Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (122)

Search Parameters:
Keywords = silica hybrid particles

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 931 KiB  
Article
Ultrasensitive and Multiplexed Target Detection Strategy Based on Photocleavable Mass Tags and Mass Signal Amplification
by Seokhwan Ji, Jin-Gyu Na and Woon-Seok Yeo
Nanomaterials 2025, 15(15), 1170; https://doi.org/10.3390/nano15151170 - 29 Jul 2025
Viewed by 250
Abstract
Co-infections pose significant challenges not only clinically, but also in terms of simultaneous diagnoses. The development of sensitive, multiplexed analytical platforms is critical for accurately detecting viral co-infections, particularly in complex biological environments. In this study, we present a mass spectrometry (MS)-based detection [...] Read more.
Co-infections pose significant challenges not only clinically, but also in terms of simultaneous diagnoses. The development of sensitive, multiplexed analytical platforms is critical for accurately detecting viral co-infections, particularly in complex biological environments. In this study, we present a mass spectrometry (MS)-based detection strategy employing a target-triggered hybridization chain reaction (HCR) to amplify signals and in situ photocleavable mass tags (PMTs) for the simultaneous detection of multiple targets. Hairpin DNAs modified with PMTs and immobilized loop structures on magnetic particles (Loop@MPs) were engineered for each target, and their hybridization and amplification efficiency was validated using native polyacrylamide gel electrophoresis (PAGE) and laser desorption/ionization MS (LDI-MS), with silica@gold core–shell hybrid (SiAu) nanoparticles being employed as an internal standard to ensure quantitative reliability. The system exhibited excellent sensitivity, with a detection limit of 415.12 amol for the hepatitis B virus (HBV) target and a dynamic range spanning from 1 fmol to 100 pmol. Quantitative analysis in fetal bovine serum confirmed high accuracy and precision, even under low-abundance conditions. Moreover, the system successfully and simultaneously detected multiple targets, i.e., HBV, human immunodeficiency virus (HIV), and hepatitis C virus (HCV), mixed in various ratios, demonstrating clear PMT signals for each. These findings establish our approach as a robust and reliable platform for ultrasensitive multiplexed detection, with strong potential for clinical and biomedical research. Full article
(This article belongs to the Special Issue Synthesis and Application of Optical Nanomaterials: 2nd Edition)
Show Figures

Figure 1

17 pages, 7274 KiB  
Article
Sol–Gel-Derived Silica/Alumina Particles for Enhancing the Mechanical Properties of Acrylate Composite Materials
by Khaled Altwair, Vladisav Tadić, Miloš Petrović, Andrija Savić, Vesna Radojević, Radmila Jančić Heinemann and Marija M. Vuksanović
Gels 2025, 11(8), 575; https://doi.org/10.3390/gels11080575 - 24 Jul 2025
Viewed by 281
Abstract
Silica/alumina composite particles were synthesized via the sol–gel method to promote fine dispersion and homogenous mixing. Aluminum chloride hydroxide served as the alumina precursor, while amorphous silica, obtained from rice husk, was directly incorporated into the alumina sol. Following synthesis, the material was [...] Read more.
Silica/alumina composite particles were synthesized via the sol–gel method to promote fine dispersion and homogenous mixing. Aluminum chloride hydroxide served as the alumina precursor, while amorphous silica, obtained from rice husk, was directly incorporated into the alumina sol. Following synthesis, the material was calcined at 1000 °C, yielding an α-cristobalite form of silica and corundum-phase alumina. These hybrid particles were introduced into polymer composites at reinforcement levels of 1 wt.%, 3 wt.%, and 5 wt.%. Mechanical behavior was evaluated through three-point bending tests, Shore D hardness measurements, and controlled-energy impact testing. Among the formulations, the 3 wt.% composite exhibited optimal performance, displaying the highest flexural modulus and strength, along with enhanced impact resistance. Hardness increased with rising particle content. Fractographic analysis revealed that the 3 wt.% loading produced a notably rougher fracture surface, correlating with improved energy absorption. In contrast, the 5 wt.% composite, although harder than the matrix and other composites, exhibited diminished toughness due to particle agglomeration. Full article
(This article belongs to the Special Issue Advances in Composite Gels (3rd Edition))
Show Figures

Figure 1

23 pages, 4707 KiB  
Article
Fabrication of Novel Hybrid Al-SiC-ZrO2 Composites via Powder Metallurgy Route and Intelligent Modeling for Their Microhardness
by Pallab Sarmah, Shailendra Pawanr and Kapil Gupta
Ceramics 2025, 8(3), 91; https://doi.org/10.3390/ceramics8030091 - 19 Jul 2025
Viewed by 282
Abstract
In this work, the development of Al-based metal matrix composites (MMCs) is achieved using hybrid SiC and ZrO2 reinforcement particles for automotive applications. Powder metallurgy (PM) is employed with various combinations of important process parameters for the fabrication of MMCs. MMCs were [...] Read more.
In this work, the development of Al-based metal matrix composites (MMCs) is achieved using hybrid SiC and ZrO2 reinforcement particles for automotive applications. Powder metallurgy (PM) is employed with various combinations of important process parameters for the fabrication of MMCs. MMCs were characterized using scanning electron microscopy (SEM), X-ray diffractometry (XRD), and a microhardness study. All XRD graphs adequately exhibit Al, SiC, and ZrO2 peaks, indicating that the hybrid MMC products were satisfactorily fabricated with appropriate mixing and sintering at all the considered fabrication conditions. Also, no impurity peaks were observed, confirming high composite purity. MMC products in all the XRD patterns, suitable for the desired applications. According to the SEM investigation, SiC and ZrO2 reinforcement components are uniformly scattered throughout Al matrix in all produced MMC products. The occurrence of Al, Si, C, Zr, and O in EDS spectra demonstrates the effectiveness of composite ball milling and sintering under all manufacturing conditions. Moreover, an increase in interfacial bonding of fabricated composites at a higher sintering temperature indicated improved physical properties of the developed MMCs. The highest microhardness value is 86.6 HVN amid all the fabricated composites at 7% silica, 14% zirconium dioxide, 500° sintering temperature, 90 min sintering time, and 60 min milling time. An integrated Particle Swarm Optimization–Support Vector Machine (PSO-SVM) model was developed to predict microhardness based on the input parameters. The model demonstrated strong predictive performance, as evidenced by low values of various statistical metrics for both training and testing datasets, highlighting the PSO-SVM model’s robustness and generalization capability. Specifically, the model achieved a coefficient of determination of 0.995 and a root mean square error of 0.920 on the training set, while on the testing set, it attained a coefficient of determination of 0.982 and a root mean square error of 1.557. These results underscore the potential of the PSO-SVM framework, which can be effectively leveraged to optimize process parameters for achieving targeted microhardness levels for the developed Al-SiC-ZrO2 Composites. Full article
Show Figures

Figure 1

27 pages, 40365 KiB  
Article
Formation of Hybrid Spherical Silica Particles Using a Novel Alkoxy-Functional Polysilsesquioxane Macromonomer as a Precursor in an Acid-Catalyzed Sol-Gel Process
by Anna Kowalewska, Kamila Majewska-Smolarek, Agata S. Herc, Sławomir Kaźmierski and Joanna Bojda
Materials 2025, 18(14), 3357; https://doi.org/10.3390/ma18143357 - 17 Jul 2025
Viewed by 363
Abstract
The interest in macromolecular alkoxysilyl-functionalized hybrids (self-assembling or nanostructured), which could be used as precursors in biomimetic silica precipitation and for the synthesis of hollow spherical silica particles, is growing. Nevertheless, reports on all-organosilicon systems for bioinspired silica precipitation are scarce. Therefore, a [...] Read more.
The interest in macromolecular alkoxysilyl-functionalized hybrids (self-assembling or nanostructured), which could be used as precursors in biomimetic silica precipitation and for the synthesis of hollow spherical silica particles, is growing. Nevertheless, reports on all-organosilicon systems for bioinspired silica precipitation are scarce. Therefore, a new kind of polyalkoxysilane macromonomer–linear polysilsesquioxane (LPSQ) of ladder-like backbone, functionalized in side chains with trimethoxysilyl groups (LPSQ-R-Si(OMe)3), was designed following this approach. It was obtained by photoinitiated thiol-ene addition of 3-mercaptopropyltrimethoxysilane to the vinyl-functionalized polysilsesquioxane precursor, carried out in situ in tetraethoxysilane (TEOS). The mixture of LPSQ-R-Si(OMe)3 and TEOS (co-monomers) was used in a sol–gel process conducted under acidic conditions (0.5 M HCl/NaCl) in the presence of Pluronic® F-127 triblock copolymer as a template. LPSQ-R-Si(OMe)3 played a key role for the formation of microparticles of a spherical shape that were formed under the applied conditions, while their size (as low as 3–4 µm) was controlled by the stirring rate. The hybrid materials were hydrophobic and showed good thermal and oxidative stability. Introduction of zinc acetate (Zn(OAc)2) as an additive in the sol–gel process influenced the pH of the reaction medium, which resulted in structural reinforcement of the hybrid microparticles owing to more effective condensation of silanol groups and a relative increase of the content of SiO2. The proposed method shows directions in designing the properties of hybrid materials and can be translated to other silicon–organic polymers and oligomers that could be used to produce hollow silica particles. The established role of various factors (macromonomer structure, pH, and stirring rate) allows for the modulation of particle morphology. Full article
Show Figures

Graphical abstract

26 pages, 26551 KiB  
Article
Antimicrobial Coatings Based on Hybrid Iron Oxide Nanoparticles
by Doina-Antonia Mercan, Dana-Ionela Tudorache (Trifa), Adelina-Gabriela Niculescu, Laurenţiu Mogoantă, George Dan Mogoşanu, Alexandra Cătălina Bîrcă, Bogdan Ștefan Vasile, Ariana Hudiță, Ionela Cristina Voinea, Miruna S. Stan, Tony Hadibarata, Dan Eduard Mihaiescu, Alexandru Mihai Grumezescu and Adina Alberts
Nanomaterials 2025, 15(9), 637; https://doi.org/10.3390/nano15090637 - 22 Apr 2025
Cited by 4 | Viewed by 939
Abstract
This study presents the preparation of hybrid iron oxide nanocomposites through a two-step process combining microfluidic-assisted synthesis and post-synthetic surface modification. Fe3O4 nanoparticles were synthesized and simultaneously functionalized with salicylic acid using a three-dimensional vortex-type microfluidic chip, enabling rapid and [...] Read more.
This study presents the preparation of hybrid iron oxide nanocomposites through a two-step process combining microfluidic-assisted synthesis and post-synthetic surface modification. Fe3O4 nanoparticles were synthesized and simultaneously functionalized with salicylic acid using a three-dimensional vortex-type microfluidic chip, enabling rapid and uniform particle formation. The resulting Fe3O4/SA nanostructures were further modified with either silver or copper oxide to form iron oxide nanocomposites with enhanced antimicrobial functionality. These nanocomposites were subsequently integrated into silica aerogel matrices using a dip-coating approach to improve surface dispersion, structural stability, and biocompatibility. The structural and morphological properties of the samples were investigated using XRD, FT-IR, TEM with SAED analysis, and Raman microscopy. In vitro cytotoxicity and antimicrobial assays demonstrated that Fe3O4/SA–Ag and Fe3O4/SA–CuO exhibit potent antibacterial activity and cell type-dependent biocompatibility. In vivo biodistribution studies showed no accumulation in major organs and selective clearance via the spleen, validating the systemic safety of the platform. These findings highlight the potential of the synthesized nanocomposites as biocompatible, antimicrobial coatings for advanced biomedical surfaces. Full article
(This article belongs to the Section Synthesis, Interfaces and Nanostructures)
Show Figures

Figure 1

14 pages, 3370 KiB  
Article
Effect of UV Radiation Exposure and Simulated Particle Erosion Damage on the Mechanical Behavior of Carbon/Glass Hybrid Composites
by Marcello de Vasconcelos Porto Hermanny Tostes and José Roberto Moraes d’Almeida
Polymers 2025, 17(7), 861; https://doi.org/10.3390/polym17070861 - 24 Mar 2025
Viewed by 475
Abstract
The environments found in space research pose numerous challenges to the materials used in aerospace structures, such as high incidence of ultraviolet radiation (UV) and micrometeorite impacts. Therefore, this work analyzes the combined effects of exposure to UV radiation and damage caused by [...] Read more.
The environments found in space research pose numerous challenges to the materials used in aerospace structures, such as high incidence of ultraviolet radiation (UV) and micrometeorite impacts. Therefore, this work analyzes the combined effects of exposure to UV radiation and damage caused by sandblasting on the mechanical performance of a hybrid composite of epoxy matrix reinforced with carbon and glass fibers to simulate service conditions both in low Earth orbit (LEO) and in exoplanet environments. The blasting was carried out with silica particles with dimensions compatible with those found in the dust of the Martian atmosphere, and the damage produced by these particles has dimensions similar to those observed in several impact/wear events of structures exposed to LEO conditions. A qualitative analysis of the effect of UV radiation carried out by colorimetry showed a significant change in the color of the material, which became more greenish and yellowish. This color change is indicative of degradation processes in the polymer matrix. FT-IR analysis showed an increase in the carbonyl band with increasing aging time, which is consistent with the color change measured in the material. However, the interlaminar shear strength was not affected by UV radiation in the time used in this work. This behavior was attributed to the fact that UV radiation initially causes deterioration only on the surface of the material. From the results of the bending tests, both the three-point bending test and impulse excitation test, it was found that the effect of UV radiation on the elastic modulus of the composites was more important than the effect of blasting damage. It was also observed that initial UV exposure, prior to sandblasting, has a synergistic effect on the deterioration of flexural strength. Full article
(This article belongs to the Special Issue Mechanical Behavior of Polymer Composites)
Show Figures

Figure 1

23 pages, 8456 KiB  
Article
Dual pH- and Temperature-Responsive Performance and Cytotoxicity of N-Isopropylacrylamide and Acrylic Acid Functionalized Bimodal Mesoporous Silicas with Core–Shell Structure and Fluorescent Feature for Hela Cell
by Huijie Ge, Xiaoli Wang, Shiyang Bai, Yuhua Bi, Fei Liu, Jihong Sun, Wenliang Fu and Donggang Xu
Pharmaceutics 2025, 17(2), 206; https://doi.org/10.3390/pharmaceutics17020206 - 6 Feb 2025
Viewed by 878
Abstract
Background: Polymer-coated mesoporous silica nanoparticles have attracted immense research interest in stimuli-responsive drug delivery systems due to their drug-releasing ability on demand at specific sites in response to external or internal signals. However, the relationships between the coated-copolymer encapsulation and drug delivery performance [...] Read more.
Background: Polymer-coated mesoporous silica nanoparticles have attracted immense research interest in stimuli-responsive drug delivery systems due to their drug-releasing ability on demand at specific sites in response to external or internal signals. However, the relationships between the coated-copolymer encapsulation and drug delivery performance in the hybrid nanocomposites was rarely reported. Therefore, the main objectives of the present work are to explore the cell uptake, cellular internalization, cytotoxicity, and hemolysis performance of the fluorescent hybrid materials with different polymer-encapsulated amounts. Methods: Using (2-(2-aminoethyl)-6-(dimethylamino)-1H-benzo[de]isoquinoline-1,3(2H)-dione)-doped poly[(N-isopropylacrylamide)-co-(acrylic acid)] (PAN) as a shell and bimodal mesoporous silicas (BMMs) as a core, the dual pH- and temperature-responsive mesoporous PAN@M-BMMs with the fluorescent performances were synthesized via a radical polymerization approach. The effects of the PAN-coated thicknesses on their physicochemical properties and structural features were demonstrated via XRD and SAXS patterns, SEM and TEM images, FT-IR spectra, and TG analysis. Their mass fractal (Dm) evolutions were elucidated on the basis of the SAXS patterns and fluorescence spectra. Results: The Dm values increased from 2.74 to 2.87 with an increase of the PAN-coated amount from 17 to 26.5% along with the particle size from 76.1 to 85.6 nm and blue-shifting of their fluorescent emission wavelength from 470 to 444 nm. Meanwhile, the PAN@M-BMMs exhibited a high ibuprofen (IBU) loading capacity (13.8%) and strong dual pH-/temperature-responsive drug-releasing performances (83.1%) at pH 7.4 and 25 °C, as comparison with that (17.9%) at pH 2.0 and 37 °C. The simulated results confirmed that the adsorption energy decreased from −67.18 kJ/mol for pure BMMs to −116.76 kJ/mol for PAN@M-BMMs, indicating the PAN-grafting on the surfaces of the BMMs core was beneficial to improve its IBU-adsorption capacity. Its uptake in the HeLa cell line was performed via microplate readers, confocal microscopy, flow cytometry, and ICP measurement, showing a low cytotoxicity at a concentration up to 100 µg/mL. Specially, P0.2AN@M-BMMs had a superior cellular uptake and fluorescence properties via the time-dependent uptake experiments, and exhibited the highest silicon content via the cellular internalization analysis, as compared to other carriers. Hemolysis tests confirmed the hemolysis rates below 5%. Conclusions: These demonstrations verified that PAN@M-BMMs should be a promising biomedical application prospect. Full article
(This article belongs to the Section Drug Delivery and Controlled Release)
Show Figures

Graphical abstract

14 pages, 3380 KiB  
Article
Optical Properties and Antimicrobial Activity of Si/PVP Hybrid Material Combined with Antibiotics
by Lilia Yordanova, Yoanna Kostova, Elitsa Pavlova, Albena Bachvarova-Nedelcheva, Iliana Ivanova and Elena Nenova
Molecules 2024, 29(22), 5322; https://doi.org/10.3390/molecules29225322 - 12 Nov 2024
Viewed by 1306
Abstract
Silica–poly (vinylpyrrolidone) hybrid material was prepared using the sol–gel method. Tetramethyl ortosilane (TMOS) was used as a silica precursor. XRD analysis established that the as-prepared material is amorphous. The morphological structure of the final product was determined by the incorporated PVP. The UV–Vis [...] Read more.
Silica–poly (vinylpyrrolidone) hybrid material was prepared using the sol–gel method. Tetramethyl ortosilane (TMOS) was used as a silica precursor. XRD analysis established that the as-prepared material is amorphous. The morphological structure of the final product was determined by the incorporated PVP. The UV–Vis analysis showed that the obtained hybrid exhibited absorption in the ultraviolet range. The antimicrobial activity of the SiO2/15PVP hybrid material was tested on Staphylococcus epidermidis ATCC 14990, Salmonella typhimurium ATCC BAA-2162, Candida albicans, and Saccharomyces cerevisiae in combination with the following antibiotics: Vancomycin for Gram-positive bacteria, Ciprofloxacin for Gram-negative bacteria, and Nystatin for yeast. The results confirmed a concentration-dependent synergistic effect of the antibiotic in combination with the TM15/PVP hybrid particles, especially at their highest concentration of 100 mg/mL on Gram-positive bacteria and for the Gram-negative Salmonella. On Candida albicans ATCC 18804 and Saccharomyces cerevisiae CCY 21-6-3, the effect was synergistic again, and a fungicidal effect was observed at 6.25 and 1.50 mg/mL for the antibiotic concentration and concentrations of hybrid material at 100 mg/mL. The toxicity on Daphnia magna was also tested. The registered prooxidant activity of SiO2/15PVP shows possible applications at very low concentrations. The obtained results demonstrate the possibility of clinical implementations of the newly synthesized hybrid material. Full article
Show Figures

Figure 1

18 pages, 3362 KiB  
Article
Making Mobile Nanotechnology Accessible: Is the Explicit Preparation of Janus Nanoparticle Necessary to Achieve Mobility?
by Vagisha Nidhi, Arthur Allaire, Zakariya Ait Athmane, Patrick Guenoun, Fabienne Testard, Jean-Philippe Renault and Florent Malloggi
Nanomaterials 2024, 14(22), 1796; https://doi.org/10.3390/nano14221796 - 8 Nov 2024
Viewed by 1446
Abstract
This study compares the mobility behaviour, in a H2O2 environment, of three different geometries of hybrid particle made of silica core functionalized by gold (nanoparticles or layer). It is known that the decomposition of H2O2 on gold [...] Read more.
This study compares the mobility behaviour, in a H2O2 environment, of three different geometries of hybrid particle made of silica core functionalized by gold (nanoparticles or layer). It is known that the decomposition of H2O2 on gold surfaces drives mobility; however, the link between mobility orientation and the organization of gold on silica surfaces is still questionable. While conventional wisdom posits that asymmetric designs are crucial for generating phoretic forces or localized bubble propulsion, recent research suggests that symmetrical particles may also exhibit motility. To address this debate, we developed a robust workflow for synthesizing gold grafted silica nanoparticles with precise control over size and shape, enabling the direct comparison of their motile behaviour by dynamic light scattering and particle tracking velocimetry. Our results indicate, first, that a combination of techniques is necessary to overcome their intrinsic limitation and, second, that the inherent asymmetry generated by isotropic gold nanoparticle deposition onto silica surfaces may enable particle motility. Full article
(This article belongs to the Special Issue Morphological Design and Synthesis of Nanoparticles (Second Edition))
Show Figures

Figure 1

21 pages, 9904 KiB  
Article
Machine Learning Driven Fluidity and Rheological Properties Prediction of Fresh Cement-Based Materials
by Yi Liu, Zeyad M. A. Mohammed, Jialu Ma, Rui Xia, Dongdong Fan, Jie Tang and Qiang Yuan
Materials 2024, 17(22), 5400; https://doi.org/10.3390/ma17225400 - 5 Nov 2024
Cited by 3 | Viewed by 1795
Abstract
Controlling workability during the design stage of cement-based material mix ratios is a highly time-consuming and labor-intensive task. Applying artificial intelligence (AI) methods to predict and optimize the workability of cement-based materials can significantly enhance the efficiency of mix design. In this study, [...] Read more.
Controlling workability during the design stage of cement-based material mix ratios is a highly time-consuming and labor-intensive task. Applying artificial intelligence (AI) methods to predict and optimize the workability of cement-based materials can significantly enhance the efficiency of mix design. In this study, experimental testing was conducted to create a dataset of 233 samples, including fluidity, dynamic yield stress, and plastic viscosity of cement-based materials. The proportions of cement, fly ash (FA), silica fume (SF), water, superplasticizer (SP), hydroxypropyl methylcellulose (HPMC), and sand were selected as inputs. Machine learning (ML) methods were employed to establish predictive models for these three early workability indicators. To improve prediction capability, optimized hybrid models, such as Particle Swarm Optimization (PSO)-based CatBoost and XGBoost, were adopted. Furthermore, the influence of individual input variables on each workability indicator of the cement-based material was examined using Shapley Additive Explanations (SHAP) and Partial Dependence Plot (PDP) analyses. This study provides a novel reference for achieving rapid and accurate control of cement-based material workability. Full article
Show Figures

Figure 1

15 pages, 4385 KiB  
Article
Hybrid Carbon Black/Silica Reinforcing System for High-Performance Green Tread Rubber
by Muhua Zou, Wenke Gao, Zengcai Li, Binghua Liu, Bingxiang Li, Kai Liu and Jinhui Liu
Polymers 2024, 16(19), 2762; https://doi.org/10.3390/polym16192762 - 30 Sep 2024
Cited by 4 | Viewed by 1823
Abstract
Silica, as a high-quality reinforcing filler, can satisfy the requirements of high-performance green tread rubber with high wet-skid resistance, low rolling resistance, and low heat generation. However, the silica surface contains abundant silicon hydroxyl groups, resulting in a severe aggregation of silica particles [...] Read more.
Silica, as a high-quality reinforcing filler, can satisfy the requirements of high-performance green tread rubber with high wet-skid resistance, low rolling resistance, and low heat generation. However, the silica surface contains abundant silicon hydroxyl groups, resulting in a severe aggregation of silica particles in non-polar rubber matrix. Herein, we explored a carbon black (CB)/silica hybrid reinforcing strategy to prepare epoxidized natural rubber (ENR)-based vulcanizates. Benefiting from the reaction and interaction between the epoxy groups on ENR chains and the silicon hydroxyl groups on silica surfaces, the dispersion uniformity of silica in the ENR matrix was significantly enhanced. Meanwhile, the silica can facilitate the dispersity and reinforcing effect of CB particles in the ENR matrix. By optimizing the CB/silica blending ratios, we realized high-performance ENR vulcanizates with simultaneously improved mechanical strength, wear resistance, resilience, anti-aging, and damping properties, as well as reduced heat generation and rolling resistance. For example, compared with ENR vulcanizates with only CB fillers, those with CB/silica hybrid fillers showed ~10% increase in tensile strength, ~20% increase in elongation at break, and ~20% increase in tensile retention rate. These results indicated that the ENR compounds reinforced with CB/silica hybrid fillers are a promising candidate for high-performance green tread rubber materials. Full article
(This article belongs to the Section Circular and Green Sustainable Polymer Science)
Show Figures

Figure 1

19 pages, 9202 KiB  
Article
The Potential of Composite Cements for Wound Healing in Rats
by Alina Ioana Ardelean, Sorin Marian Marza, Madalina Florina Dragomir, Andrada Negoescu, Codruta Sarosi, Cristiana Stefania Novac, Cosmin Pestean, Marioara Moldovan and Liviu Oana
Bioengineering 2024, 11(8), 837; https://doi.org/10.3390/bioengineering11080837 - 16 Aug 2024
Cited by 1 | Viewed by 1502
Abstract
Recent developments in biomaterials have resulted in the creation of cement composites with potential wound treatment properties, even though they are currently mainly employed for bone regeneration. Their ability to improve skin restoration after surgery is worth noting. The main purpose of this [...] Read more.
Recent developments in biomaterials have resulted in the creation of cement composites with potential wound treatment properties, even though they are currently mainly employed for bone regeneration. Their ability to improve skin restoration after surgery is worth noting. The main purpose of this research is to evaluate the ability of composite cement to promote wound healing in a rat experimental model. Full-thickness 5 mm skin defects were created, and the biomaterials were applied as wound dressings. The hybrid light-cured cement composites possess an organic matrix (Bis-GMA, TEGDMA, UDMA, and HEMA) and an inorganic phase (bioglasses, silica, and hydroxyapatite). The organic phase also contains γ-methacryloxypropyl-trimethoxysilane, which is produced by distributing bioactive silanized inorganic filler particles. The repair of the defect is assessed using a selection of macroscopic and microscopic protocols, including wound closure rate, histopathological analysis, cytotoxicity, and biocompatibility. Both composites exerted a favorable influence on cells, although the C1 product demonstrated a more extensive healing mechanism. Histological examination of the kidney and liver tissues revealed no evidence of toxicity. There were no notable negative outcomes in the treated groups, demonstrating the biocompatibility and efficacy of these bioproducts. By day 15, the skin of both groups had healed completely. This research introduces a pioneering strategy by utilizing composite cements, traditionally used in dentistry, in the context of skin wound healing. Full article
(This article belongs to the Special Issue Biomaterials and Technology for Skin Wound Healing)
Show Figures

Graphical abstract

15 pages, 3241 KiB  
Article
Influence of Nanoparticles and PVA Fibers on Concrete and Mortar on Microstructural and Durability Properties
by Radhika Sridhar, Pakjira Aosai, Thanongsak Imjai, Monthian Setkit, Anoop Shirkol and Irwanda Laory
Fibers 2024, 12(7), 54; https://doi.org/10.3390/fib12070054 - 26 Jun 2024
Cited by 7 | Viewed by 2748
Abstract
Nanoparticles are one of the effective methodologies implemented in concrete technology. The main objective of this research is to study the influence of nano alumina with different percentage variations ranging from 1% to 3% along with the incorporation of PVA fibers. From the [...] Read more.
Nanoparticles are one of the effective methodologies implemented in concrete technology. The main objective of this research is to study the influence of nano alumina with different percentage variations ranging from 1% to 3% along with the incorporation of PVA fibers. From the mechanical properties test, the optimum dosage was determined to further study the durability behavior. This research work also investigates the hybridization of two nanoparticles such as nano silica (NS) and nano alumina (NA). The results show that the increasing quantity of NA reduces the compressive strength of the mortar due to agglomeration (cluster of particles), which results in a greater molecular attraction force. From the test results, it is concluded that the optimum dosage has been attained with an addition of 2% NA with 0.3% PVA. The compression strength test results at 14 days and 28 days reveal that the addition of NA tends the mineral admixture to react at early ages in the hydration process, which produces a new chemical compound to fill the pores. The rapid chloride penetration (RCPT) test results at 28 days significantly improved with the incorporation of nanoparticles due to their effective size and chemical reaction towards the other compounds. The test results from the hybridization of nanoparticles showed that the compressive strength was significantly enhanced compared to that of the control mortar and mortar with NA. They are effective up to certain limits beyond that addition, and the workability was reduced. Amongst all mixtures, the maximum compression strength has been attained for the mix with the addition of NA 0.5% and NS 2.5% comparatively. The microstructural properties of mortar were also studied through scanning electron microscope (SEM) analysis. The results showed that the incorporation of nanoparticles in the mortar matrix turns homogeneous with fewer pores and greater amount of hydration compounds; thereby, pore refinement has improved the hydration compounds remarkably. Full article
Show Figures

Figure 1

18 pages, 6575 KiB  
Article
Sol–Gel Synthesis of Silica–Poly (Vinylpyrrolidone) Hybrids with Prooxidant Activity and Antibacterial Properties
by Albena Bachvarova-Nedelcheva, Yoanna Kostova, Lilia Yordanova, Elena Nenova, Pavletta Shestakova, Iliana Ivanova and Elitsa Pavlova
Molecules 2024, 29(11), 2675; https://doi.org/10.3390/molecules29112675 - 5 Jun 2024
Cited by 4 | Viewed by 1766
Abstract
The present work deals with the sol–gel synthesis of silica–poly (vinylpyrrolidone) hybrid materials. The nanohybrids (Si-PVP) have been prepared using an acidic catalyst at ambient temperature. Tetramethyl ortosilane (TMOS) was used as a silica precursor. Poly (vinylpyrrolidone) (PVP) was introduced into the reaction [...] Read more.
The present work deals with the sol–gel synthesis of silica–poly (vinylpyrrolidone) hybrid materials. The nanohybrids (Si-PVP) have been prepared using an acidic catalyst at ambient temperature. Tetramethyl ortosilane (TMOS) was used as a silica precursor. Poly (vinylpyrrolidone) (PVP) was introduced into the reaction mixture as a solution in ethanol with a concentration of 20%. The XRD established that the as-prepared material is amorphous. The IR and 29Si MAS NMR spectra proved the formation of a polymerized silica network as well as the hydrogen bonding interactions between the silica matrix and OH hydrogens of the silanol groups. The TEM showed spherical particle formation along with increased agglomeration tendency. The efficacy of SiO2/PVP nanoparticles as a potential antimicrobial agent against a wide range of bacteria was evaluated as bacteriostatic, using agar diffusion and spot tests. Combined effects of hybrid nanomaterial and antibiotics could significantly reduce the bactericidal concentrations of both the antibiotic and the particles, and they could also eliminate the antibiotic resistance of the pathogen. The registered prooxidant activity of the newly synthesized material was confirmative and explicatory for the antibacterial properties of the tested substance and its synergetic combination with antibiotics. The effect of new hybrid material on Crustacea Daphnia magna was also estimated as harmless under concentration of 0.1 mg/mL. Full article
Show Figures

Figure 1

24 pages, 5335 KiB  
Article
Biomass Waste Utilization as Nanocomposite Anodes through Conductive Polymers Strengthened SiO2/C from Streblus asper Leaves for Sustainable Energy Storages
by Thanapat Autthawong, Natthakan Ratsameetammajak, Kittiched Khunpakdee, Mitsutaka Haruta, Torranin Chairuangsri and Thapanee Sarakonsri
Polymers 2024, 16(10), 1414; https://doi.org/10.3390/polym16101414 - 16 May 2024
Cited by 4 | Viewed by 1751
Abstract
Sustainable anode materials, including natural silica and biomass-derived carbon materials, are gaining increasing attention in emerging energy storage applications. In this research, we highlighted a silica/carbon (SiO2/C) derived from Streblus asper leaf wastes using a simple method. Dried Streblus asper leaves, [...] Read more.
Sustainable anode materials, including natural silica and biomass-derived carbon materials, are gaining increasing attention in emerging energy storage applications. In this research, we highlighted a silica/carbon (SiO2/C) derived from Streblus asper leaf wastes using a simple method. Dried Streblus asper leaves, which have plenty of biomass in Thailand, have a unique leaf texture due to their high SiO2 content. We can convert these worthless leaves into SiO2/C nanocomposites in one step, producing eco-materials with distinctive microstructures that influence electrochemical energy storage performance. Through nanostructured design, SiO2/C is thoroughly covered by a well-connected framework of conductive hybrid polymers based on the sodium alginate–polypyrrole (SA-PPy) network, exhibiting impressive morphology and performance. In addition, an excellent electrically conductive SA-PPy network binds to the SiO2/C particle surface through crosslinker bonding, creating a flexible porous space that effectively facilitates the SiO2 large volume expansion. At a current density of 0.3 C, this synthesized SA-PPy@Nano-SiO2/C anode provides a high specific capacity of 756 mAh g−1 over 350 cycles, accounting for 99.7% of the theoretical specific capacity. At the high current of 1 C (758 mA g−1), a superior sustained cycle life of over 500 cycles was evidenced, with over 93% capacity retention. The research also highlighted the potential for this approach to be scaled up for commercial production, which could have a significant impact on the sustainability of the lithium-ion battery industry. Overall, the development of green nanocomposites along with polymers having a distinctive structure is an exciting area of research that has the potential to address some of the key challenges associated with lithium-ion batteries, such as capacity degradation and safety concerns, while also promoting sustainability and reducing environmental impact. Full article
(This article belongs to the Special Issue Carbon/Polymer Composite Materials)
Show Figures

Figure 1

Back to TopTop