Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (56)

Search Parameters:
Keywords = silver nanowire transparent conductive film

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 1609 KiB  
Review
Recent Advances in Silver Nanowire-Based Transparent Conductive Films: From Synthesis to Applications
by Ji Li, Jun Luo and Yang Liu
Coatings 2025, 15(7), 858; https://doi.org/10.3390/coatings15070858 - 21 Jul 2025
Viewed by 1166
Abstract
Silver nanowire (AgNW)-based transparent conductive films are essential for flexible electronics due to their superior optoelectronic properties and mechanical flexibility. This review examines the characteristics and fabrication methods of AgNW thin films in detail. Among various fabrication techniques, the AgNW thin film produced [...] Read more.
Silver nanowire (AgNW)-based transparent conductive films are essential for flexible electronics due to their superior optoelectronic properties and mechanical flexibility. This review examines the characteristics and fabrication methods of AgNW thin films in detail. Among various fabrication techniques, the AgNW thin film produced by silk-screen printing exhibits the highest quality factor of 568.47, achieving 95.3% visible light transmittance of 95.3% and 13.6 Ω/sq sheet resistance. Ensuring the stability of AgNW films requires the deposition of protective layers through physical or chemical approaches. This review also systematically evaluates the different methods for preparing these protective layers, including their respective advantages and limitations. Furthermore, the review proposes strategies to enhance the conductivity, transparency, and flexibility of AgNW films. Finally, it discusses potential future applications and challenges, offering valuable insights for the development of next-generation flexible transparent electrodes. Full article
(This article belongs to the Special Issue Advanced Thin Films Technologies for Optics, Electronics, and Sensing)
Show Figures

Figure 1

14 pages, 2407 KiB  
Review
An Overview of Silver Nanowire Polyol Synthesis Using Millifluidic Flow Reactors for Continuous Transparent Conductive Film Manufacturing by Direct Ink Writing
by Destiny F. Williams and Shohreh Hemmati
Nanomanufacturing 2025, 5(2), 7; https://doi.org/10.3390/nanomanufacturing5020007 - 6 May 2025
Viewed by 1181
Abstract
Silver nanowires (AgNWs) have garnered significant attention in nanotechnology due to their unique mechanical and electrical properties and versatile applications. This review explores the synthesis of AgNWs, with a specific focus on the utilization of millifluidic flow reactors (MFRs) as a promising platform [...] Read more.
Silver nanowires (AgNWs) have garnered significant attention in nanotechnology due to their unique mechanical and electrical properties and versatile applications. This review explores the synthesis of AgNWs, with a specific focus on the utilization of millifluidic flow reactors (MFRs) as a promising platform for controlled and efficient production. It begins by elucidating the exceptional characteristics and relevance of AgNWs in various technological domains and then delves into the principles and advantages of MFRs by showcasing their pivotal role in enhancing the precision and scalability of nanowire synthesis. Within this review, an overview of the diverse synthetic methods employed for AgNW production using MFRs is provided. Special attention is given to the intricate parameters and factors influencing synthesis and how MFRs offer superior control over these critical variables. Recent advances in this field are highlighted, revealing innovative strategies and promising developments that have emerged. As with any burgeoning field, challenges are expected, so future directions are explored, offering insights into the current limitations and opportunities for further exploration. In conclusion, this review consolidates the state-of-the-art knowledge in AgNW synthesis and emphasizes the critical role of MFRs in shaping the future of nanomaterial production and nanomanufacturing. Full article
Show Figures

Figure 1

21 pages, 19032 KiB  
Article
Synthesis of Copper Nanowires Using Monoethanolamine and the Application in Transparent Conductive Films
by Xiangyun Zha, Depeng Gong, Wanyu Chen, Lili Wu and Chaocan Zhang
Nanomaterials 2025, 15(9), 638; https://doi.org/10.3390/nano15090638 - 22 Apr 2025
Viewed by 793
Abstract
Copper nanowires (Cu NWs) are considered a promising alternative to indium tin oxide (ITO) and silver nanowires (Ag NWs) due to their excellent electrical conductivity, mechanical properties, abundant reserves, and low cost. They have been widely applied in various optoelectronic devices. In this [...] Read more.
Copper nanowires (Cu NWs) are considered a promising alternative to indium tin oxide (ITO) and silver nanowires (Ag NWs) due to their excellent electrical conductivity, mechanical properties, abundant reserves, and low cost. They have been widely applied in various optoelectronic devices. In this study, Cu NWs were synthesized using copper chloride (CuCl2) as the precursor, monoethanolamine (MEA) as the complexing agent, and hydrated hydrazine (N2H4) as the reducing agent under strongly alkaline conditions at 60 °C. Notably, this is the first time that MEA has been employed as a complexing agent in this synthesis method for Cu NWs. Through a series of experiments, the optimal conditions for the CuCl2–MEA–N2H4 system in Cu NWs synthesis were determined. This study revealed that the presence of amines plays a crucial role in nanowire formation, as the co-ordination of MEA with copper in this system provides selectivity for the nanowire growth direction. MEA prevents the excessive conversion of Cu(I) complexes into Cu2O octahedral precipitates and exhibits an adsorption effect during Cu NWs formation. The different adsorption tendencies of MEA at the nanowire ends and lateral surfaces, depending on its concentration, influence the growth of the Cu NWs, as directly reflected by changes in their diameter and length. At an MEA concentration of 210 mM, the synthesized Cu NWs have an average diameter of approximately 101 nm and a length of about 28 μm. To fabricate transparent conductive films, the Cu NW network was transferred onto a polyethylene terephthalate (PET) substrate by applying a pressure of 20 MPa using a tablet press to ensure strong adhesion between the Cu NW-coated mixed cellulose ester (MCE) filter membrane and the PET substrate. Subsequently, the MCE membrane was dissolved by acetone and isopropanol immersion. The resulting Cu NW transparent conductive film exhibited a sheet resistance of 52 Ω sq−1 with an optical transmittance of 86.7%. Full article
(This article belongs to the Section Nanoelectronics, Nanosensors and Devices)
Show Figures

Figure 1

17 pages, 4841 KiB  
Article
Fabricating Silver Nanowire–IZO Composite Transparent Conducting Electrodes at Roll-to-Roll Speed for Perovskite Solar Cells
by Justin C. Bonner, Bishal Bhandari, Garrett J. Vander Stouw, Geethanjali Bingi, Kurt A. Schroder, Julia E. Huddy, William J. Scheideler and Julia W. P. Hsu
Nanomanufacturing 2025, 5(2), 5; https://doi.org/10.3390/nanomanufacturing5020005 - 29 Mar 2025
Viewed by 772
Abstract
This study addresses the challenges of efficient, large-scale production of flexible transparent conducting electrodes (TCEs). We fabricate TCEs on polyethylene terephthalate (PET) substrates using a high-speed roll-to-roll (R2R) compatible method that combines gravure printing and photonic curing. The hybrid TCEs consist of Ag [...] Read more.
This study addresses the challenges of efficient, large-scale production of flexible transparent conducting electrodes (TCEs). We fabricate TCEs on polyethylene terephthalate (PET) substrates using a high-speed roll-to-roll (R2R) compatible method that combines gravure printing and photonic curing. The hybrid TCEs consist of Ag metal bus lines (Ag MBLs) coated with silver nanowires (AgNWs) and indium zinc oxide (IZO) layers. All materials are solutions deposited at speeds exceeding 10 m/min using gravure printing. We conduct a systematic study to optimize coating parameters and tune solvent composition to achieve a uniform AgNW network. The entire stack undergoes photonic curing, a low-energy annealing method that can be completed at high speeds and will not damage the plastic substrates. The resulting hybrid TCEs exhibit a transmittance of 92% averaged from 400 nm to 1100 nm and a sheet resistance of 11 Ω/sq. Mechanical durability is tested by bending the hybrid TCEs to a strain of 1% for 2000 cycles. The results show a minimal increase (<5%) in resistance. The high-throughput potential is established by showing that each hybrid TCE fabrication step can be completed at 30 m/min. We further fabricate methylammonium lead iodide solar cells to demonstrate the practical use of these TCEs, achieving an average power conversion efficiency (PCE) of 13%. The high-performance hybrid TCEs produced using R2R-compatible processes show potential as a viable choice for replacing vacuum-deposited indium tin oxide films on PET. Full article
Show Figures

Figure 1

15 pages, 17491 KiB  
Article
Preparation and Optoelectrical Property of Silver Nanowire Transparent Conductive Film via Slot Die Coating
by Jiaqi Shan, Ye Hong, Haoyu Wang, Kaixuan Cui, Jianbao Ding and Xingzhong Guo
Coatings 2025, 15(1), 95; https://doi.org/10.3390/coatings15010095 - 15 Jan 2025
Viewed by 1653
Abstract
Silver nanowire transparent conductive films (AgNW TCFs), as the novel transparent electrode materials replacing ITO, are anticipated to be applied in numerous optoelectronic devices, and slot-die coating is currently acknowledged as the most suitable method for the mass production of large-sized AgNW TCFs. [...] Read more.
Silver nanowire transparent conductive films (AgNW TCFs), as the novel transparent electrode materials replacing ITO, are anticipated to be applied in numerous optoelectronic devices, and slot-die coating is currently acknowledged as the most suitable method for the mass production of large-sized AgNW TCFs. In this study, sodium carboxymethyl cellulose (CMC) and polyvinyl alcohol (PVA), as film-forming aids, and AgNWs, as conductive materials, were utilized to prepare a specialized AgNW ink, and a slot-die coating is employed to print and prepare AgNW TCFs. The optoelectrical properties of AgNW TCFs are optimized by adjusting the compositions of AgNW ink and the process parameters of slot-die coating. The suitable compositions of AgNW ink and the optimal parameters of slot-die coating are a CMC type of V, a PVA volume of 1 mL, a AgNW volume of 1.5 mL, a volume ratio of 30 and 45 nm AgNWs (2:1), and a coating height of 400 μm. The resultant AgNW TCFs achieve excellent comprehensive optoelectronic performance, with a sheet resistance of less than 50 Ω/sq, a visible light transmittance exceeding 92%, and a haze below 1.8%. This research provides a valuable approach to producing AgNW TCFs on a large scale via the slot-die coating. Full article
(This article belongs to the Special Issue Advanced Films and Coatings for Flexible Electronics)
Show Figures

Figure 1

13 pages, 1097 KiB  
Article
Research on the Application of Silver Nanowire-Based Non-Magnetic Transparent Heating Films in SERF Magnetometers
by Yi Ge, Yuhan Li, Yang Li, Xuejing Liu, Xiangmei Dong and Xiumin Gao
Sensors 2025, 25(1), 234; https://doi.org/10.3390/s25010234 - 3 Jan 2025
Viewed by 3203
Abstract
We propose a non-magnetic transparent heating film based on silver nanowires (Ag-NWs) for application in spin-exchange relaxation-free (SERF) magnetic field measurement devices. To achieve ultra-high sensitivity in atomic magnetometers, the atoms within the alkali metal vapor cell must be maintained in a stable [...] Read more.
We propose a non-magnetic transparent heating film based on silver nanowires (Ag-NWs) for application in spin-exchange relaxation-free (SERF) magnetic field measurement devices. To achieve ultra-high sensitivity in atomic magnetometers, the atoms within the alkali metal vapor cell must be maintained in a stable and uniform high-temperature environment. Ag-NWs, as a transparent conductive material with exceptional electrical conductivity, are well suited for this application. By employing high-frequency AC heating, we effectively minimize associated magnetic noise. The experimental results demonstrate that the proposed heating film, utilizing a surface heating method, can achieve temperatures exceeding 140 °C, which is sufficient to vaporize alkali metal atoms. The average magnetic flux coefficient of the heating film is 0.1143 nT/mA. Typically, as the current increases, a larger magnetic field is generated. When integrated with the heating system discussed in this paper, this characteristic can effectively mitigate low-frequency magnetic interference. In comparison with traditional flexible printed circuits (FPC), the Ag-NWs heating film exhibits a more uniform temperature distribution. This magnetically transparent heating film, leveraging Ag-NWs, enhances atomic magnetometry and presents opportunities for use in chip-level gyroscopes, atomic clocks, and various other atomic devices. Full article
(This article belongs to the Section Optical Sensors)
Show Figures

Figure 1

16 pages, 11252 KiB  
Article
Flexible Force Sensor Based on a PVA/AgNWs Nanocomposite and Cellulose Acetate
by Dulce Natalia Castillo-López, Luz del Carmen Gómez-Pavón, Alfredo Gutíerrez-Nava, Placido Zaca-Morán, Cesar Augusto Arriaga-Arriaga, Jesús Manuel Muñoz-Pacheco and Arnulfo Luis-Ramos
Sensors 2024, 24(9), 2819; https://doi.org/10.3390/s24092819 - 28 Apr 2024
Cited by 3 | Viewed by 2093
Abstract
Nanocomposites are materials of special interest for the development of flexible electronic, optical, and mechanical devices in applications such as transparent conductive electrodes and flexible electronic sensors. These materials take advantage of the electrical, chemical, and mechanical properties of a polymeric matrix, especially [...] Read more.
Nanocomposites are materials of special interest for the development of flexible electronic, optical, and mechanical devices in applications such as transparent conductive electrodes and flexible electronic sensors. These materials take advantage of the electrical, chemical, and mechanical properties of a polymeric matrix, especially in force sensors, as well as the properties of a conductive filler such as silver nanowires (AgNWs). In this work, the fabrication of a force sensor using AgNWs synthesized via the polyol chemical technique is presented. The nanowires were deposited via drop-casting in polyvinyl alcohol (PVA) to form the active (electrode) and resistive (nanocomposite) sensor films, with both films separated by a cellulose acetate substrate. The dimensions of the resulting sensor are 35 mm × 40 mm × 0.1 mm. The sensor shows an applied force ranging from 0 to 3.92 N, with a sensitivity of 0.039 N. The sensor stand-off resistance, exceeding 50 MΩ, indicates a good ability to detect changes in applied force without an external force. Additionally, studies revealed a response time of 10 ms, stabilization of 9 s, and a degree of hysteresis of 1.9%. The voltage response of the sensor under flexion at an angle of 85° was measured, demonstrating its functionality over a prolonged period. The fabricated sensor can be used in applications that require measuring pressure on irregular surfaces or systems with limited space, such as for estimating movement in robot joints. Full article
Show Figures

Graphical abstract

12 pages, 3770 KiB  
Article
A Stretchable, Transparent, and Mechanically Robust Silver Nanowire–Polydimethylsiloxane Electrode for Electrochromic Devices
by Tingting Hao, Leipeng Zhang, Haoyu Ji, Qiyu Zhou, Ting Feng, Shanshan Song, Bo Wang, Dongqi Liu, Zichen Ren, Wenchao Liu, Yike Zhang, Jiawu Sun and Yao Li
Polymers 2023, 15(12), 2640; https://doi.org/10.3390/polym15122640 - 10 Jun 2023
Cited by 8 | Viewed by 2756
Abstract
The application of flexible indium tin oxide (ITO-free) electrochromic devices has steadily attracted widespread attention in wearable devices. Recently, silver nanowire/poly(dimethylsiloxane) (AgNW/PDMS)-based stretchable conductive films have raised great interest as ITO-free substrate for flexible electrochromic devices. However, it is still difficult to achieve [...] Read more.
The application of flexible indium tin oxide (ITO-free) electrochromic devices has steadily attracted widespread attention in wearable devices. Recently, silver nanowire/poly(dimethylsiloxane) (AgNW/PDMS)-based stretchable conductive films have raised great interest as ITO-free substrate for flexible electrochromic devices. However, it is still difficult to achieve high transparency with low resistance due to the weak binding force between AgNW and PDMS with low surface energy because of the possibility of detaching and sliding occurring at the interface. Herein, we propose a method to pattern the pre-cured PDMS (PT-PDMS) by stainless steel film as a template through constructed micron grooves and embedded structure, to prepare a stretchable AgNW/PT-PDMS electrode with high transparency and high conductivity. The stretchable AgNW/PT-PDMS electrode can be stretched (5000 cycles), twisted, and surface friction (3M tape for 500 cycles) without significant loss of conductivity (ΔR/R ≈ 16% and 27%). In addition, with the increase of stretch (stretching to 10–80%), the AgNW/PT-PDMS electrode transmittance increased, and the conductivity increased at first and then decreased. It is possible that the AgNWs in the micron grooves are spread during PDMS stretching, resulting in a larger spreading area and higher transmittance of the AgNWs film; at the same time, the nanowires between the grooves come into contact, thus increasing conductivity. An electrochromic electrode constructed with the stretchable AgNW/PT-PDMS exhibited excellent electrochromic behavior (transmittance contrast from ~61% to ~57%) even after 10,000 bending cycles or 500 stretching cycles, indicating high stability and mechanical robustness. Notably, this method of preparing transparent stretch electrodes based on patterned PDMS provides a promising solution for developing electronic devices with unique structures and high performance. Full article
(This article belongs to the Special Issue Advances in Polymer-Based Electrochromic Devices)
Show Figures

Figure 1

8 pages, 6237 KiB  
Proceeding Paper
Biocompatible and Flexible Transparent Electrodes for Skin-Inspired Sensing
by Raquel L. Pereira and Gabriela V. Martins
Eng. Proc. 2023, 35(1), 26; https://doi.org/10.3390/IECB2023-14588 - 9 Jun 2023
Viewed by 1328
Abstract
In recent years, flexible electronics have experienced a massive growth as a response to the high demand for new skin-patch sensor devices targeted at personal health-monitoring. In this context, the incorporation of biopolymers into the backbone of these soft systems brings new opportunities [...] Read more.
In recent years, flexible electronics have experienced a massive growth as a response to the high demand for new skin-patch sensor devices targeted at personal health-monitoring. In this context, the incorporation of biopolymers into the backbone of these soft systems brings new opportunities in terms of biocompatibility and sustainability performance. However, the suitable integration of a conductive patterned material is still a challenge, in order to achieve good adhesion and high transparency. Thus, silver nanowires (AgNWs) constitute promising candidates for the fabrication of flexible transparent conductive films. Herein, a chitosan membrane doped with a plasticizer element was made conductive, through a one-step process, by using an optimized ratio of chitosan–lactic acid–AgNWs (Chi-LaA-AgNWs) dispersion. This formulation was applied using screen-printing, and the influence of the polymer ratio, cure temperature, and number of layers applied with the AgNW-based ink was investigated. Compared with conventional water-based AgNW dispersions, the here-proposed chitosan-doped ink enabled the fabrication of transparent electrode platforms holding good stability, homogeneity, and electrical features. Full article
(This article belongs to the Proceedings of The 3rd International Electronic Conference on Biosensors)
Show Figures

Figure 1

13 pages, 6326 KiB  
Article
In Situ Silver Nanonets for Flexible Stretchable Electrodes
by Qingwei Liao, Wei Si, Jingxin Zhang, Hanchen Sun and Lei Qin
Int. J. Mol. Sci. 2023, 24(11), 9319; https://doi.org/10.3390/ijms24119319 - 26 May 2023
Cited by 4 | Viewed by 2027
Abstract
Shape-controlled synthesis is an effective method for controlling the physicochemical properties of nanomaterials, especially single-crystal nanomaterials, but it is difficult to control the morphology of single-crystal metallic nanomaterials. Silver nanowires (AgNWs) are regarded as key materials for the new generation of human–computer interaction, [...] Read more.
Shape-controlled synthesis is an effective method for controlling the physicochemical properties of nanomaterials, especially single-crystal nanomaterials, but it is difficult to control the morphology of single-crystal metallic nanomaterials. Silver nanowires (AgNWs) are regarded as key materials for the new generation of human–computer interaction, which can be applied in large-scale flexible and foldable devices, large-size touch screens, transparent LED films, photovoltaic cells, etc. When used on a large scale, the junction resistance will be generated at the overlap between AgNWs and the conductivity will decrease. When stretched, the overlap of AgNWs will be easily disconnected, which will lead to a decrease in electrical conductivity or even system failure. We propose that in situ silver nanonets (AgNNs) can solve the above two problems. The AgNNs exhibited excellent electrical conductivity (0.15 Ω∙sq−1, which was 0.2 Ω∙sq−1 lower than the 0.35 Ω∙sq−1 square resistance of AgNWs) and extensibility (the theoretical tensile rate was 53%). In addition to applications in flexible stretchable sensing and display industries, they also have the potential to be used as plasmonic materials in molecular recognition, catalysis, biomedicine and other fields. Full article
Show Figures

Figure 1

12 pages, 5331 KiB  
Article
Investigation of Silver Nanowire Transparent Heated Films Possessing the Application Scenarios for Electrothermal Ceramics
by Yefu Hu and Weimin Wu
Coatings 2023, 13(3), 607; https://doi.org/10.3390/coatings13030607 - 13 Mar 2023
Cited by 1 | Viewed by 2317
Abstract
As transparent heated films (THFs) based on transparent conductive oxides (TCOs) are restricted by expensive raw materials and inappropriate fabricating film on curved surfaces because of its brittleness, silver nanowires transparent conductive film (AgWS-TCF) is an ideal alternative material for THF. However, there [...] Read more.
As transparent heated films (THFs) based on transparent conductive oxides (TCOs) are restricted by expensive raw materials and inappropriate fabricating film on curved surfaces because of its brittleness, silver nanowires transparent conductive film (AgWS-TCF) is an ideal alternative material for THF. However, there are still many problems to be solved in the electrical and thermal stability of AgNWs-TCF. In this paper, an Al-doped ZnO (AZO) nanoparticles produced by magnetron sputtering was used to modify and coat the AgNWs network, and the ceramic /AgNWs@AZO-TCF was obtained. Compared with ceramic/AgNWs-TCF, the sheet resistance of ceramic/AgNWs@AZO-TCF decreased from 53.2 to 19.3 Ω/sq, resistance non-uniformity decreased from 18.0% to 7.0%, and the inoxidizability, current-impact resistance, and failure voltage increased significantly. In addition, the electrothermal efficiency of ceramic/AgNWs@AZO-TCF is significantly improved after sputtering a SiO2 layer on the surface of ceramic substrate. Compared with ceramic/AgNWs@AZO-TCF, the temperature of ceramic-SiO2/AgNWs@AZO-TCF increases from 78.7 to 113.2 °C under applied voltage of 6 V, which possess the application scenarios for electrothermal-ceramics teacup (or tableware) to realize the function of heat preservation and disinfection. Full article
(This article belongs to the Special Issue Advances in Nanostructured Thin Films and Coatings)
Show Figures

Figure 1

16 pages, 12783 KiB  
Article
Continuous Patterning of Silver Nanowire-Polyvinylpyrrolidone Composite Transparent Conductive Film by a Roll-to-Roll Selective Calendering Process
by Hakyung Jeong, Jae Hak Lee, Jun-Yeob Song, Faizan Ghani and Dongjin Lee
Nanomaterials 2023, 13(1), 32; https://doi.org/10.3390/nano13010032 - 21 Dec 2022
Cited by 6 | Viewed by 2841
Abstract
The roll-to-roll (R2R) continuous patterning of silver nanowire-polyvinylpyrrolidone (Ag NW-PVP) composite transparent conductive film (cTCF) is demonstrated in this work by means of slot-die coating followed by selective calendering. The Ag NWs were synthesized by the polyol method, and adequately washed to leave [...] Read more.
The roll-to-roll (R2R) continuous patterning of silver nanowire-polyvinylpyrrolidone (Ag NW-PVP) composite transparent conductive film (cTCF) is demonstrated in this work by means of slot-die coating followed by selective calendering. The Ag NWs were synthesized by the polyol method, and adequately washed to leave an appropriate amount of PVP to act as a capping agent and dispersant. The as-coated Ag NW-PVP composite film had low electronic conductivity due to the lack of percolation path, which was greatly improved by the calendering process. Moreover, the dispersion of Ag NWs was analyzed with addition of PVP in terms of density and molecular weight. The excellent dispersion led to uniform distribution of Ag NWs in a cTCF. The continuous patterning was conducted using an embossed pattern roll to perform selective calendering. To evaluate the capability of the calendering process, various line widths and spacing patterns were investigated. The minimum pattern dimensions achievable were determined to be a line width of 0.1 mm and a line spacing of 1 mm. Finally, continuous patterning using selective calendering was applied to the fabrication of a flexible heater and a resistive touch sensing panel as flexible electronic devices to demonstrate its versatility. Full article
(This article belongs to the Special Issue Nanomaterials for Printed Electronics and Bioelectronics)
Show Figures

Figure 1

12 pages, 3141 KiB  
Article
Comparative Study on Preparation Methods for Transparent Conductive Films Based on Silver Nanowires
by Jizhe Zhang, Xingzhong Zhu, Juan Xu, Ruixing Xu, Hao Yang and Caixia Kan
Molecules 2022, 27(24), 8907; https://doi.org/10.3390/molecules27248907 - 14 Dec 2022
Cited by 8 | Viewed by 2900
Abstract
Silver nanowires, which have high optoelectronic properties, have the potential to supersede indium tin oxide in the field of electrocatalysis, stretchable electronic, and solar cells. Herein, four mainstream experimental methods, including Mayer–rod coating, spin coating, spray coating, and vacuum filtration methods, are employed [...] Read more.
Silver nanowires, which have high optoelectronic properties, have the potential to supersede indium tin oxide in the field of electrocatalysis, stretchable electronic, and solar cells. Herein, four mainstream experimental methods, including Mayer–rod coating, spin coating, spray coating, and vacuum filtration methods, are employed to fabricate transparent conductive films based on the same silver nanowires to clarify the significance of preparation methods on the performance of the films. The surface morphology, conductive property, uniformity, and flexible stability of these four Ag NW-based films, are analyzed and compared to explore the advantages of these methods. The transparent conductive films produced by the vacuum filtration method have the most outstanding performance in terms of surface roughness and uniformity, benefitting from the stronger welding of NW-NW junctions after the press procedure. However, limited by the size of the membrane and the vacuum degree of the equipment, the small-size Ag films used in precious devices are appropriate to obtain through this method. Similarly, the spin coating method is suited to prepare Ag NWs films with small sizes, which shows excellent stability after the bending test. In comparison, much larger-size films could be obtained through Mayer-rod coating and spray coating methods. The pull-down speed and force among the Mayer-rod coating process, as well as the spray distance and traveling speed among the spray coating process, are essential to the uniformity of Ag NW films. After being treated with NaBH4 and polymethyl methacrylate (PMMA), the obtained Ag NW/PMMA films show great potential in the field of film defogging due to the Joule heating effect. Taken together, based on the advantages of each preparation method, the Ag NW-based films with desired size and performances are easier to prepare, meeting the requirements of different application fields. Full article
Show Figures

Figure 1

12 pages, 5710 KiB  
Article
The Low-Temperature Sol-Gel Synthesis of Metal-Oxide Films on Polymer Substrates and the Determination of Their Optical and Dielectric Properties
by Lyudmila Borilo, Vladimir Kozik, Alexander Vorozhtsov, Viktor Klimenko, Olga Khalipova, Alexander Agafonov, Tatiana Kusova, Anton Kraev and Yana Dubkova
Nanomaterials 2022, 12(23), 4333; https://doi.org/10.3390/nano12234333 - 6 Dec 2022
Viewed by 1909
Abstract
Photoactive, optically transparent heterostructures from silver nanowires and titanium dioxide were obtained by the sol-gel method on the surface of a polyethylene terephthalate film. The characteristics of optical transmission on the wavelength and those of dielectric permittivity, conductivity and dissipation on frequency in [...] Read more.
Photoactive, optically transparent heterostructures from silver nanowires and titanium dioxide were obtained by the sol-gel method on the surface of a polyethylene terephthalate film. The characteristics of optical transmission on the wavelength and those of dielectric permittivity, conductivity and dissipation on frequency in the range of 25–1,000,000 Hz were investigated. Full article
Show Figures

Figure 1

10 pages, 3247 KiB  
Article
Improvement of Electrical Properties of Silver Nanowires Transparent Conductive by Metal Oxide Nanoparticles Modification
by Wei Liu, Yuehui Hu, Yichuan Chen, Zhiqiang Hu, Ke Zhou, Zhijian Min, Huiwen Liu, Lilin Zhan and Yinjie Dai
Coatings 2022, 12(12), 1816; https://doi.org/10.3390/coatings12121816 - 24 Nov 2022
Cited by 8 | Viewed by 2301
Abstract
At present, silver nanowire transparent conductive films (AgNWs-TCFs) still have problems such as high resistance of AgNWs network nodes, uneven distribution of resistance and poor electrical performance stability, which restrict their commercial application. Different from chemical modification, in this paper, a method of [...] Read more.
At present, silver nanowire transparent conductive films (AgNWs-TCFs) still have problems such as high resistance of AgNWs network nodes, uneven distribution of resistance and poor electrical performance stability, which restrict their commercial application. Different from chemical modification, in this paper, a method of modifying AgNWs-TCFs with metal oxide nanoparticles (MONPs) is proposed, that is, ZnO, SnO2, Al2O3 and TiO2 etc., four transparent metal oxides are used as targets respectively in a magnetron sputtering process, modifying the silver nanowire network wire–wire junctions and silver nanowire in AgNWs-TCFs using active MONPs generated by magnetron sputtering. A series of AgNWs@MONPs for the AgNWs@ZnO-TCFs, AgNWs@SnO2-TCFs, AgNWs@Al2O3-TCFs and AgNWs@TiO2-TCFs were obtained. A significant decrease in the resistance of AgNWs-TCFs through the modification of MONPs was shown. Respectively, the reduction of resistance was 75.6%, 70.4%, 53.2% and 59.8% for AgNWs@ZnO-TCFs, AgNWs@SnO2-TCFs, AgNWs@Al2O3-TCFs and AgNWs@TiO2-TCFs. Correspondingly, its non-uniformity of resistance distribution was 12.5% (18.2% before), 10.0% (17.1% before), 10.1% (24.3% before) and 10.6% (13.4% before), respectively, which markedly improved the uniformity of electrical property. Respectively, their failure voltages reach 16, 16, 15 and 16 (V), so accordingly, the electrical stability is considerably enhanced. In addition, the uniformity of temperature distribution was also significantly optimized with its temperature non-uniformity of 10.4%, 8.7%, 10.3% and 9.6%, respectively. Contrast that with AgNWs@MONPs, and the failure voltages and temperature non-uniformity of AgNWs-TCFs are 12 V and 40.6%. Full article
(This article belongs to the Special Issue Optical Thin Films: Preparation, Application and Development)
Show Figures

Figure 1

Back to TopTop