Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (335)

Search Parameters:
Keywords = silver thin film

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 9415 KiB  
Article
Growth and Characterization of Ga2O3 for Power Nanodevices Using Metal Nanoparticle Catalysts
by Badriyah Alhalaili, Antony Joseph, Latifa Al-Hajji, Naser M. Ali, Sowmya Dean and Ahmad A. Al-Duweesh
Nanomaterials 2025, 15(15), 1169; https://doi.org/10.3390/nano15151169 - 29 Jul 2025
Viewed by 278
Abstract
A simple and inexpensive thermal oxidation process is used to grow β-Ga2O3 oxide (β-Ga2O3) thin films/nanorods on a c-plane (0001) sapphire substrate using Ag/Au catalysts. The effect of these catalysts on the [...] Read more.
A simple and inexpensive thermal oxidation process is used to grow β-Ga2O3 oxide (β-Ga2O3) thin films/nanorods on a c-plane (0001) sapphire substrate using Ag/Au catalysts. The effect of these catalysts on the growth mechanism of Ga2O3 was studied by different characterization techniques, including X-ray diffraction analysis (XRD), Scanning Electron Microscopy (SEM), and Energy Dispersive X-ray analysis (EDX). The XRD results of the grown Ga2O3 on a sapphire substrate show three sharp diffraction peaks located at 19.31°, 38.70° and 59.38° corresponding to the 2¯01, 4¯02 and 6¯03 planes of β-Ga2O3. Field Emission Scanning Electron Microscope (FESEM) analysis showed the formation of longer and denser Ga2O3 nanowires at higher temperatures, especially in the presence of silver nanoparticles as catalysts. Full article
(This article belongs to the Special Issue Preparation and Characterization of Nanomaterials)
Show Figures

Figure 1

20 pages, 3217 KiB  
Review
Progress in Al/AgO Electrode Materials for Seawater-Activated Batteries
by Peiqiang Chen, Qun Zheng, Changfu Wang, Penglin Dai, Yujuan Yin, Jinmao Chen, Xudong Wang, Wanli Xu and Man Ruan
Energies 2025, 18(15), 4007; https://doi.org/10.3390/en18154007 - 28 Jul 2025
Viewed by 256
Abstract
Al/AgO seawater-activated batteries with high specific energy and high specific power are widely used at present. The AgO electrode determines the performance of the battery, with its active material utilization rate having a significant impact on the specific capacity, energy density and discharge [...] Read more.
Al/AgO seawater-activated batteries with high specific energy and high specific power are widely used at present. The AgO electrode determines the performance of the battery, with its active material utilization rate having a significant impact on the specific capacity, energy density and discharge capacity of the battery. Therefore, this study briefly introduces the structure and working principle of Al/AgO seawater-activated batteries. Starting from the AgO material itself, common preparation methods for such positive electrode materials—including sintered silver oxide electrodes, pressed silver oxide electrodes and thin-film silver oxide electrodes—are introduced, and the factors influencing their electrochemical performance are analyzed in depth. We elaborate on the relevant research progress regarding AgO electrodes in terms of improving battery performance, detailing the effects of the silver powder’s morphology, porosity, purity, ordered structure, surface treatment and doping modification methods on silver oxide electrodes. Finally, various methods for improving the electrochemical performance of silver oxide electrodes are detailed. Current challenges and possible future research directions are analyzed, and prospects for the future development of high-specific-energy batteries based on AgO electrode materials are discussed. Overall, this review highlights the characteristics of Al/AgO batteries, providing a theoretical basis for the development of high-performance Al/AgO batteries. Full article
(This article belongs to the Section A: Sustainable Energy)
Show Figures

Figure 1

29 pages, 1609 KiB  
Review
Recent Advances in Silver Nanowire-Based Transparent Conductive Films: From Synthesis to Applications
by Ji Li, Jun Luo and Yang Liu
Coatings 2025, 15(7), 858; https://doi.org/10.3390/coatings15070858 - 21 Jul 2025
Viewed by 645
Abstract
Silver nanowire (AgNW)-based transparent conductive films are essential for flexible electronics due to their superior optoelectronic properties and mechanical flexibility. This review examines the characteristics and fabrication methods of AgNW thin films in detail. Among various fabrication techniques, the AgNW thin film produced [...] Read more.
Silver nanowire (AgNW)-based transparent conductive films are essential for flexible electronics due to their superior optoelectronic properties and mechanical flexibility. This review examines the characteristics and fabrication methods of AgNW thin films in detail. Among various fabrication techniques, the AgNW thin film produced by silk-screen printing exhibits the highest quality factor of 568.47, achieving 95.3% visible light transmittance of 95.3% and 13.6 Ω/sq sheet resistance. Ensuring the stability of AgNW films requires the deposition of protective layers through physical or chemical approaches. This review also systematically evaluates the different methods for preparing these protective layers, including their respective advantages and limitations. Furthermore, the review proposes strategies to enhance the conductivity, transparency, and flexibility of AgNW films. Finally, it discusses potential future applications and challenges, offering valuable insights for the development of next-generation flexible transparent electrodes. Full article
(This article belongs to the Special Issue Advanced Thin Films Technologies for Optics, Electronics, and Sensing)
Show Figures

Figure 1

11 pages, 2278 KiB  
Article
Femtosecond Laser Irradiation Induced Heterojunctions Between Graphene Oxide and Silver Nanowires
by Jiayun Feng, Zhiyuan Wang, Zhuohuan Wu, Shujun Wang, Yuxin Sun, Qi Meng, Jiayue Wen, Shang Wang and Yanhong Tian
Materials 2025, 18(14), 3393; https://doi.org/10.3390/ma18143393 - 19 Jul 2025
Viewed by 288
Abstract
In this article, femtosecond laser scanning was used to create heterojunctions between silver nanowire (Ag NW) and graphene oxide (GO), resulting in a mechanical and electrical interconnection. Surface plasmon resonances (SPRs) were generated on the nanowire surface by using femtosecond laser irradiation, producing [...] Read more.
In this article, femtosecond laser scanning was used to create heterojunctions between silver nanowire (Ag NW) and graphene oxide (GO), resulting in a mechanical and electrical interconnection. Surface plasmon resonances (SPRs) were generated on the nanowire surface by using femtosecond laser irradiation, producing a periodically excited electric field along the Ag NWs. This electric field then interfered with the femtosecond laser field, creating strong localized heating effects, which melted the Ag NW and GO, leading to mechanical bonding between the two. The formation of these heterostructures was attributed to the transfer of plasmon energy from the Ag NW to the adjacent GO surface. Since the connection efficiency of the nanowires is closely related to the specific location and the polarization direction of the laser, FDTD simulations were conducted to model the electric field distribution on the surface of Ag NW and GO structures under different laser polarization directions, varying the lengths and diameters of the nanowires. Finally, the resistance changes of the printed Ag NW paths on the GO thin film after femtosecond laser irradiation were investigated. It was found that laser bonding could reduce the resistance of the Ag NW-GO heterostructures by two orders of magnitude, further confirming the formation of the junctions. Full article
Show Figures

Figure 1

12 pages, 3535 KiB  
Article
TiN-Ag Multilayer Protective Coatings for Surface Modification of AISI 316 Stainless Steel Medical Implants
by Božana Petrović, Dijana Mitić, Minja Miličić Lazić, Miloš Lazarević, Anka Trajkovska Petkoska, Ilija Nasov, Slavoljub Živković and Vukoman Jokanović
Coatings 2025, 15(7), 820; https://doi.org/10.3390/coatings15070820 - 14 Jul 2025
Viewed by 323
Abstract
Stainless steel (SS) is one of the materials most commonly utilized for fabrication of medical implants and its properties are often improved by deposition of protective coatings. This study investigates certain physico-chemical and biological properties of SS substrate coated with multilayer thin film [...] Read more.
Stainless steel (SS) is one of the materials most commonly utilized for fabrication of medical implants and its properties are often improved by deposition of protective coatings. This study investigates certain physico-chemical and biological properties of SS substrate coated with multilayer thin film consisting of titanium nitride and silver layers (TiN-Ag film). TiN-Ag films were deposited on the surface of AISI 316 SS substrate by a combination of cathodic arc evaporation and DC magnetron sputtering. SS substrate was analyzed by TEM, while deposited coatings were analyzed by SEM, EDS and wettability measurements. Also, mitochondrial activity assay, and osteogenic and chondrogenic differentiation were performed on dental pulp stem cells (DPSCs). SEM and EDS revealed excellent adhesion between coatings’ layers, with the top layer predominantly composed of Ag, which is responsible for antibacterial properties. TiN-Ag film exhibited moderately hydrophilic behaviour which is desirable for orthopedic implant applications. Biological assays revealed significantly higher mitochondrial activity and enhanced osteogenic and chondrogenic differentiation of DPSC on TiN-Ag films compared to TiN films. The newly designed TiN-Ag coatings showed a great potential for the surface modification of SS implants, and further detailed investigations will explore their suitability for application in clinical practice. Full article
Show Figures

Figure 1

22 pages, 2282 KiB  
Article
Enhancement of Photovoltaic Systems Using Plasmonic Technology
by Humam Al-Baidhani, Saif Hasan Abdulnabi and Maher A. R. Sadiq Al-Baghdadi
Processes 2025, 13(5), 1568; https://doi.org/10.3390/pr13051568 - 19 May 2025
Viewed by 470
Abstract
The rise in temperature worldwide, especially in hot regions with extreme weather conditions, has made climate change one of the critical issues that degrades the solar photovoltaic (PV) system performance. In this paper, a new design of solar cells based on plasmonic thin-film [...] Read more.
The rise in temperature worldwide, especially in hot regions with extreme weather conditions, has made climate change one of the critical issues that degrades the solar photovoltaic (PV) system performance. In this paper, a new design of solar cells based on plasmonic thin-film Silver (Ag) technology is introduced. The new design is characterized by enhancing thermal effects, optical power absorption, and output power significantly, thus compensating for the deterioration in the solar cells efficiency when the ambient temperature rises to high levels. The temperature distribution on a PV solar module is determined using a three-dimensional computational fluid dynamics (CFD) model that includes the front glass, crystalline cells, and back sheet. Experimental and analytical results are presented to validate the CFD model. The parameters of temperature distribution, absorbed optical power, and output electrical power are considered to evaluate the device performance during daylight hours in summer. The effects of solar radiation falling on the solar cell, actual temperature of the environment, and wind speed are investigated. The results show that the proposed cells’ temperature is reduced by 1.2 °C thanks to the plasmonic Ag thin-film technology, which leads to enhance 0.48% real value as compared to that in the regular solar cells. Consequently, the absorbed optical power and output electrical power of the new solar cells are improved by 2.344 W and 0.38 W, respectively. Full article
Show Figures

Figure 1

11 pages, 2208 KiB  
Article
Enhanced Localized Electric Field from Surface Plasmon Coupling in a Silver Nanostructure Array with a Silver Thin Film for Bioimaging and Biosensing
by Kota Yamasaki, Ryohei Hatsuoka, Kenji Wada, Tetsuya Matsuyama and Koichi Okamoto
Photonics 2025, 12(5), 439; https://doi.org/10.3390/photonics12050439 - 1 May 2025
Viewed by 646
Abstract
The electric field enhancement effect induced by localized surface plasmon resonance (LSPR) plays a critical role in imaging and sensing applications. In particular, nanocube structures with narrow gaps provide large hotspot areas, making them highly promising for high-sensitivity applications. This study predicts the [...] Read more.
The electric field enhancement effect induced by localized surface plasmon resonance (LSPR) plays a critical role in imaging and sensing applications. In particular, nanocube structures with narrow gaps provide large hotspot areas, making them highly promising for high-sensitivity applications. This study predicts the electric field enhancement effect of structures combining silver nanocubes and a 10 nm thick silver thin film using the finite-difference time-domain (FDTD) method. We demonstrate that the interaction between the silver nanocubes and silver thin film allows control over sharp LSPR peaks in the visible wavelength range. Specifically, the structure with a spacer layer between the silver nanocubes and the silver thin film is suitable for multimodal imaging, while the direct contact structure of the silver nanocubes and the silver thin film shows potential as a highly sensitive refractive index sensor. The 10 nm thick silver thin film enables backside illumination due to its transparency in the visible wavelength region, making it compatible with inverted microscopes and allowing for versatile applications, such as living cell imaging and observations in liquid media. These structures are particularly expected to contribute to advancements in bioimaging and biosensing. Full article
(This article belongs to the Special Issue Plasmon-Enhanced Photon Emission in Nanostructures)
Show Figures

Figure 1

21 pages, 5911 KiB  
Article
Ultra-Thin Films of CdS Doped with Silver: Synthesis and Modification of Optical, Structural, and Morphological Properties by the Doping Concentration Effect
by Juan P. Molina-Jiménez, Sindi D. Horta-Piñeres, S. J. Castillo, J. L. Izquierdo and D. A. Avila
Coatings 2025, 15(4), 431; https://doi.org/10.3390/coatings15040431 - 7 Apr 2025
Cited by 1 | Viewed by 852
Abstract
Obtaining wide energy-gap semiconductor ultra-thin films is an important aspect for their application in sulfide-based solar cells. By reducing the optical losses associated with light reflection and exhibiting absorption edge shifts towards short wavelengths, these layers can optimize the amount of photons interacting [...] Read more.
Obtaining wide energy-gap semiconductor ultra-thin films is an important aspect for their application in sulfide-based solar cells. By reducing the optical losses associated with light reflection and exhibiting absorption edge shifts towards short wavelengths, these layers can optimize the amount of photons interacting with the active photovoltaic material, which increases the conversion efficiency of the solar cell. Ultra-thin CdS films were prepared by a low-cost chemical synthesis and the impact of silver doping on the optical, structural, and morphological properties was evaluated. SEM micrographs revealed that the layers are ultra-thin, homogeneous and uniform, with a reduction in particle size with increasing doping concentration. X-ray diffraction data confirmed the crystallization of CdS in the hexagonal phase for all prepared samples. A low concentration contributed to the formation of Ag2S in the monoclinic phase according to the diffractograms. The optical properties of the thin films revealed an absorption edge shift that increased the CdS band gap from 2.267 ± 0.007 to 2.353 ± 0.005 eV with increasing doping concentration, improving the spectral transmittance response. These results make these layers particularly useful for implementation in next-generation flexible photovoltaic devices. Full article
(This article belongs to the Special Issue Thin-Film Synthesis, Characterization and Properties)
Show Figures

Figure 1

29 pages, 3329 KiB  
Review
Electrode Materials for Flexible Electrochromics
by Martin Rozman and Miha Lukšič
Int. J. Mol. Sci. 2025, 26(7), 3260; https://doi.org/10.3390/ijms26073260 - 1 Apr 2025
Viewed by 1052
Abstract
Flexible electrochromic devices (ECDs) represent a distinctive category in optoelectronics, leveraging advanced materials to achieve tunable coloration under applied electric voltage. This review delves into recent advancements in electrode materials for ECDs, with a focus on silver nanowires, metal meshes, conductive polymers, carbon [...] Read more.
Flexible electrochromic devices (ECDs) represent a distinctive category in optoelectronics, leveraging advanced materials to achieve tunable coloration under applied electric voltage. This review delves into recent advancements in electrode materials for ECDs, with a focus on silver nanowires, metal meshes, conductive polymers, carbon nanotubes, and transparent conductive ceramics. Each material is evaluated based on its manufacturing methods and integration potential. The analysis highlights the prominent role of transparent conductive ceramics and conductive polymers due to their versatility and scalability, while also addressing challenges such as environmental stability and production costs. Use of other alternative materials, such as metal meshes, carbon materials, nanowires and others, are presented here as a comparison as well. Emerging hybrid systems and advanced coating techniques are identified as promising solutions to overcome limitations regarding flexibility and durability. This review underscores the critical importance of electrode innovation in enhancing the performance, sustainability, and application scope of flexible ECDs for next-generation technologies. Full article
(This article belongs to the Special Issue Molecular Advances in Electrochemical Materials)
Show Figures

Figure 1

34 pages, 56833 KiB  
Article
Wearable Arduino-Based Electronic Interactive Tattoo: A New Type of High-Tech Humanized Emotional Expression for Electronic Skin
by Chuanwen Luo, Yan Zhang, Juan Zhang, Linyuan Hui, Ruisi Qi, Yuxiang Han, Xiang Sun, Yifan Li, Yufei Wei, Yiwen Zhang, Haoying Sun, Ning Li and Bo Zhang
Sensors 2025, 25(7), 2153; https://doi.org/10.3390/s25072153 - 28 Mar 2025
Viewed by 1019
Abstract
Skin is the largest organ of the human body and holds the functions of sensing, protecting, and regulating. Since ancient times, people have decorated their skin by painting themselves, cutting, and using accessories to express their personality and aesthetic consciousness as a kind [...] Read more.
Skin is the largest organ of the human body and holds the functions of sensing, protecting, and regulating. Since ancient times, people have decorated their skin by painting themselves, cutting, and using accessories to express their personality and aesthetic consciousness as a kind of artistic expression, one that shows the development and change of aesthetic consciousness. However, there are concerns regarding the inconvenience, high time cost, and negative body perception with traditional tattoos. In addition, the trend of skin decoration has gradually withdrawn due to a lack of intelligent interaction. In response to these problems, we proposed a wearable electronic skin tattoo that offers a novel means of communication and emotional expression for individuals with communication impairments, WABEIT. The tattoo uses skin-friendly PDMS as the base material, combines multi-mode sensing components such as silver wire circuit, a programmable Surface-Mounted Device (SMD), a thin-film-pressure sensor, and a heart rate sensor, and combines the embedded development board Arduino Nano for intelligent interaction, forming a wearable electronic interactive tattoo capable of sensing the environment, human–computer interaction, and the changeable performance of intelligent perception. The sensor is also equipped with a mobile power supply to support portability. The advantages of WABEIT are as follows: first, it avoids the pain, allergy, and long production process of traditional tattoos. Second, the patterns can adapt to different needs and generate feedback for users, which can effectively express personal emotions. Thirdly, the facility of removal reduces social discrimination and occupational constraints, which is especially suitable for East Asia. Experimental results indicate that the device exhibits a high sensitivity in signal response, a wide variety of pattern changes, and reliable interactive capabilities. The study demonstrates that the proposed design philosophy and implementation strategy can be generalized to the interactive design of other wearable devices, thereby providing novel insights and methodologies for human–computer interaction, electronic devices, and sensor applications. Full article
Show Figures

Figure 1

50 pages, 16380 KiB  
Review
Progress in Thin-Film Photovoltaics: A Review of Key Strategies to Enhance the Efficiency of CIGS, CdTe, and CZTSSe Solar Cells
by Sivabalan Maniam Sivasankar, Carlos de Oliveira Amorim and António F. da Cunha
J. Compos. Sci. 2025, 9(3), 143; https://doi.org/10.3390/jcs9030143 - 20 Mar 2025
Cited by 3 | Viewed by 1255
Abstract
Thin-film solar cells (TFSCs) represent a promising frontier in renewable energy technologies due to their potential for cost reduction, material efficiency, and adaptability. This literature review examines the key materials and advancements that make up TFSC technologies, with a focus on Cu(In,Ga)Se2 [...] Read more.
Thin-film solar cells (TFSCs) represent a promising frontier in renewable energy technologies due to their potential for cost reduction, material efficiency, and adaptability. This literature review examines the key materials and advancements that make up TFSC technologies, with a focus on Cu(In,Ga)Se2 (CIGS), cadmium telluride (CdTe), and Cu2ZnSnS4 (CZTS) and its sulfo-selenide counterpart Cu2ZnSn(S,Se)4 (CZTSSe). Each material’s unique properties—including tuneable bandgaps, high absorption coefficients, and low-cost scalability—make them viable candidates for a wide range of applications, from building-integrated photovoltaics (BIPV) to portable energy solutions. This review explores recent progress in the enhancement of power conversion efficiency (PCE), particularly through bandgap engineering, alkali metal doping, and interface optimization. Key innovations such as silver (Ag) alloying in CIGS, selenium (Se) alloying in CdTe, and sulfur (S) to Se ratio optimization in CZTSSe have driven PCE improvements and expanded the range of practical uses. Additionally, the adaptability of TFSCs for roll-to-roll manufacturing on flexible substrates has further cemented their role in advancing renewable energy adoption. Challenges remain, including environmental concerns, but ongoing research addresses these limitations, paving the way for TFSCs to become a crucial technology for transitioning to sustainable energy systems. Full article
(This article belongs to the Section Composites Manufacturing and Processing)
Show Figures

Figure 1

10 pages, 2196 KiB  
Article
Solar Fabric Based on Amorphous Silicon Thin Film Solar Cells on Flexible Textiles
by Jonathan Plentz, Uwe Brückner, Gabriele Schmidl, Annett Gawlik, Klaus Richter and Gudrun Andrä
Energies 2025, 18(6), 1448; https://doi.org/10.3390/en18061448 - 15 Mar 2025
Viewed by 924
Abstract
Three-dimensional flexible solar fabrics based on hydrogenated amorphous silicon (a-Si:H) thin film solar cells were prepared and characterized. A glass fiber fabric with a polytetrafluoroethylene (PTFE) coating proved to be a suitable textile substrate. Interwoven metal wires enable an integrated electrical interconnection. An [...] Read more.
Three-dimensional flexible solar fabrics based on hydrogenated amorphous silicon (a-Si:H) thin film solar cells were prepared and characterized. A glass fiber fabric with a polytetrafluoroethylene (PTFE) coating proved to be a suitable textile substrate. Interwoven metal wires enable an integrated electrical interconnection. An array of solar cells consisting of an a-Si:H layer stack with a highly p-type/intrinsic/highly n-type doping profile was deposited onto it. Silver was used as the back contact with indium tin oxide (ITO) as the front contact. The best solar cells show an efficiency of 3.9% with an open-circuit voltage of 876 mV and a short-circuit current density of 11.4 mA/cm2. The high series resistance limits the fill factor to 39%. The potential of the textile solar cells is shown by the achieved pseudo fill factor of 79% when neglecting the series resistance, resulting in a pseudo efficiency of 7.6%. With four textile solar cells connected in a series, an open-circuit voltage of about 3 V is achieved. Full article
(This article belongs to the Special Issue Recent Advances in Solar Cells and Photovoltaics)
Show Figures

Figure 1

9 pages, 1767 KiB  
Article
Possible Superconductivity in Very Thin Magnesium Films
by Giovanni Alberto Ummarino and Alessio Zaccone
Condens. Matter 2025, 10(1), 17; https://doi.org/10.3390/condmat10010017 - 10 Mar 2025
Cited by 1 | Viewed by 2476
Abstract
It is known that noble metals such as gold, silver and copper are not superconductors; this is also true for magnesium. This is due to the weakness of the electron–phonon interaction, which makes them excellent conductors but not superconductors. As has recently been [...] Read more.
It is known that noble metals such as gold, silver and copper are not superconductors; this is also true for magnesium. This is due to the weakness of the electron–phonon interaction, which makes them excellent conductors but not superconductors. As has recently been shown for gold, silver and copper, and even for magnesium, it is possible that in very particular situations, superconductivity may occur. Quantum confinement in thin films has been consistently shown to induce a significant enhancement of the superconducting critical temperature in several superconductors. It is therefore an important fundamental question whether ultra-thin film confinement may induce observable superconductivity in non-superconducting metals such as magnesium. We study this problem using a generalization, in the Eliashberg framework, of a BCS theory of superconductivity in good metals under thin-film confinement. By numerically solving these new Eliashberg-type equations, we find the dependence of the superconducting critical temperature on the film thickness, L. This parameter-free theory predicts superconductivity in very thin magnesium films. We demonstrate that this is a fine-tuning problem where the thickness must assume a very precise value, close to half a nanometer. Full article
(This article belongs to the Special Issue Superstripes Physics, 3rd Edition)
Show Figures

Figure 1

8 pages, 5504 KiB  
Proceeding Paper
Electrochromic Behavior of Manganese Oxides/Silver Thin Films from Electrochemical Deposition
by Yi Hu, Jiun-Shing Liu, Pin-Syuan Chen and Si-Ying Li
Eng. Proc. 2025, 89(1), 35; https://doi.org/10.3390/engproc2025089035 - 5 Mar 2025
Viewed by 425
Abstract
MnOx thin films with silver additives were electrochemically deposited on an Indium Tin Oxide (ITO) substrate with silver acetate and potassium permanganate aqueous solution. The addition of Ag enhanced electrochromic behavior during cyclic voltammetry (CV). The morphology of the thin films was [...] Read more.
MnOx thin films with silver additives were electrochemically deposited on an Indium Tin Oxide (ITO) substrate with silver acetate and potassium permanganate aqueous solution. The addition of Ag enhanced electrochromic behavior during cyclic voltammetry (CV). The morphology of the thin films was examined by using scanning electronic microscopy (SEM) and transmission electron microscopy (TEM). The chemical states of Mn and Ag ions on the surfaces of the thin films were examined using X-ray photoelectron spectroscopy (XPS). Spherical Ag2O and Ag nanoparticles were homogeneously dispersed on the thin films. The electrochemistry of the thin films was examined by cyclic voltammetry in a conventional three-electrode system and an electrochemically tested system. The electrochromic behavior of the films was demonstrated through the cyclic voltammetry (CV) process in the KNO3 electrolyte. The electrochromic behavior of the thin films depended on the redox reactions associated with the reaction between Ag and Ag2O coupled with Mn4+ ions and Mn3+ ions in the KNO3 electrolyte. Full article
Show Figures

Figure 1

16 pages, 3148 KiB  
Article
Preparation, Characterization and Evaluation of the Antibacterial Activity of Ag Nanoparticles Embedded in Transparent Oxide Matrices
by Cristina-Ștefania Gălbau, Mihaela Idomir, Cătălin Vițelaru, Adrian Emil Kiss, Anca Constantina Parau, Lidia Ruxandra Constantin, Mihaela Dinu, Iulian Pana, Alina Vlădescu (Dragomir), Elena Laura Gaman, Marius Alexandru Moga, Cătălin Mișarcă, Mihai Vârciu, Claudia Alexandrina Irimie and Mihaela Badea
Appl. Sci. 2025, 15(5), 2599; https://doi.org/10.3390/app15052599 - 27 Feb 2025
Viewed by 813
Abstract
Daily exposure to contaminated environments and surfaces leads to serious health issues, increasing healthcare costs. Active materials that act against pathogens can effectively prevent their proliferation and contribute to increased protection against infections. In this contribution, nanostructured thin films containing silver are investigated, [...] Read more.
Daily exposure to contaminated environments and surfaces leads to serious health issues, increasing healthcare costs. Active materials that act against pathogens can effectively prevent their proliferation and contribute to increased protection against infections. In this contribution, nanostructured thin films containing silver are investigated, using SiO2 and TiO2 as transparent matrices to embed the Ag atoms. The thin transparent films were obtained via magnetron sputtering, using HiPIMS for Ag deposition and RF sputtering for oxides, in either an Ar or Ar/O2 environment. Atomic Force Microscopy provided information on coating topography and the thin films’ preferential growth on the textured polymer foil, X-Ray Diffraction highlighted the structural difference between different versions, Ultraviolet–Visible–Near-Infrared spectroscopy proved the thin films’ optical quality and their transparency and Energy-Dispersive X-ray Spectroscopy revealed the composition changes for different processes. The effect of O2 addition is analyzed and compared in terms of changes induced on the properties of the thin films. Following 24 h of incubation in a media containing 104 CFU/mL Escherichia coli, the TiO2+Ag sample with O2 addition showed the highest antibacterial effectiveness, as indicated by the largest inhibition zone. Experiments on selective media showed a hierarchy of efficiency, namely, TiO2+Ag+O2 > TiO2+Ag > SiO2+Ag. Full article
(This article belongs to the Section Nanotechnology and Applied Nanosciences)
Show Figures

Figure 1

Back to TopTop