates
the velocity and pressure contour for the growth and collapse phases of the bubble under
previous conditions and a downward velocity of 3 mm/s in seven stages.

In Figure 9, the comparison of the hydrodynamic behavior of the cavitation bubble
formed with an initial radius of 0.25 mm and an initial pressure of 80 MPa located in a
vertical cylinder filled with water with a diameter of 1 mm and a height of 20 mm in three
states of still water, water moving upwards with three velocities 1 mm/s, 2 mm/s and 3
mm/s and water moving downwards with three velocities of 1 mm/s, 2 mm/s, and 3 mm/s
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is conducted. A comparison of bubble behavior in still water and moving water in two
states of bottom-up and top-down movement reveals that the growth and collapse processes
of the bubble, the formation of liquid disc microjet followed by impact, for moving water
(in both the bottom-up and top-down motion states), occur approximately 1–2 µs faster
than the corresponding processes in still water, which occur at 22.5 µs. Due to the fluid’s
initial velocity, the entire assembly’s kinetic energy is greater than that of a comparable
system at rest, resulting in the bubble’s rapid growth and subsequent phenomena.
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Figure 6. Water hammer liquid disc microjet impact in the bubble with three initial radii of 0.15,
0.2, and 0.25 mm and three pressure levels of 50, 65, and 80 MPa, inside a vertical cylinder with a
diameter of 1 mm and a height of 20 mm, (a) compared to the opposite wall of the bubble, (b) at a
distance of 96% from the center of the cylinder, (c) at a distance of 98% from the center of the cylinder,
(d) at a distance of 99% from the center of the cylinder.
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The presence of this energy causes the impact on the other bubble wall and the impact
at distances of 96, 98, and 99% from the center of the cylinder to be greater in all six states
where the fluid has an initial velocity than in the still fluid. However, the behavior of
a fluid moving in the direction of gravity differs from its behavior when moving in the
opposite direction. The numerical value of impact is the inverse of its magnitude. As the
fluid velocity increases in a movement against the direction of gravity, the impact on the
wall decreases at 96, 98, and 99% of the cylinder’s center.
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water moving upward at 3 mm/s. (a) The beginning of bubble growth, (b) the moment of maximum 
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of the cylinder’s radius. 

Figure 7. Velocity and pressure contour for a bubble with an initial radius of 0.25 mm and an initial
pressure of 80 MPa in a vertical cylinder with a diameter of 1 mm and a height of 20 mm filled with
water moving upward at 3 mm/s. (a) The beginning of bubble growth, (b) the moment of maximum
bubble growth, (c) the instant liquid disc microjet formation occurs, (d) the impact of a disc microjet
on the opposite bubble wall, (e) the moment of liquid disc microjet impact at a distance equal to 96%
of the cylinder’s radius, (f) the moment of liquid disc microjet impact at a distance equal to 98% of
the cylinder’s radius, and (g) the moment of liquid disc microjet impact at a distance equal to 99% of
the cylinder’s radius.

In contrast, as the velocity of a fluid moving in the direction of gravity increases, the
amount of impact on the wall increases at distances above the cylinder’s center. It can be
inferred that if there is movement in the fluid, gravity is significant, and the higher the flow
velocity in the direction of gravity, the more intense the liquid disc microjet impact will
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be on the wall. Inversely, the greater the flow velocity against the direction of gravity, the
weaker the impact of the wall.
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In Figure 9, the comparison of the hydrodynamic behavior of the cavitation bubble 
formed with an initial radius of 0.25 mm and an initial pressure of 80 MPa located in a ver-
tical cylinder filled with water with a diameter of 1 mm and a height of 20 mm in three states 
of still water, water moving upwards with three velocities 1 mm/s, 2 mm/s and 3 mm/s and 
water moving downwards with three velocities of 1 mm/s, 2 mm/s, and 3 mm/s is con-
ducted. A comparison of bubble behavior in still water and moving water in two states of 
bottom-up and top-down movement reveals that the growth and collapse processes of the 

Figure 8. Velocity and pressure contour for a bubble with an initial radius of 0.25 mm and an initial
pressure of 80 MPa in a vertical cylinder with a diameter of 1 mm and a height of 20 mm filled with
water moving downward at 3 mm/s. (a) The moment when bubble growth begins, (b) the moment
of maximum bubble growth, (c) the formation of a liquid disc microjet, (d) the liquid disc microjet's
impact on the opposite bubble wall, (e) the moment of liquid disc microjet impact at a distance of 96%
of the cylinder’s radius, (f) the moment of liquid disc microjet impact at 98% of the cylinder’s radius,
and (g) the moment of liquid disc microjet impact at a distance of 99% of the cylinder’s radius.

In order to investigate cases in which axial symmetry is not established, the com-
plete cylinder geometry was employed in this study rather than the wedge geometry.
Figure 10 depicts the shape of the bubble and microjet in the perfect cylinder geometry,
while Figure 11 compares the velocity contour for a bubble with an initial radius of 0.25 mm
and an initial pressure of 80 MPa in the perfect cylinder geometry and the wedge geometry.
The dimensions of the bubbles in two distinct geometries at different stages are identical.
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The wall impact time in the perfect cylindrical geometry is slightly longer than the corre-
sponding time in the wedge geometry. In addition, despite the higher velocities in some
small regions away from the boundary in the wedge geometry, in the bubble and microjet
geometry, and the velocity at the time of wall impact, there is an exceptionally good match
between the two geometries. Figure 12 compares the effects of the two geometries above.
The impact size in the two geometries corresponds well.
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Figure 9. Comparison of liquid disc microjet impact caused by cavitation bubble collapse with an
initial radius of 0.25 mm and an initial pressure of 80 MPa in a vertical cylinder with a diameter of
1 mm and a height of 20 mm filled with still and moving water at six different velocities in (a) the
moment of disc microjet impact to the other bubble wall, (b) the moment of liquid disc microjet
impact at 96% of the cylinder radius, (c) the moment of liquid disc microjet impact at a distance of
98% of the radius of the cylinder, and (d) the moment of liquid disc microjet impact at a distance of
99% of the radius of the cylinder.
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Figure 10. The shape of the deformed bubble and the microjet resulting from the growth and col-
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located in a vertical cylinder with a diameter of 1 mm and a height of 20 mm in a three-dimensional 
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Figure 10. The shape of the deformed bubble and the microjet resulting from the growth and collapse
of a cavitation bubble with an initial radius of 0.25 mm and an initial pressure of 80 MPa located in a
vertical cylinder with a diameter of 1 mm and a height of 20 mm in a three-dimensional (3D) cylinder
geometry, (a) the entire field, and (b) the area shredded around the bubble.
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Figure 11. Comparison of the velocity contour for the bubble with an initial radius of 0.25 mm and an
initial pressure of 80 MPa in full cylinder geometry (left) and wedge geometry (right) at the moment
of impact, (a) 96% distance from the center of the cylinder, (b) 98% distance from the center of the
cylinder, and (c) 99% distance from the center of the cylinder.
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Figure 12. Comparison of liquid disc microjet impact at 96, 98, and 99% from the center of the cylinder
for a bubble with an initial radius of 0.25 mm and initial pressure of 80 MPa in full cylinder geometry
and wedge geometry at the moment of impact.

When the bubble formed by the laser is not precisely in the cylinder’s center and
has eccentricity, the entire cylinder geometry should be employed. Eccentricity is defined
as the ratio of the distance between the bubble’s center and the cylinder’s center to the
cylinder’s radius. Figure 13 depicts the shape of the bubble and microjet in a full cylindrical
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geometry assuming a 10% and 20% outlet from the center for the cavitation bubble with
an initial radius of 0.25 mm and an initial pressure of 80 MPa. Figure 14 compares the
velocity contour at the impact moments for Figure 13’s 10% and 20% eccentricity and the
eccentricity-free condition. As is evident, the eccentricity mode has a shorter impact time
than the eccentricity-free mode, and the microjet will be asymmetric. In addition, impact at
20% eccentricity occurs more quickly than impact at 10% eccentricity.
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Figure 13. Deformed bubble shape and microjet in 3D cylinder geometry for a cavitation bubble with
an initial radius of 0.25 mm and an initial pressure of 80 MPa located in a vertical cylinder with a
diameter of 1 mm and a height of 20 mm with 10% eccentricity (left) and 20% eccentricity (right),
(a) entire field, and (b) reduced area around the bubble.

Figure 15 compares the impact caused by the collapse of a cavitation bubble in
Figure 13 with 10% and 20% eccentricity and zero eccentricity. The amount of impact
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is greater under the condition of eccentricity compared to the condition without eccentricity.
In eccentricity mode, the asymmetric disc jet has two branches; the branch closest to the
wall has a higher velocity due to the shorter distance and makes a stronger impact on the
wall within a shorter time. However, the behavior of liquid disc microjet at 10% and 20%
eccentricity is distinct. Even though the bubble with a 20% eccentricity is closer to the wall,
the disc microjet impact on the wall is less severe than that caused by a 10% center exit of
the bubble. Due to the requirement of zero velocity at the boundary, the microjet velocity
cannot increase beyond 10% eccentricity at 20% eccentricity; therefore, the velocity is lower,
and its impact is less intense near the boundary. Therefore, it is possible to conclude that
eccentricity increases impact intensity. However, the state of maximum impact will depend
on the initial radius and pressure of the cavitation bubble.
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Figure 14. Comparison of velocity contour for the bubble with an initial radius of 0.25 mm and an
initial pressure of 80 MPa without eccentricity (left), with 10% eccentricity (middle), and with 20%
eccentricity (right) at the moment of impact, (a) 96% distance from the center of the cylinder, (b) 98%
distance from the center of the cylinder, and (c) 99% distance from the center of the cylinder.
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Figure 15. Comparison of liquid disc microjet impact for a bubble with an initial radius of 0.25 mm
and an initial pressure of 80 MPa under three conditions: no eccentricity, 10% eccentricity, and 20%
eccentricity at 96, 98, and 99% of the cylinder’s center.

Due to the gravity parameter’s effect on the lack of axial symmetry of the complete
cylinder, this study also examines the effect of the installation angle of a cylinder on its
vertical orientation. This is possible by analyzing the geometry of the complete cylinder.
Figure 16 depicts the results of a dynamic simulation of a bubble with an initial radius
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of 0.25 mm and an initial pressure of 80 MPa inside a cylinder with a diameter of 1 mm
and a height of 20 mm filled with still water at angles of 0◦, 30◦, 45◦, and 60◦ concerning
the horizon.

Figure 17 depicts the velocity contour in the microjet impact moment caused by the
collapse of the bubbles in Figure 16 at 96, 98, and 99% of the cylinder’s center. By comparing
the impact of the microjet at four angles of 0, 30, 45, and 60◦ to the vertical state in Figure 18,
it is evident that changing the angle has no appreciable effect on the bubble dynamics and,
consequently, the impact. In other words, it can be concluded that gravity does not affect
the bubble dynamics in this geometry and under these initial conditions, assuming the
water is still. This result is consistent with Blake et al. [54], reporting that gravity plays a
minor role in bubbles with a radius of less than 1 cm.
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Figure 16. Deformed bubble and microjet caused by the collapse of the bubble with an initial radius 
of 0.25 mm and initial pressure of 80 MPa inside a cylinder with an initial diameter of 1 mm and 
initial height of 20 mm in the entire field (left) and the collapsed area around the microjet (right), 
(a) 0° angle to the horizon, (b) 30° angle to the horizon, (c) 45° angle to the horizon, and (d) 60° angle 
to the horizon. 

  

Figure 16. Deformed bubble and microjet caused by the collapse of the bubble with an initial radius
of 0.25 mm and initial pressure of 80 MPa inside a cylinder with an initial diameter of 1 mm and
initial height of 20 mm in the entire field (left) and the collapsed area around the microjet (right),
(a) 0◦ angle to the horizon, (b) 30◦ angle to the horizon, (c) 45◦ angle to the horizon, and (d) 60◦ angle
to the horizon.

4.4. Simulating the Behavior of the Bubble in Blood under the Assumption That the Vessel Wall
within the Cylinder Is Rigid

Plaque is composed of fatty deposits that accumulate on the arterial walls. The
arterial walls become rigid with plaque accumulation, and their internal path becomes
more constricted. The obstruction can become more severe with sediment accumulation
in areas such as the vein’s fork. This disrupts blood flow to other organs and tissues that
require blood and nutrients. This phenomenon eventually causes atherosclerosis. This
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complication is initially accompanied by severe chest pain, also known as angina pectoris.
If the feeding vessel is large and completely blocked, cell death (myocardial infarction) will
occur, mitigating the severity of myocardial infection if treated promptly.
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Figure 17. Impact of a microjet caused by the collapse of a bubble with an initial radius of 0.25 mm 
and an initial pressure of 80 MPa inside a cylinder with a diameter of 1 mm and a height of 20 mm 
at installation angles of 0, 30, 45, 60, and 90° relative to the horizon, (a) 96% distance from the center 

Figure 17. Impact of a microjet caused by the collapse of a bubble with an initial radius of 0.25 mm
and an initial pressure of 80 MPa inside a cylinder with a diameter of 1 mm and a height of 20 mm at
installation angles of 0, 30, 45, 60, and 90◦ relative to the horizon, (a) 96% distance from the center of
the cylinder, (b) 98% distance from the center of the cylinder, and (c) 99% distance from the center of
the cylinder.
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Plaque is composed of fatty deposits that accumulate on the arterial walls. The arterial 
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Figure 18. Comparison of disk microjet impact caused by the growth and collapse of a bubble with
an initial radius of 0.25 mm and an initial pressure of 80 MPa inside a cylinder with a diameter of
1 mm and a height of 20 mm at angles of 0, 30, 45, 60 and 90◦ to the horizon, (a) 96% distance from
the center of the cylinder, (b) 98% distance from the center of the cylinder, and (c) 99% distance from
the center of the cylinder.

Angiography is one of the conventional diagnostic methods for blood vessel occlusion
complications; it determines the location and severity of the occlusion. In cases of limited
obstruction, angioplasty is used to open the blockage, and a stent is placed to prevent
atheroma plaque recoil. Typically made of titanium, a stent is an artificial mesh tube that,
when placed in a vein, prevents the local constriction of blood flow [55]. This can result in
an increase in plaque density in the vessel wall. Due to the impact of the disc microjet, one
of the applications of cavitation bubbles is the separation of plaques attached to the vessel
wall. Isolated plaques can be collected using a basket.
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The numbers in Table 2 were used to simulate the expansion and collapse of a cav-
itation bubble and the formation of a disc microjet within the bloodstream [56,57]. The
simulation used average systolic blood pressure of 120 mmHg and diastolic blood pressure
of 80 mmHg to represent relative blood pressure.

Table 2. Physical and thermophysical properties of blood.

pr µ (cP) Cp

(
J

kg·K

)
ρblood

(
kg
m3

)
21 4.5× 10−3 3.21× 103 1050

Blood is a non-Newtonian fluid, and three models of Casson [58], Bird–Carreau [59],
and Herschel–Bulkley [60] have been suggested to simulate it in various references. In the
models cited, viscosity is calculated using Equations (17)–(19), respectively:

ν =

(√
τ0
.
γ

+
√

m
)2

, νmin ≤ ν ≤ νmax (17)

ν = ν∞ + (ν0 − ν∞)
[
1 +

(
k

.
γ
)a
] n−1

a (18)

ν = min
(

ν0,
τ0
.
γ

+ k
.
γ

n−1
)

(19)

In Equation (17), τ0 denotes threshold stress,
.
γ represents strain rate, m is the Flow Con-

sistency Index, νmin and νmax are the minimum and maximum viscosity, whose values are
suggested for blood as m = 3.935× 10−6 m2

s , τ0 = 2.903× 10−6 m2

s2 , νmin = 3.905× 10−6 m2

s

and νmax = 13.333 × 10−6 m2

s [61]. In Equation (18), the values ν∞ = 1.32 × 10−5 m2

s ,
ν0 = 3.3 × 10−6 m2

s , k=0.6046s, n=0.3742 and a = 2 are considered for blood [59]. In
Equation (19), the values τ0 = 0.0175 m2

s2 , k = 8.9721× 10−3 m2

s and n = 0.8601 are sug-
gested for blood [60].

In this study, to simulate the water hammer impact caused by the disc microjet impact
formed by the collapse of the cavitation bubble inside the blood vessel, a vertical cylinder
with a diameter of 6 mm (representing the diameter of the blood vessel) and a height of
120 mm is considered. Since the water hammer pressure when the disc microjet strikes the
vessel wall should not be sufficient to cause tissue damage, it is necessary to determine the
initial conditions of the bubble. Rigatelli [62] stated that pressures exceeding 3.9 MPa could
cause vessel wall damage. To achieve this, the initial conditions of the cavitation bubble
should be chosen so that the final impact at a distance of 99% of the cylinder’s radius is less
than the acceptable value. In this simulation, a bubble with an initial radius of 1.5 mm was
examined at initial pressures of 10 MPa and 12 MPa using the Casson, Bird–Carreau, and
Herschel–Bulkley models. Figure 19 illustrates the velocity contour for the aforementioned
issue at a pressure of 12 MPa. Figure 20 compares the impact of the disc microjet. As is
evident, an excellent correlation exists between the outputs of the three methods.
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Figure 19. Velocity contour at the moment of liquid disc microjet impact for the growth and collapse 
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Figure 20. Comparison of microjet impact caused by bubble growth and collapse with an initial 
radius of 1.5 mm in three Casson, Bird–Carreau, and Herschel–Bulkley models at 96, 98, and 99% 
distances from a vertical cylinder with a diameter of 3 mm and a height of 120 mm, (a) initial pres-
sure 10 MPa, and (b) initial pressure 12 MPa. 

5. Conclusions 
This study investigated the behavior of a single cavitation bubble produced by a laser 

inside a rigid cylinder using the OpenFOAM software package. Specifically, the impact of 
a liquid disc microjet on the cylinder wall during the bubble’s collapse was analyzed. In 
the first step, a water-filled cylinder with a diameter of 1 mm and a height of 20 mm was 

Figure 19. Velocity contour at the moment of liquid disc microjet impact for the growth and collapse
of the bubble with an initial radius of 1.5 mm and an initial pressure of 12 MPa inside a vertical
cylinder with a diameter of 6 mm and a height of 120 mm filled with blood using the Casson model
(left), Bird–Carreau model (middle), and Herschel–Bulkley (right), (a) 96% of the cylinder’s center,
(b) 98% of the cylinder’s center, (c) 99% of the cylinder’s center.
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Figure 20. Comparison of microjet impact caused by bubble growth and collapse with an initial
radius of 1.5 mm in three Casson, Bird–Carreau, and Herschel–Bulkley models at 96, 98, and 99%
distances from a vertical cylinder with a diameter of 3 mm and a height of 120 mm, (a) initial pressure
10 MPa, and (b) initial pressure 12 MPa.

5. Conclusions

This study investigated the behavior of a single cavitation bubble produced by a laser
inside a rigid cylinder using the OpenFOAM software package. Specifically, the impact
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of a liquid disc microjet on the cylinder wall during the bubble’s collapse was analyzed.
In the first step, a water-filled cylinder with a diameter of 1 mm and a height of 20 mm
was chosen as a study sample for this purpose. The simulations were conducted in nine
instances, including bubbles with three initial radii of 0.15 mm, 0.20 mm, and 0.25 mm
and three initial pressure levels of 50 MPa., 65 MPa, and 80 MPa, precisely created in the
cylinder’s center by the laser. Due to axial symmetry, the computational field of the wedge
face with a 5◦ vertex angle was considered.

In each of the bubbles with initial radii of 0.15 mm, 0.20 mm, and 0.25 mm, the amount
of water hammer impact on the opposite wall of the bubble and at distances of 96, 98, and
99% from the center of the cylinder increases almost linearly as the initial pressure inside
the bubble increases from 50 MPa to 80 MPa. It was also observed that the percentage of
change in impact with radius variation is most significant at 50 MPa pressure and least
at 80 MPa pressure. In the subsequent step, it was assumed that the water within the
vertical cylinder is not static and moves in the direction of/opposite to gravity. A bubble
with an initial radius of 0.25 mm and an initial pressure of 80 MPa was modeled inside
a cylinder containing water with a diameter of 1 mm and a height of 20 mm, where the
water flows with three velocities of 1 mm/s, 2 mm/s, and 3 mm/s in two upward and
downward states.

It was observed that bubble growth and collapse processes, which form liquid disc
microjets followed by impact, are faster in moving water (in both bottom-up and top-
down motion states) than in still water. In addition, the impact to the opposite wall of the
bubble and at distances 96, 98, and 99% from the center of the cylinder are greater than
the corresponding impact in the still fluid. It was also observed that in the movement
against the direction of gravity, as the fluid velocity increases, the amount of impact on
the wall decreases at distances of 96, 98, and 99% from the center of the cylinder. In
contrast, in the movement in the direction of gravity, as the fluid velocity increases, the
amount of impact on the wall increases at the distances above. Due to the axial asymmetric
geometry, the computational field was modeled as a complete cylinder during the next
step, which involved the simulation of the bubble dynamics created at points outside the
cylinder’s center.

It was revealed that the formation of a bubble outside the center of the cylinder results
in the formation of an asymmetric liquid disc jet whose impact intensity is greater than the
impact intensity of the liquid disc jet formed by the collapse of a cavitation bubble located
in the center of the cylinder, and the impact process occurs in a shorter amount of time.
In the subsequent step, the effect of the angle of the cylinder on its upright position was
examined. The simulation was performed in the entire cylinder geometry for the dynamics
of the bubble with an initial radius of 0.25 mm and an initial pressure of 80 MPa inside
a rigid cylinder with a diameter of 1 mm and a height of 20 mm filled with still water at
angles of 0, 30, 45, and 60◦ to the horizon, and it was observed that the amount of impact
and the time of impact did not vary significantly with the angle. In still water, gravity
is insignificant.

Finally, to simulate the water hammer impact caused by the impact of a disk microjet
formed by the collapse of a cavitation bubble inside a blood vessel, the corresponding
simulation was performed inside a vertical cylinder with a diameter of 6 mm and a height
of 120 mm, and according to the pressure level limitation of 3.9 MPa in vessel wall was
observed to have a bubble with an initial radius of 1.5 mm and two pressure levels of 10 MPa
and 12 MPa, providing water hammer impact within the allowable pressure range of the
vessel wall. It was also observed that the three non-Newtonian fluid simulation models of
blood, namely Casson, Bird–Carreau, and Herschel–Bulkley, have an excellent agreement.
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