Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (68)

Search Parameters:
Keywords = silicon carbide nanoparticles

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
31 pages, 5464 KiB  
Review
Alumina-Based Cutting Tools—A Review of Recent Progress
by Irena Žmak, Sonja Jozić, Lidija Ćurković and Tomislav Filetin
Materials 2025, 18(12), 2813; https://doi.org/10.3390/ma18122813 - 16 Jun 2025
Viewed by 689
Abstract
Choosing the appropriate cutting tool material is essential for enhancing machining processes because it directly affects product quality, surface finish, dimensional accuracy, tool longevity, and overall efficiency. Different materials are used for cutting tools, i.e., for cutting inserts. Due to their high hardness [...] Read more.
Choosing the appropriate cutting tool material is essential for enhancing machining processes because it directly affects product quality, surface finish, dimensional accuracy, tool longevity, and overall efficiency. Different materials are used for cutting tools, i.e., for cutting inserts. Due to their high hardness and high temperature resistance, ceramics cutting inserts allow for increased cutting speeds, resulting in shorter manufacturing times and reduced costs, despite being pricier than traditional cemented carbide and facing certain technical challenges due to their brittleness. Alumina-based ceramics dominate the market, accounting for about two-thirds of usage, followed by silicon nitride and zirconia. This paper provides a comprehensive overview of recent advances in alumina ceramic materials used as cutting inserts, focusing on research conducted in the last five years to optimize static and dynamic mechanical and thermal properties, wear resistance, density, etc. They ways in which the properties are altered through the incorporation of whiskers, nanoparticles, or nanotubes; the modification of the structure; the optimization of sintering parameters; and the application of advanced sintering techniques are demonstrated. The paper also addresses sustainability, environmental impact, and the management of critical raw materials associated with cutting inserts, which pertains to the future development of cutting insert materials. Full article
(This article belongs to the Special Issue Advanced Materials and Processing Technologies)
Show Figures

Figure 1

32 pages, 41844 KiB  
Article
Surface Resistivity Correlation to Nano-Defects in Laser Powder Bed Fused Molybdenum (Mo)-Silicon Carbide (SiC) Alloys
by Andrew Mason, Larry Burggraf, Ryan Kemnitz and Nate Ellsworth
J. Manuf. Mater. Process. 2025, 9(6), 174; https://doi.org/10.3390/jmmp9060174 - 26 May 2025
Viewed by 594
Abstract
The integration of Silicon Carbide (SiC) nanoparticles into Laser Powder Bed Fusion (LB-PBF) Molybdenum (Mo) printing represents a significant advancement in refractory metal additive manufacturing. Our investigation examined how varying SiC nanoparticle sizes affect the microstructural and electrical properties of LB-PBF-printed molybdenum components [...] Read more.
The integration of Silicon Carbide (SiC) nanoparticles into Laser Powder Bed Fusion (LB-PBF) Molybdenum (Mo) printing represents a significant advancement in refractory metal additive manufacturing. Our investigation examined how varying SiC nanoparticle sizes affect the microstructural and electrical properties of LB-PBF-printed molybdenum components while maintaining a 0.01 mass fraction of Mo. At an Linear Energy Densities (LED) of 1.8 J/mm, the addition of 80 nm SiC particles achieved a 46% reduction in porosity, while sheet resistance decreased by 6% at LED of 2.0 J/mm with 80 nm SiC particles. These performance improvements stem from several mechanisms: SiC particles serve as oxygen scavengers, facilitate secondary phase formation, and enhance laser absorption efficiency. Their dual role as sacrificial oxidizing agents and Mo disilicide phase promoters represents a novel approach to addressing microcracking and porosity in LB-PBF-printed Mo components. Through systematic investigation of particle size effects on both microscale and nanoscale properties, our findings suggest that optimized nanoparticle addition could become a universal strategy for enhancing LB-PBF processing of refractory metals, particularly in applications requiring enhanced mechanical and electrical performance. Full article
Show Figures

Figure 1

15 pages, 6282 KiB  
Article
Pulsed Laser Deposition Method Used to Grow SiC Nanostructure on Porous Silicon Substrate: Synthesis and Optical Investigation for UV-Vis Photodetector Fabrication
by Reem Alzubaidi, Makram A. Fakhri and László Pohl
Thermo 2025, 5(2), 13; https://doi.org/10.3390/thermo5020013 - 11 Apr 2025
Cited by 1 | Viewed by 1051
Abstract
In this study, a thin film of silicon carbide (SiC) was deposited on a porous silicon (P-Si) substrate using pulsed laser deposition (PLD). The photo–electrochemical etching method with an Nd: YAG laser at 1064 nm wavelength and 900 mJ pulse energy and at [...] Read more.
In this study, a thin film of silicon carbide (SiC) was deposited on a porous silicon (P-Si) substrate using pulsed laser deposition (PLD). The photo–electrochemical etching method with an Nd: YAG laser at 1064 nm wavelength and 900 mJ pulse energy and at a vacuum of 10−2 mbar P-Si was utilized to create a sufficiently high amount of surface area for SiC film deposition to achieve efficient SiC film growth on the P-Si substrate. X-ray diffraction (XRD) analysis was performed on the crystalline structure of SiC and showed high-intensity peaks at the (111) and (220) planes, indicating that the substrate–film interaction is substantial. Surface roughness particle topography was examined via atomic force microscopy (AFM), and a mean diameter equal to 72.83 nm was found. Field emission scanning electron microscopy (FESEM) was used to analyze surface morphology, and the pictures show spherical nanoparticles and a mud-sponge-like shape demonstrating significant nanoscale features. Photoluminescence and UV-Vis spectroscopy were utilized to investigate the optical properties, and two emission peaks were observed for the SiC and P-Si substrates, at 590 nm and 780 nm. The SiC/P-Si heterojunction photodetector exhibited rectification behavior in its dark I–V characteristics, indicating high junction quality. The spectral responsivity of the SiC/P-Si observed a peak responsivity of 0.0096 A/W at 365 nm with detectivity of 24.5 A/W Jones, and external quantum efficiency reached 340%. The response time indicates a rise time of 0.48 s and a fall time of 0.26 s. Repeatability was assured by the tight clustering of the data points, indicating the good reproducibility and stability of the SiC/P-Si deposition process. Linearity at low light levels verifies efficient photocarrier generation and separation, whereas a reverse saturation current at high intensities points to the maximum carrier generation capability of the device. Moreover, Raman spectroscopy and energy dispersive spectroscopy (EDS) analysis confirmed the structural quality and elemental composition of the SiC/P-Si film, further attesting to the uniformity and quality of the material produced. This hybrid material’s improved optoelectronic properties, achieved by combining the stability of SiC with the quantum confinement effects of P-Si, make it useful in advanced optoelectronic applications such as UV-Vis photodetectors. Full article
Show Figures

Figure 1

25 pages, 10312 KiB  
Article
Turning Trash into Treasure: Silicon Carbide Nanoparticles from Coal Gangue and High-Carbon Waste Materials
by Kaixing Gao, Yao Zhang, Binghan Wang, Zhuangzhuang Zhang, Sen Luo, Qian Wang, Yanzhong Zhen, Feng Fu and Yucang Liang
Molecules 2025, 30(7), 1562; https://doi.org/10.3390/molecules30071562 - 31 Mar 2025
Viewed by 552
Abstract
To reduce solid waste production and enable the synergistic conversion of solid waste into high-value-added products, we introduce a novel, sustainable, and ecofriendly method. We fabricate nanofiber and nanosheet silicon carbides (SiC) through a carbothermal reduction process. Here, the calcined coal gangue, converted [...] Read more.
To reduce solid waste production and enable the synergistic conversion of solid waste into high-value-added products, we introduce a novel, sustainable, and ecofriendly method. We fabricate nanofiber and nanosheet silicon carbides (SiC) through a carbothermal reduction process. Here, the calcined coal gangue, converted from coal gangue, serves as the silicon source. The carbon sources are the carbonized waste tire residue from waste tires and the pre-treated kerosene co-refining residue. The difference in carbon source results in the alteration of the morphology of the SiC obtained. By optimizing the reaction temperature, time, and mass ratio, the purity of the as-made SiC products with nanofiber-like and nanosheet-like shapes can reach 98%. Based on the influence of synthetic conditions and the results calculated from the change in the Gibbs free energy of the reactions, two mechanisms for SiC formation are proposed, namely the reaction of intermediate SiO with CO to form SiC-nuclei-driven nanofibrous SiC and the SiO-deposited carbon surface to fabricate nuclei-induced polymorphic SiC (dominant nanosheets). This work provides a constructive strategy for preparing nanostructured SiC, thereby achieving “turning trash into treasure” and broadening the sustainable utilization and development of solid wastes. Full article
Show Figures

Figure 1

15 pages, 13367 KiB  
Article
Effect of Alloying and Reinforcing Nanocomposites on the Mechanical, Tribological, and Wettability Properties of Pulse-Electrodeposited Ni Coatings
by Aashish John, Adil Saeed and Zulfiqar Ahmad Khan
Micromachines 2025, 16(2), 175; https://doi.org/10.3390/mi16020175 - 31 Jan 2025
Cited by 1 | Viewed by 1003
Abstract
Research into the introduction of alloying and reinforcing nanocomposites into nickel (Ni) coatings has been motivated by the need for tribologically superior coatings that will improve energy efficiency. Using pulse electrodeposition, this work investigates the effects of adding cobalt (Co) as the alloying [...] Read more.
Research into the introduction of alloying and reinforcing nanocomposites into nickel (Ni) coatings has been motivated by the need for tribologically superior coatings that will improve energy efficiency. Using pulse electrodeposition, this work investigates the effects of adding cobalt (Co) as the alloying nanoparticle and silicon carbide (SiC), zirconium oxide (ZrO2), and aluminium oxide (Al2O3) as reinforcing nanocomposites to Ni coatings. The surface properties, mechanical strength, nanotribological behaviour, and wettability of these coatings were analysed. Surface characteristics were evaluated by the use of a Scanning Electron Microscope, revealing a grain dimension reduction of approximately ~7–43% compared to pristine Ni coatings. When alloying and reinforcing nanocomposites were added to Ni coatings, nanoindentation research showed that there was an increase in nanohardness of ~12% to ~69%. This resulted in an improvement in the tribological performance from approximately 2% to 65%.The hydrophilic nature of Ni coatings was observed with wettability analysis. This study demonstrates that nanocomposite reinforcement can be used to customise Ni coatings for applications that require exceptional tribological performance. The results point to the use of Ni-Co coatings for electronics and aerospace sectors, with more improvements possible with the addition of reinforcing nanoparticles. Full article
(This article belongs to the Section D:Materials and Processing)
Show Figures

Figure 1

34 pages, 12218 KiB  
Review
Significance of the Powder Metallurgy Approach and Its Processing Parameters on the Mechanical Behavior of Magnesium-Based Materials
by Sachin Kumar Sharma, Sandra Gajević, Lokesh Kumar Sharma, Dhanesh G. Mohan, Yogesh Sharma, Mladen Radojković and Blaža Stojanović
Nanomaterials 2025, 15(2), 92; https://doi.org/10.3390/nano15020092 - 9 Jan 2025
Cited by 2 | Viewed by 2780
Abstract
Magnesium-based materials, which are known for their light weight and exceptional strength-to-weight ratio, hold immense promise in the biomedical, automotive, aerospace, and military sectors. However, their inherent limitations, including low wear resistance and poor mechanical properties, have driven the development of magnesium-based metal [...] Read more.
Magnesium-based materials, which are known for their light weight and exceptional strength-to-weight ratio, hold immense promise in the biomedical, automotive, aerospace, and military sectors. However, their inherent limitations, including low wear resistance and poor mechanical properties, have driven the development of magnesium-based metal matrix composites (Mg-MMCs). The pivotal role of powder metallurgy (PM) in fabricating Mg-MMCs was explored, enhancing their mechanical and corrosion resistance characteristics. The mechanical characteristics depend upon the fabrication methodology, composition, processing technique, and reinforcement added to the magnesium. PM is identified as the most efficient due to its ability to produce near-net shape composites with high precision, cost-effectiveness, and minimal waste. Furthermore, PM enables precise control over critical processing parameters, such as compaction pressure, sintering temperature, and particle size, which directly influence the composite’s microstructure and properties. This study highlights various reinforcements, mainly carbon nanotubes (CNTs), graphene nanoparticles (GNPs), silicon carbide (SiC), and hydroxyapatite (HAp), and their effects on improving wear, corrosion resistance, and mechanical strength. Among these, CNTs emerge as a standout reinforcement due to their ability to enhance multiple properties when used at optimal weight fractions. Further, this study delves into the interaction between reinforcement types and matrix materials, emphasizing the importance of uniform dispersion in preventing porosity and improving durability. Optimal PM conditions, such as a compaction pressure of 450 MPa, sintering temperatures between 550 and 600 °C, and sintering times of 2 h, are recommended for achieving superior mechanical performance. Emerging trends in reinforcement materials, including nanostructures and bioactive particles, are also discussed, underscoring their potential to widen the application spectrum of Mg-MMCs. Full article
(This article belongs to the Section Nanofabrication and Nanomanufacturing)
Show Figures

Figure 1

17 pages, 3242 KiB  
Article
A Multi-Phase Analytical Model for Effective Electrical Conductivity of Polymer Matrix Composites Containing Micro-SiC Whiskers and Nano-Carbon Black Hybrids
by Usama Umer, Mustufa Haider Abidi, Zeyad Almutairi and Mohamed K. Aboudaif
Polymers 2025, 17(2), 128; https://doi.org/10.3390/polym17020128 - 7 Jan 2025
Viewed by 1127
Abstract
Multifunctional polymer composites containing micro/nano hybrid reinforcements have attracted intensive attention in the field of materials science and engineering. This paper develops a multi-phase analytical model for investigating the effective electrical conductivity of micro-silicon carbide (SiC) whisker/nano-carbon black (CB) polymer composites. First, CB [...] Read more.
Multifunctional polymer composites containing micro/nano hybrid reinforcements have attracted intensive attention in the field of materials science and engineering. This paper develops a multi-phase analytical model for investigating the effective electrical conductivity of micro-silicon carbide (SiC) whisker/nano-carbon black (CB) polymer composites. First, CB nanoparticles are dispersed within the non-conducting epoxy to achieve a conductive CB-filled nanocomposite and its electrical conductivity is predicted. Some critical microstructures such as volume percentage and size of nanoparticles, and interphase characteristics surrounding the CB are micromechanically captured. Next, the electrical conductivity of randomly oriented SiC-containing composites in which the nanocomposite and whisker are considered as the matrix and reinforcement phases, respectively, is estimated. Influences of whisker aspect ratio and volume fraction on the effective electrical conductivity of the SiC/CB-containing polymer composites are explored. Some comparison studies are performed to validate the accuracy of the model. It is observed before the percolation threshold that the addition of nanoparticles with a uniform dispersion can improve the electrical conductivity of the polymer composites containing SiC/CB hybrids. Moreover, the results show that the electrical conductivity is more enhanced by the decrease in nanoparticle size. Interestingly, the composite percolation threshold is significantly reduced when SiC whiskers with a higher aspect ratio are added. This work will be favorable for the design of electro-conductive polymer composites with high performances. Full article
(This article belongs to the Special Issue Modeling of Polymer Composites and Nanocomposites)
Show Figures

Figure 1

21 pages, 19685 KiB  
Article
Production and Characterization of Hybrid Al6061 Nanocomposites
by Beatriz Monteiro and Sónia Simões
Metals 2024, 14(11), 1206; https://doi.org/10.3390/met14111206 - 23 Oct 2024
Viewed by 3206
Abstract
Aluminum-based hybrid nanocomposites, namely the Al6061 alloy, have gained prominence in the scientific community due to their unique properties, such as high strength, low density, and good corrosion resistance. The production of these nanocomposites involves incorporating reinforcing nanoparticles into the matrix to improve [...] Read more.
Aluminum-based hybrid nanocomposites, namely the Al6061 alloy, have gained prominence in the scientific community due to their unique properties, such as high strength, low density, and good corrosion resistance. The production of these nanocomposites involves incorporating reinforcing nanoparticles into the matrix to improve its mechanical and thermal properties. The Al6061 hybrid nanocomposites were manufactured by conventional powder metallurgy (cold pressing and sintering). Ceramic silicon carbide (SiC) nanoparticles and carbon nanotubes (CNTs) were used as reinforcements. The nanocomposites were produced using different reinforcement amounts (0.50, 0.75, 1.00, and 1.50 wt.%) and sintered from 540 to 620 °C for 120 min. The characterization of the Al6061 hybrid nanocomposites involved the analysis of their mechanical properties, such as hardness and tensile strength, as well as their micro- and nanometric structures. Techniques such as optical microscopy (OM) and scanning electron microscopy (SEM) with electron backscatter diffraction (EBSD) were used to study the distribution of nanoparticles, the grain size of the microstructure, and the presence of defects in the matrix. The microstructural evaluation revealed significant grain refinement and greater homogeneity in the hybrid nanocomposites reinforced with 0.75 wt.% of SiC and CNTs, resulting in better mechanical performance. Tensile tests showed that the Al6061/CNT/SiC hybrid composite had the highest tensile strength of 104 MPa, compared to 63 MPa for the unreinforced Al6061 matrix. The results showed that adding 0.75% SiC nanoparticles and CNTs can significantly improve the properties of Al6061 (65% in the tensile strength). However, some nanoparticle agglomeration remains one of the challenges in manufacturing these nanocomposites; therefore, the expected increase in mechanical properties is not observed. Full article
(This article belongs to the Special Issue Design and Development of Metal Matrix Composites)
Show Figures

Graphical abstract

16 pages, 4892 KiB  
Article
Fabrication of Silicon Carbide Nanoparticles Using Pulsed Laser Ablation in Liquid and Viscosity Optimization via Solvent Tuning
by Saeid Heidarinassab, Anesu Nyabadza, Inam Ul Ahad and Dermot Brabazon
Materials 2024, 17(18), 4527; https://doi.org/10.3390/ma17184527 - 14 Sep 2024
Cited by 2 | Viewed by 1518
Abstract
In this study, silicon carbide nanoparticles (NPs) were produced via pulsed laser ablation in liquid, aiming to investigate the influence of processing parameters on the properties of the resultant NPs and their applicability for inkjet printing. The results revealed an increase in NP [...] Read more.
In this study, silicon carbide nanoparticles (NPs) were produced via pulsed laser ablation in liquid, aiming to investigate the influence of processing parameters on the properties of the resultant NPs and their applicability for inkjet printing. The results revealed an increase in NP concentration with increasing laser power, but the maximal absorbance in the case of 0.743 and 1.505 W is lower than that for 1.282 W laser. Dynamic light scattering was employed to determine the size distribution of the NPs, demonstrating a range of 89 to 155 nm in diameter. Notably, an inverse relationship was established between increasing laser scanning speed and pulse repetition rate (PRR) and the mean size of the NPs. Higher PRR and laser power exhibited an augmentation in the concentration of NPs. Conversely, an increase in scanning speed resulted in a reduction in NP concentration. Based on FTIR, data formation of SiC NPs based on the target material is the most dominant behavior observed followed by an amount of oxidation of the NPs. Examination of the resulting NPs through field emission scanning electron microscopy equipped with energy-dispersive X-ray analysis (EDX) unveiled a predominantly spherical morphology, accompanied by particle agglomeration in some cases, and the elemental composition showed silicon, carbon, and some oxygen present in the resulting NPs. Furthermore, the modulation of colloidal solution viscosity was explored by incorporating glycerol, yielding a maximal viscosity of 10.95 mPa·s. Full article
(This article belongs to the Special Issue Recent Advances in Advanced Laser Processing Technologies)
Show Figures

Figure 1

18 pages, 28128 KiB  
Article
All Screen Printed and Flexible Silicon Carbide NTC Thermistors for Temperature Sensing Applications
by Arjun Wadhwa, Jaime Benavides-Guerrero, Mathieu Gratuze, Martin Bolduc and Sylvain G. Cloutier
Materials 2024, 17(11), 2489; https://doi.org/10.3390/ma17112489 - 22 May 2024
Cited by 4 | Viewed by 2850
Abstract
In this study, Silicon Carbide (SiC) nanoparticle-based serigraphic printing inks were formulated to fabricate highly sensitive and wide temperature range printed thermistors. Inter-digitated electrodes (IDEs) were screen printed onto Kapton® substrate using commercially avaiable silver ink. Thermistor inks with different weight ratios [...] Read more.
In this study, Silicon Carbide (SiC) nanoparticle-based serigraphic printing inks were formulated to fabricate highly sensitive and wide temperature range printed thermistors. Inter-digitated electrodes (IDEs) were screen printed onto Kapton® substrate using commercially avaiable silver ink. Thermistor inks with different weight ratios of SiC nanoparticles were printed atop the IDE structures to form fully printed thermistors. The thermistors were tested over a wide temperature range form 25 °C to 170 °C, exhibiting excellent repeatability and stability over 15 h of continuous operation. Optimal device performance was achieved with 30 wt.% SiC-polyimide ink. We report highly sensitive devices with a TCR of −0.556%/°C, a thermal coefficient of 502 K (β-index) and an activation energy of 0.08 eV. Further, the thermistor demonstrates an accuracy of ±1.35 °C, which is well within the range offered by commercially available high sensitivity thermistors. SiC thermistors exhibit a small 6.5% drift due to changes in relative humidity between 10 and 90%RH and a 4.2% drift in baseline resistance after 100 cycles of aggressive bend testing at a 40° angle. The use of commercially available low-cost materials, simplicity of design and fabrication techniques coupled with the chemical inertness of the Kapton® substrate and SiC nanoparticles paves the way to use all-printed SiC thermistors towards a wide range of applications where temperature monitoring is vital for optimal system performance. Full article
Show Figures

Figure 1

12 pages, 6957 KiB  
Article
Strength–Plasticity Relationship and Intragranular Nanophase Distribution of Hybrid (GNS + SiCnp)/Al Composites Based on Heat Treatment
by Jiajia Zhang, Mingfang Qian, Zhenggang Jia, Xuexi Zhang, Aibin Li, Guisong Wang and Lin Geng
Materials 2024, 17(10), 2460; https://doi.org/10.3390/ma17102460 - 20 May 2024
Cited by 1 | Viewed by 1313
Abstract
The distribution of reinforcements and interfacial bonding state with the metal matrix are crucial factors in achieving excellent comprehensive mechanical properties for aluminum (Al) matrix composites. Normally, after heat treatment, graphene nanosheets (GNSs)/Al composites experience a significant loss of strength. Here, better performance [...] Read more.
The distribution of reinforcements and interfacial bonding state with the metal matrix are crucial factors in achieving excellent comprehensive mechanical properties for aluminum (Al) matrix composites. Normally, after heat treatment, graphene nanosheets (GNSs)/Al composites experience a significant loss of strength. Here, better performance of GNS/Al was explored with a hybrid strategy by introducing 0.9 vol.% silicon carbide nanoparticles (SiCnp) into the composite. Pre-ball milling of Al powders and 0.9 vol.% SiCnp gained Al flakes that provided a large dispersion area for 3.0 vol.% GNS during the shift speed ball milling process, leading to uniformly dispersed GNS for both as-sintered and as-extruded (0.9 vol.% SiCnp + 3.0 vol.% GNS)/Al. High-temperature heat treatment at 600 °C for 60 min was performed on the as-extruded composite, giving rise to intragranular distribution of SiCnp due to recrystallization and grain growth of the Al matrix. Meanwhile, nanoscale Al4C3, which can act as an additional reinforcing nanoparticle, was generated because of an appropriate interfacial reaction between GNS and Al. The intragranular distribution of both nanoparticles improves the Al matrix continuity of composites and plays a key role in ensuring the plasticity of composites. As a result, the work hardening ability of the heat-treated hybrid (0.9 vol.% SiCnp + 3.0 vol.% GNS)/Al composite was well improved, and the tensile elongation increased by 42.7% with little loss of the strength. The present work provides a new strategy in achieving coordination on strength–plasticity of Al matrix composites. Full article
(This article belongs to the Special Issue Study on Advanced Metal Matrix Composites (2nd Edition))
Show Figures

Figure 1

13 pages, 3537 KiB  
Article
Influence of SiC and ZnO Doping on the Electrical Performance of Polylactic Acid-Based Triboelectric Nanogenerators
by Stefania Skorda, Achilleas Bardakas, George Vekinis and Christos Tsamis
Sensors 2024, 24(8), 2497; https://doi.org/10.3390/s24082497 - 13 Apr 2024
Cited by 3 | Viewed by 1800
Abstract
Polylactic acid (PLA) is one of the most widely used materials for fused deposition modeling (FDM) 3D printing. It is a biodegradable thermoplastic polyester, derived from natural resources such as corn starch or sugarcane, with low environmental impact and good mechanical properties. One [...] Read more.
Polylactic acid (PLA) is one of the most widely used materials for fused deposition modeling (FDM) 3D printing. It is a biodegradable thermoplastic polyester, derived from natural resources such as corn starch or sugarcane, with low environmental impact and good mechanical properties. One important feature of PLA is that its properties can be modulated by the inclusion of nanofillers. In this work, we investigate the influence of SiC and ZnO doping of PLA on the triboelectric performance of PLA-based tribogenerators. Our results show that the triboelectric signal in ZnO-doped PLA composites increases as the concentration of ZnO in PLA increases, with an enhancement in the output power of 741% when the ZnO concentration in PLA is 3 wt%. SiC-doped PLA behaves in a different manner. Initially the triboelectric signal increases, reaching a peak value with enhanced output power by 284% compared to undoped PLA, when the concentration of SiC in PLA is 1.5 wt%. As the concentration increases to 3 wt%, the triboelectric signal reduces significantly and is comparable to or less than that of the undoped PLA. Our results are consistent with recent data for PVDF doped with silicon carbide nanoparticles and are attributed to the reduction in the contact area between the triboelectric surfaces. Full article
(This article belongs to the Special Issue Advances in Nanosensors and Nanogenerators - 2nd Edition)
Show Figures

Figure 1

15 pages, 3809 KiB  
Article
Enhancement of Polyacrylic Acid/Silicon Carbide Nanocomposites’ Optical Properties for Potential Application in Renewable Energy
by Farhan Lafta Rashid, Ahmed Hashim, Anmar Dulaimi, Aseel Hadi, Hamed Ibrahim, Mudhar A. Al-Obaidi and Arman Ameen
J. Compos. Sci. 2024, 8(4), 123; https://doi.org/10.3390/jcs8040123 - 28 Mar 2024
Cited by 7 | Viewed by 1747
Abstract
Composites made from polymers and nanoparticles have promise to be effective solar collectors and thermal energy storage devices due to benefits including improved thermal characteristics and increased structural stability. This study intends to fabricate polyacrylic acid/silicon carbide (PAA−SiC) nanocomposites and examine the optical [...] Read more.
Composites made from polymers and nanoparticles have promise to be effective solar collectors and thermal energy storage devices due to benefits including improved thermal characteristics and increased structural stability. This study intends to fabricate polyacrylic acid/silicon carbide (PAA−SiC) nanocomposites and examine the optical properties for use in solar collectors and thermal energy storage (TES) fields. The optical properties of PAA−SiC nanocomposites are investigated within the wavelength between 340 and 840 nm. The findings indicate that an increase in SiC concentration in the PAA aqueous solution to 50 g/L at a wavelength of λ = 400 nm causes an increase in the absorption by 50.2% besides a reduction in transmission by 6%. Furthermore, the energy band gaps were reduced from 3.25 eV to 2.95 eV to allow for the transition, and subsequently reduced from 3.15 eV to 2.9 eV to allow for forbidden transition as a result of the increasing SiC concentration from 12.5 g/L to 50 g/L. The optical factors of energy absorption and optical conductivity were also enhanced with a rising SiC concentration from 12.5 to 50 g/L. Specifically, an improvement of 61% in the melting time of PAA−SiC−H2O nanofluids is concluded. Accordingly, it can be said that the PAA−SiC−H2O nanofluids are suitable for renewable energy and TES systems. Full article
Show Figures

Figure 1

17 pages, 10706 KiB  
Article
Wear Behavior of Epoxy Resin Reinforced with Ceramic Nano- and Microparticles
by Juana Abenojar, Yolanda Ballesteros, Mohsen Bahrami, Miguel Angel Martínez and Juan Carlos del Real
Polymers 2024, 16(7), 878; https://doi.org/10.3390/polym16070878 - 22 Mar 2024
Cited by 7 | Viewed by 2172
Abstract
Cavitation erosion poses a significant challenge in fluid systems like hydraulic turbines and ship propellers due to pulsed pressure from collapsing vapor bubbles. To combat this, various materials and surface engineering methods are employed. In this study, nano and micro scale particles of [...] Read more.
Cavitation erosion poses a significant challenge in fluid systems like hydraulic turbines and ship propellers due to pulsed pressure from collapsing vapor bubbles. To combat this, various materials and surface engineering methods are employed. In this study, nano and micro scale particles of silicon carbide (SiC) or boron carbide (B4C) were incorporated as reinforcement at 6% and 12% ratios, owing to their exceptional resistance to abrasive wear and high hardness. Microparticles were incorporated to assess the damage incurred during the tests in comparison to nanoparticles. Wear tests were conducted on both bulk samples and coated aluminum sheets with a 1mm of composite. Additionally, cavitation tests were performed on coated aluminum tips until stability of mass loss was achieved. The results indicated a distinct wear behavior between the coatings and the bulk samples. Overall, wear tended to be higher for the coated samples with nanocomposites than bulk, except for the nano-composite material containing 12% SiC and pure resin. With the coatings, higher percentages of nanometric particles correlated with increased wear. The coefficient of friction remained within the range of 0.4 to 0.5 for the coatings. Regarding the accumulated erosion in the cavitation tests for 100 min, it was observed that for all nanocomposite materials, it was lower than in pure resin. Particularly, the composite with 6% B4C was slightly lower than the rest. In addition, the erosion rate was also lower for the composites. Full article
(This article belongs to the Special Issue Modification and Study on the Properties of Epoxy Resin)
Show Figures

Figure 1

18 pages, 9327 KiB  
Article
Temperature Analysis in Cubic Boron Nitrate Cutting Tool during Minimum Quantity Lubrication Turning with a Coconut-Oil-Based Nano-Cutting Fluid Using Computational Fluid Dynamics
by Subhash Khetre, Arunkumar Bongale, Satish Kumar and B. T. Ramesh
Coatings 2024, 14(3), 340; https://doi.org/10.3390/coatings14030340 - 13 Mar 2024
Cited by 5 | Viewed by 1863
Abstract
The minimum quantity lubrication (MQL) approach is used for improving tool life at a low cost, and it is environmentally friendly. When compared to traditional flood cooling technology, the flow rate in MQL is thought to be 10,000 times lower. The workpiece’s surface [...] Read more.
The minimum quantity lubrication (MQL) approach is used for improving tool life at a low cost, and it is environmentally friendly. When compared to traditional flood cooling technology, the flow rate in MQL is thought to be 10,000 times lower. The workpiece’s surface smoothness is enhanced by continuous chip formation during turning, but because the tool is always in touch with the chip, a crater wear zone is formed on the rake face due to high friction and thermal stress. While adding nanoparticles to MQL enhances cutting performance, a high concentration of these nanoparticles causes burr adhesion and decreased chip evacuation capability due to the agglomeration of nanoparticles, which affects the surface finish of the workpiece. A novel “coconut-oil-based SiC–MWCNT nano-cutting fluid for a CBN insert cutting tool” is proposed in this approach to overcome these issues. Silicon carbide (SiC) and multi-walled carbon nanotubes (MWCNTs) are added to coconut oil with an appropriate volume fraction for better lubrication. The thermal properties of the proposed nano-cutting fluid are compared with those of some existing nano MQL cutting fluids, and it was found that the MQL cutting fluid under consideration exhibits an elevated thermal conductivity and convective heat transfer coefficient that efficiently reduce tool temperature and improve tool life. The comparative study between the Finite Element Simulation using computational fluid dynamics (CFD) predicted variation in tool temperature and the corresponding experimental values revealed a remarkable alignment with a marginal error ranging from 1.27% to 3.44%. Full article
Show Figures

Figure 1

Back to TopTop