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Abstract: The cellular morphology of thermoplastic polymeric foams is a key factor for their perfor-
mances. Three possible foam morphologies exist, namely, with closed cells, interconnected cellular
structure, and open cells. In the gas foaming technology, a physical blowing agent, e.g., CO2 or
N2, is used to form bubbles at high pressure in softened/melted polymers. As a consequence of a
pressure quench, the bubbles grow in the liquid matrix until they impinge and possibly break the
thin liquid films among them. If film breakage happens, the broken film may retract due to the elastic
energy accumulated by the polymeric liquid during the bubble growth. This, in turn, determines the
final morphology of the foam. In this work, we experimentally study the growth of CO2 bubbles in
a poly(e-caprolactone) (PCL) matrix under different pressure conditions. In addition, we perform
three-dimensional direct numerical simulations to support the experimental findings and rationalize
the effects of the process parameters on the elastic energy accumulated in the liquid at the end of the
bubble growth, and thus on the expected morphology of the foam. To do that, we also extend the
analytic model available in the literature for the growth of a single bubble in a liquid to the case of a
liquid with a multi-mode viscoelastic constitutive equation.

Keywords: gas foaming; bubble growth; experiments; direct numerical simulations; single bubble
growth model

1. Introduction

Due to their mechanical, transport, acoustic, and impact absorption properties, poly-
meric foams are used in a multitude of different applications, e.g., transportation, construc-
tion, packaging, food, extraction and separation, tissue engineering, leisure, and sport [1,2].
The physical gas foaming technology, which makes use of a physical blowing agent (such
as carbon dioxide or nitrogen) to form bubbles in softened/melted polymers, is the most
widely employed process for the making of polymeric foams, mainly because of its high
productivity [1,3]. Depending on their morphology, foams can be classified as ‘closed-cell’
(with bubbles separated by walls made of the polymeric material), with ‘interconnected
cellular structure’ (having mostly closed cells with controlled interconnections in between
them), and ‘open-cell’ (with no walls at all and the polymer solely confined to cell struts),
and their distinctive features and performances derive from their internal pore morphol-
ogy [4–6].

The sequence of operations involved in the gas foaming technology is the following [1]:
(1) blowing gas solubilization (yielding a polymer–gas solution); (2) bubble nucleation
induced by an instantaneous pressure quench or temperature rise; (3) bubble growth;
(4) foam setting. These operations are interconnected and their interplay strongly affects
the cell morphology and, thus, the properties of the final product. For instance, the number
of bubbles nucleating in step 2 grows exponentially with the amount of blowing gas
solubilized in step 1 [7]. In addition, for polymers that have the ability to crystallize,
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the bubble growth in step 3 and foam setting in step 4 depend on the amount of solubilized
blowing gas because of the plasticization effect that this has on the polymer and on its
influence on polymer crystallization rate and temperature [8]. The interconnection among
the technological operations makes it complicated to optimize the foaming process by
acting on the two most powerful leverages, namely, temperature and pressure. For example,
changing the foaming temperature modifies the solubility and the diffusivity of the blowing
agent, the liquid-gas interfacial properties, and the rheological behavior of the mixture.
Although, in principle, it is possible to make measurements to quantify such properties,
it is very challenging to predict their combined influence on a foam, especially under
transient conditions.

In view of the increasingly urgent ecological transition, poly(e-caprolactone) (PCL)
represents a promising alternative to polymers of fossil origin due to its biodegradability.
In addition, it is particularly suitable for biomedical applications, such as the fabrication
of scaffolds. At the same time, the knowledge on the behavior of this material is still
somehow limited. For these reasons, in this paper we aim to improve the understanding
of the influence that process conditions, in particular gas pressure, have on the density
of foams made by using PCL as the matrix liquid and carbon dioxide as the physical
blowing agent. To do that, we perform experiments at different foaming pressures on
a simplified system, i.e., a homemade apparatus with a visualization window designed
for microcellular foaming. In order to compare with experimental data and to further
investigate quantities that are hardly attainable experimentally, e.g., the stress fields in the
polymeric liquid, we perform three-dimensional direct numerical simulations of bubble
growth in a viscoelastic liquid with the finite element method. Recently, the finite element
method has been employed to simulate the growth of gas bubbles in Newtonian liquids
both in 2D and in 3D [9–11], yet, to the best of our knowledge, this is the first time that
bubble dynamics in a viscoelastic liquid is studied computationally in 3D. As an input to
the simulations, it is required to provide a suitable bubble growth law, which is derived by
extending the analytic model for the growth of a single bubble in a liquid available in the
literature [6,12] to the case of a liquid with a multi-mode viscoelastic constitutive equation.

2. Experiments
2.1. Materials

Poly(e-caprolactone) PCL Capa 6800 with a melt flow index of 3.02 g/10 min at a
temperature of 35 °C and weight load of 2.16 kg, weight average molecular weight of
120 kDa, and number average molecular weight of 69 kDa has been supplied by Perstrop
Holding, Sweden. The storage and loss moduli of the polymer and its shear viscosity
have been measured under a nitrogen atmosphere using a strain-controlled Rheometric
Scientific ARES rheometer (TA Instruments, New Castle, DE, USA) with parallel plates
having a diameter of 25 mm and a gap of about 1 mm. The strain amplitude has been set
large enough to detect a reliable signal while keeping the measurement in the linear regime,
i.e., between 1 and 10%. Time sweep tests have been performed before the frequency sweep
in order to measure the stability of the sample. The rheological data of the polymer at 35 °C,
i.e., the temperature at which the experiments reported in this work have been done, are
given in Figure 1.
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Figure 1. Linear viscoelastic moduli (a) and shear viscosity (b) of PCL at 35 °C. The symbols repre-
sent the experimental measurements, the lines represent the predictions of a three-mode Giesekus
constitutive equation whose parameters are reported in Table 1.

Table 1. Values of the rheological parameters employed in the DNS, obtained by fitting the experi-
mental measurements reported in Figure 1 with a three-mode Giesekus model.

ηs [Pa s−1] 5691.58 Pa s−1

i 1 2 3
λi[s] 4.13 0.52 0.083

αi 0.82 0.53 0.48
ηp,i[Pa s−1] 32,258.0 41,419.0 27,964.0

CO2 (99.95% pure) supplied by Sol Group S.p.A., Italy, was used as the physical
blowing agent.

2.2. Foaming Equipment and Procedure

Based on an existing foaming visualization device [13,14], we have designed and
realized an experimental apparatus, shown in Figure 2a, composed of a pressurized vessel
for the execution of the gas foaming process and of a system to allow its visualization.
Experiments are conducted by using the following procedure: a spherical-shape PCL pellet
with a mass of around 10 mg is gently laid on a substrate in the middle of the vessel, taking
care to ensure that the substrate is level; polymeric pellets are saturated with CO2 for 4 h
at 80 °C and saturation pressure psat, as shown in Figure 2b; after saturation, the vessel
is cooled to the foaming temperature Tfoam = 35 °C with a controlled, repeatable cooling
history; at the foaming temperature, the sample is pressure-quenched to ambient pressure
with a pressure drop rate (PDR) in the order of 10 MPa s−1 [15,16]. It is worth remarking
that, given the volume of the pellet, the sphere is the geometrical shape that minimizes
the external surface area, thus the blowing agent lost by skin effect [17]. In addition,
the saturation temperature and time are chosen such as to ensure the complete softening of
the polymeric pellet and the complete solubilization of the blowing agent. The experiments
are performed at the same value of Tfoam and at three values of the saturation pressure,
i.e., psat = 4, 5, 6 MPa. The substrate on which the pellet is deposed is a horizontally-
oriented cylinder placed in the middle of a closed metallic chamber with four ports based
on 1/2” NPT threads. Two ports are sight windows in line with the drop to observe
the foaming, then there is one venting port for gas injection through a syringe pump
and aspiration through a vacuum pump and one port dedicated to a platinum-resistance
thermometer (Pt100 with 3 wires) for measuring the temperature as close as possible to the
polymer sample. The cylinder is heated by two electrical tapes placed in contact with its
upper and lower surfaces. The temperature control is provided by a fuzzy thermo-regulator
(Ascon-New England Temperature Solutions, Attleboro, MA, model X1) and recorded via
software on a computer. The evolution of the process is captured by a DMK 41AUO2
camera, Germany, while the background is illuminated by a diffused light (as shown
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in Figure 2a). The images are recorded and analyzed through MATLAB to evaluate the
expansion of the polymeric pellet over time. The images are binarized by using the ‘im2bw’
function and the pellet profile is traced by using the ‘bwboundaries’ function. The volume
of the expanding polymeric pellet is calculated by assuming it has an axisymmetric shape.

a b

Figure 2. (a) 3D rendering of the experimental foaming apparatus. (b) Temperature (red) and pressure
(blue) temporal histories during the foaming process.

2.3. Experimental Results

In Figure 3a, we report the experimental temporal evolution of the pressure inside
the vessel at Tfoam = 35 °C and psat = 5 MPa. The origin of the horizontal axis is placed
1 s before the pressure-quench. In this regard, it can be remarked that a slight pressure
decrease happens during the saturation stage, thus, at the beginning of the pressure-quench,
the pressure inside the vessel is slightly lower than the nominal psat-value. At t = 1 s,
a pressure drop to ambient pressure is imposed, lasting almost 1 s. Figure 3a also shows a
snapshot of the saturated PCL pellet before the pressure-quench (in the upper left corner)
and three snapshots taken while the pressure is decreasing, showing a progressive increase
of the volume of the pellet due to the growth of CO2 bubbles triggered by pressure decrease.
In Figure 3b, the symbols represent the experimental temporal evolution of the normalized
pellet volume V/V0 (V0 being the pellet volume prior to the beginning of bubble growth)
at Tfoam = 35 °C and psat = 4, 5, 6 MPa, as reported in the legend. It is apparent that,
at increasing psat, V increases faster and to a larger final value. This can be connected to the
larger amount of CO2 that is solubilized into the PCL pellet at larger psat, which, in turn,
increases the driving force for bubble growth when the pressure inside the vessel is released.
At the end of the foaming process, the foamed pellets are made to solidify and the cell
number density is measured, being equal to 950/cm3, 1050/cm3, and 1300/cm3 at psat = 4,
5, and 6 MPa, respectively. From the cell number density, the evolution of the average
bubble radius r̄b during the foaming process can be evaluated, which is shown in the inset in
Figure 3b. The computation of r̄b is based on two strong simplifying assumptions, namely,
that the number of bubbles in the pellet is always equal to the final value (thus, neither
coalescence nor break-up occur), and that the bubbles are spherical. Finally, examples
of SEM images of the experimental foam morphology at increasing psat are reported in
Figure 3c from left to right.
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Figure 3. (a) Experimental temporal evolution of the pressure inside the vessel at Tfoam = 35 °C and
psat = 5 MPa, also showing snapshots of the growing foamed pellet. The origin of the horizontal axis
is placed 1 s before the pressure-quench. (b) Experimental (symbols) and numerical (lines) temporal
histories of the pellet/domain volume V, normalized by the initial value V0, during the foaming
process at Tfoam = 35 °C and psat = 4, 5, 6 MPa (see legend). Inset: experimental temporal histories
of the average bubble radius r̄b. (c) Examples of SEM images of the experimental foam morphology
at Tfoam = 35 °C and psat = 4, 5, 6 MPa (from left to right).

3. Direct Numerical Simulations
3.1. Mathematical Model

In Figure 4, the computational domain considered in the direct numerical simulations
(DNS) is displayed, namely, a cube, with initial side L0, made of viscoelastic liquid. A Carte-
sian system of coordinates is set with the origin coinciding with a vertex of the cube. Five
initially spherical gas bubbles with (equal) radius rb0 are randomly distributed inside the
cube. It is worth mentioning that the bubbles are ‘holes’ in the computational domain,
namely, no balance equations are solved in the gas phase, as further detailed below.

Assuming the liquid phase to be isothermal, incompressible, and inertialess, its dynam-
ics is governed by the mass and momentum balance equations in the Stokes formulation,
reading

∇ · u = 0, (1)

∇ · T = 0, (2)

where u is the velocity vector and T = −pI + 2ηsD + ∑m
i=1 τi is the stress tensor, with p

the pressure, I the identity tensor, ηs the Newtonian contribution to the liquid viscosity,
D = (∇u+∇uT)/2 the rate-of-strain tensor, and ∑m

i=1 τi the viscoelastic extra-stress tensor,
for which we consider a multi-mode constitutive equation with m modes. In particular,
for each mode we use the Giesekus equation, reading

λi
5
τi + τi +

λiαi
ηp,i

τ2
i = 2ηp,iD, (3)

with λi the relaxation time, αi the mobility parameter, and ηp,i the polymer viscosity related
to the i-th mode, respectively. The number of modes and the values of the rheological
parameters considered in the DNS are obtained by fitting the experimentally measured
values of the linear viscoelastic moduli G′ and G′′ and of the shear viscosity η of PCL at
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35 °C shown in Figure 1. In particular, the regression yields m = 3, whereas the values of
ηs, λi, αi, and ηp,i, for i from 1 to 3, are reported in Table 1. As it is apparent by comparing
the experimental points and the regression curves in Figure 1, a three-mode Giesekus
constitutive equation allows to give an excellent description of the rheological behavior of
the polymeric liquid employed in the experiments.

x

z

y

L0

rb0

a b

Figure 4. Scheme of the computational domain for direct numerical simulations (a) and of its
discretization with a tetrahedral unstructured mesh (b).

Strictly speaking, the bubbles grow due to the diffusion of the dissolved gas in the
liquid phase, yet, for the sake of simplicity, in our description we neglect this, thus we do
not include in the model the partial mass balance equation on CO2. Instead, we assume that
there is a time-dependent pressure difference between the bubbles and the liquid far from
them that makes them grow. This assumption enters the problem through the boundary
condition on the interfaces between the bubbles and the surrounding liquid, which is

T · n = γn∇ · n− pg(t)n, (4)

with n the unit vector normal to such interfaces and directed toward the liquid phase,
γ = 0.0193N m−1 the surface tension [6], and pg(t) the time-dependent gas pressure.
In this regard, it is worth mentioning that pg(t) is imposed in the DNS by taking it from
the extension of the single bubble growth model to the case of a multi-mode viscoelastic
suspending liquid illustrated in Section 3.2. The fact that we impose on each bubble-
liquid interface the same pg(t), taken from the single bubble growth model, implicitly
contains the assumption that the bubbles do no interact. Such an assumption is altogether
reasonable at the beginning of the bubble growth process, then, as the process goes on, it
becomes patently excessive. However, even if the imposed pg(t) is derived by considering a
simplified situation, hydrodynamic interactions among the bubbles mediated by the liquid
are fully taken into account in the simulations, so our approach might represent a good
compromise between the accuracy of the mathematical description of the phenomenon and
the feasibility of the DNS.

A periodicity condition is imposed on the external boundaries of the domain, meaning
that the computational domain is a portion of space in the bulk of the foaming pellet, thus
it ‘sees’ around it other portions where the process happens analogously. In this regard, it
is worth remarking that the number of bubbles appearing in the computational domain is
sufficient to ensure ‘bulky’ conditions. Indeed, tests have been made with a double number
of bubbles, of course keeping the same volume concentration, yielding the same results,
in terms of relative inflation of the system and stress fields, as those presented in this work .
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In addition, a sensitivity analysis has been done on the initial random distribution of the
bubbles in the computational domain, showing that no significant modifications of the
numerical results in Figures 3 and 5 occur when the initial bubble configuration changes.

3.2. Single Bubble Growth

The dynamics of a spherical bubble growing in a viscoelastic liquid due to the presence
of a supersatured gas dissolved into it is governed by the momentum balance equation
for the polymeric matrix and by the diffusion equation for the gas. The model presented
below follows the derivation proposed by Everitt et al. [18] and Tammaro et al. [6]. A single
spherical bubble with initial volume V0 = 4/3πR3

0 (R0 being, of course, the initial radius)
is surrounded by a spherical shell of an incompressible viscoelastic liquid containing a
dissolved gas at initial pressure pg0. The pressure of the external ambient is pa and the
pressure difference pg(t)− pa drives the bubble growth. A spherical system of coordinates
with origin at the center of the bubble is considered. Due to the liquid volume conservation,
it is convenient to transform the radial coordinate r into a Lagrangian volume coordinate
x = r3 − R3 [18], with R the time-varying bubble radius. The outer edge of the liquid
domain is at x = X. Hence, the volume of the shell is given by 4/3πX. At the outer
shell boundary, the liquid normal stresses are balanced by the ambient pressure pa. At the
gas-liquid interface, the normal stresses are equal to the bubble pressure pg plus the
contribution of the surface tension. We assume: (i) isothermal conditions, (ii) negligible
inertia, (iii) validity of the Henry’s law at the gas-liquid interface. The rheological behavior
of the viscoelastic liquid is modeled by the multi-mode Giesekus constitutive equation.
Under these assumptions, the equations governing the bubble dynamics are

4
3

ηsu̇
(

1
u
− 1

u + X

)
= pg − pa +

2
3

m

∑
i=1

∫ X

0

Trr,i − Tθθ,i

x + u
dx− 2γ

u1/3 , (5)

λi
∂τrr,i

∂t
+

(
4u̇λi

3(x + u)
+ 1
)

τrr,i +
αiλi
ηp,i

τ2
rr,i = −

4u̇
3(x + u)

ηp,i, (6)

λi
∂τθθ,i

∂t
−
(

2u̇λi
3(x + u)

− 1
)

τθθ,i +
αiλi
ηp,i

τ2
θθ,i =

2u̇
3(x + u)

ηp,i, (7)

∂φ

∂t
= 9D(x + u)4/3 ∂2φ

∂x2 , (8)

pgu = pg0u0 + RTφ(0, t). (9)

Equation (5) expresses the momentum balance in the liquid, where u(t) = R3(t) is propor-
tional to the bubble volume, ηs is the Newtonian contribution to the liquid viscosity, m is
the number of modes, and Trr,i and Tθθ,i are the rr- and θθ-components of the i-th mode of
the stress tensor, respectively. The evolution of these two stress components for a liquid
obeying the Giesekus constitutive equation is expressed in Equations (6) and (7), where
λi, ηp,i, and αi are the relaxation time, the polymer viscosity, and the ‘mobility’ parameter
for the i-th mode, respectively. Equation (8) is the diffusion equation, where, for numeri-
cal reasons [18], a concentration potential φ(x, t) such that ∂φ/∂x = c− c0 is introduced,
with c the gas concentration and c0 its initial value. This equation is solved with boundary
conditions ∂φ/∂x = (pg − pg0)H at the bubble surface, H being the Henry’s constant,
and ∂2φ/∂x2 = 0 at the outer edge. Finally, Equation (9) stems from the conservation of the
mass in the bubble, with R and T the universal gas constant and the temperature. These
equations are supplied with the initial conditions u(0) = u0, Trr,i = Tθθ,i = 0, φ(0) = 0.

The number of modes, m = 3, and the values of the constitutive parameters of the
liquid are obtained by regression of the PCL rheological data, yielding the values reported
in Table 1. The temperature is set to T = 35 °C. The diffusivity, surface tension, and Henry’s
constant are D = 3.5× 10−10 m2 s−1, γ = 0.0193 N m−1, and H = 5.2× 10−5 mol N−1 m−1,
respectively [6]. The initial gas pressure pg0 is set according to the experimental values
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of psat, the initial bubble volume u0 is chosen such that R0 = 100 µm (correspondingly,
the same value is given to rb0 in the DNS), and the fluid volume X surrounding the bubble
is selected such that the pressure evolution predicted by the single bubble growth model at
pg0 = 5MPa is close to the experimental trend shown in Figure 3a (X is kept the same also
when considering pg0 = 4 and 6 MPa). From this value, the value of L0 employed in the
DNS is obtained by taking a volume of the computational domain five times the volume
considered in the single bubble growth model, yielding L0 = 9.6× 10−4 m.

Equations (5)–(9) are solved through the method of lines. The evolution of the quantity
(pg − pa)4/3πu is computed and used to derive the time-depending boundary condition
at the bubble-liquid interfaces in the DNS.

3.3. Numerical Technique

The equations constituting the mathematical model reported above are solved through
the arbitrary Lagrangian Eulerian (ALE) finite element method (FEM). The outcomes of
our numerical simulations are the full velocity and stress fields dynamics in the whole
liquid domain, as well as the morphological evolution of the gas bubbles. As said above,
the pressure making the bubbles grow is given as an input at the gas-liquid interfaces, so
the velocity and stress fields in the gas phase are not solved. As reported at the beginning of
Section 3.1, the computational domain is a cube of initial side L0 with five initially spherical
‘holes’ of radius rb0, i.e., the gas bubbles. The liquid phase is discretized by means of a mesh
made of quadratic tetrahedra, as shown in Figure 4b. We use quadratic (P2) interpolation
for the velocity u and linear (P1) interpolation for the pressure p (Taylor-Hood elements).

During the evolution of the process, the deformable boundaries of the gas bubbles
need to be tracked: to do this, a FEM with second-order time discretization is defined
on such surfaces, where the normal component of the mesh velocity equals the normal
component of the physical velocity, whereas the tangential velocity of the mesh nodes is
such that the distribution of the elements on the interfaces is optimized. Compared to a
Lagrangian one, this approach greatly reduces the distortion of the mesh on the surfaces of
the bubbles. Details can be found in Villone et al. [19].

Bubble inflation makes them approach each other and squeeze the liquid in between
them, making the mesh tetrahedral elements progressively deform. Every time the mesh
quality, in terms of the aspect of the ‘worst’ element in the domain, goes below a given
threshold, a remeshing is performed and the solution is projected from the old mesh to the
new one [20,21]. Moreover, since great deformations arise when the bubbles are close to
each other, mesh refinements are performed when necessary, thus ensuring the presence
of a minimum number of volume elements in the liquid films between the bubbles. It is
worth remarking that, like all the sharp-interface methods, the technique used in this work
does not allow to deal with bubble coalescence. On the other hand, it allows to give a very
accurate description of the stress fields in the thin layers in between the bubbles, which is a
relevant quantity for the prediction of the foam morphology, as discussed in Section 3.4.

3.4. Numerical Results

The solid lines in Figure 3b report the temporal history of the computational domain
volume V, normalized by the initial value V0, during the foaming process at Tfoam = 35 °C
and psat = 4, 5, 6 MPa (see legend). It is apparent that, for each psat-value, a fair quantita-
tive agreement exists between the experimental and the numerical data. Hence, the same
comments can be made, i.e., that, the larger psat, the faster V increases. It is worth re-
marking that the computational curves stop earlier than the experimental data because
the adopted numerical technique is not capable to deal with topological changes, namely,
when the thickness of the liquid film separating the bubbles becomes too little and the
bubbles coalesce.
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Figure 5. Numerically computed morphology of the foam (top row) and map of the trace of the
conformation tensor tr(c) on three orthogonal cut planes (bottom row) at t = 1.25 s and psat = 4 (a),
5 (b), 6 MPa (c).

In the first row of Figure 5, we report the numerically computed morphology of the
foam at t = 1.25 s and psat = 4 (a1), 5 (b1), and 6 MPa (c1), showing that, at a given time,
the larger psat the larger the computational volume due to a larger bubble growth. It can
be observed that, at t = 1.25 s, the shapes of the bubbles are at this point very far from
the initial spherical ones due to the hydrodynamic interactions among them. In particular,
the facing portions of the surfaces of approaching bubbles flatten and the liquid film in
between them gets squeezed, possibly undergoing a rupture if its thickness goes below
a critical dimension. If this happens, the broken liquid wall might retract depending on
the amount of elastic energy that it has stored during bubble growth. Whether retraction
occurs or not will, in turn, determine if the foam will have an open-cell or a closed-cell
morphology [6]. Given the good agreement between the experimental and the numerical
results, the latter can be indeed used to investigate quantities hardly attainable otherwise,
as the aforementioned amount of elastic energy is stored inside the liquid, which can be
measured by looking at the trace of the conformation tensor c = ∑m

i=1[(λi/ηp,i)τi + I] [22].
In the second row of Figure 5, we display the map of the trace of the conformation tensor
tr(c) computed on three orthogonal cut planes at t = 1.25s and psat = 4 (a2), 5 (b2), and
6 MPa (c2), showing that, at such given time, the larger psat the thinner the liquid films
in between the growing bubbles and, correspondingly, the larger the amount of elastic
energy they contain. In particular, it can be observed that, at psat = 4 MPa, tr(c) is almost
everywhere close to 3, namely, the bubble growth is slow compared to the liquid relaxation
time, thus the polymeric matrix is able to relax the elastic stress while bubbles inflate. As a
consequence, little or no retraction is expected if the liquid wall between two bubbles
breaks, yielding a closed-cell foam or a foam with interconnected cellular structure. On the
contrary, at psat = 6 MPa, tr(c) attains much larger values, of about 60, in the thin films
between the bubbles, thus the bubble growth is fast compared to the liquid relaxation time
and the polymeric matrix is no longer able to relax the elastic stress while bubbles inflate.
Hence, a complete retraction is expected if the liquid wall between two bubbles breaks,
yielding an open-cell foam. At psat = 5MPa, intermediate values of tr(c) can be observed
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in the films among the bubbles, suggesting that an intermediate scenario between the two
described above could occur as a consequence of bubble wall rupture.

4. Conclusions

In this paper, we study experimentally the influence that CO2 saturation pressure
has on the growth of foamed PCL pellets obtained by gas foaming technology, showing
that, given all the other process and constitutive parameters, the volume of the foamed
pellet increases faster and to a larger final value by increasing the saturation pressure.
The experimental data are compared with the outcomes of three-dimensional finite-element
direct numerical simulations of bubble inflation in a three-mode Giesekus viscoelastic
liquid describing the rheology of the experimentally employed PCL. These allow us to give
a very accurate description of the stress fields in the thin liquid films in between gas bubbles
as they approach each other, showing that the larger the saturation pressure, the faster the
bubble growth, and thus the larger the amount of elastic energy accumulated in the liquid,
which is a driving force for bubble wall retraction in the case of rupture. Hence, numerical
simulations provide us with a tool to predict foam morphology. Since a suitable bubble
growth law is required as a simulation input, we extend the analytic model available in the
literature [6,12] for the growth of a single bubble in a liquid to the case of a multi-mode
viscoelastic liquid.
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