Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (218)

Search Parameters:
Keywords = silica fume (SF)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 3763 KiB  
Article
Performance Study on Preparation of Mine Backfill Materials Using Industrial Solid Waste in Combination with Construction Waste
by Yang Cai, Qiumei Liu, Fufei Wu, Shuangkuai Dong, Qiuyue Zhang, Jing Wang, Pengfei Luo and Xin Yang
Materials 2025, 18(15), 3716; https://doi.org/10.3390/ma18153716 - 7 Aug 2025
Abstract
The resource utilization of construction waste and industrial solid waste is a crucial aspect in promoting global urbanization and sustainable development. This study focuses on the preparation of mine backfill materials using construction waste in combination with various industrial solid wastes—ground granulated blast [...] Read more.
The resource utilization of construction waste and industrial solid waste is a crucial aspect in promoting global urbanization and sustainable development. This study focuses on the preparation of mine backfill materials using construction waste in combination with various industrial solid wastes—ground granulated blast furnace slag (GGBFS), fly ash (FA), silica fume (SF), phosphorus slag (PS), fly ash–phosphorus slag–phosphogypsum composite (FA-PS-PG), and fly ash–phosphorus slag–β-phosphogypsum composite (FA-PS-βPG)—under different substitution rates (50%, 55%, 60%) as control parameters. A total of 19 mix proportions were investigated, evaluating their slump, dry density, compressive strength, uniaxial compressive stress–strain relationship, micromorphology, and phase composition. The results indicate that, compared to backfill materials prepared with pure cement, the incorporation of industrial solid wastes improves the fluidity of the backfill materials. At 56 days, the constitutive model parameter a increased to varying degrees, while parameter b decreased, indicating enhanced ductility. The compressive strength was consistently higher with PS at all substitution rates. The FA-PS-PG mixture with a 50% substitution rate achieved the highest 56-day compressive strength of 8.02 MPa. These findings can facilitate the application of construction waste and industrial solid waste in mine backfilling projects, delivering economic, environmental, and resource-related benefits. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

26 pages, 4303 KiB  
Article
Thermal Degradation and Microstructural Evolution of Geopolymer-Based UHPC with Silica Fume and Quartz Powder
by Raghda A. Elhefny, Mohamed Abdellatief, Walid E. Elemam and Ahmed M. Tahwia
Infrastructures 2025, 10(8), 192; https://doi.org/10.3390/infrastructures10080192 - 22 Jul 2025
Viewed by 231
Abstract
The durability and fire resilience of concrete structures are increasingly critical in modern construction, particularly under elevated-temperature exposure. With this context, the current study explores the thermal and microstructural characteristics of geopolymer-based ultra-high-performance concrete (G-UHPC) incorporating quartz powder (QP) and silica fume (SF) [...] Read more.
The durability and fire resilience of concrete structures are increasingly critical in modern construction, particularly under elevated-temperature exposure. With this context, the current study explores the thermal and microstructural characteristics of geopolymer-based ultra-high-performance concrete (G-UHPC) incorporating quartz powder (QP) and silica fume (SF) after exposure to elevated temperatures. SF was used at 15% and 30% to partially replace the precursor material, while QP was used at 25%, 30%, and 35% as a partial replacement for fine sand. The prepared specimens were exposed to 200 °C, 400 °C, and 800 °C, followed by air cooling. Mechanical strength tests were conducted to evaluate compressive and flexural strengths, as well as failure patterns. Microstructural changes due to thermal exposure were assessed using scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS). Among the prepared mixtures, the 30SF35QP mixture exhibited the highest compressive strength (156.0 MPa), followed by the 15SF35QP mix (146.83 MPa). The experimental results demonstrated that G-UHPC underwent varying levels of thermal degradation across the 200–800 °C range yet displayed excellent resistance to thermal spalling. At 200 °C, compressive strength increased due to enhanced geopolymerization, with the control mix showing a 29.8% increase. However, significant strength reductions were observed at 800 °C, where the control mix retained only 30.8% (32.0 MPa) and the 30SF25QP mixture retained 28% (38.0 MPa) of their original strengths. Despite increased porosity and cracking at 800 °C, the 30SF35QP mixture exhibited superior strength retention due to its denser matrix and reduced voids. The EDS results confirmed improved gel stability in the 30% SF mixtures, as evidenced by higher silicon content. These findings suggest that optimizing SF and QP content significantly enhances the fire resistance and structural integrity of G-UHPC, providing practical insights for the design of sustainable, high-performance concrete structures in fire-prone environments. Full article
Show Figures

Figure 1

20 pages, 10098 KiB  
Article
Alkali-Activated Dredged-Sediment-Based Fluidized Solidified Soil: Early-Age Engineering Performance and Microstructural Mechanisms
by Qunchao Ma, Kangyu Wang, Qiang Li and Yuting Zhang
Materials 2025, 18(14), 3408; https://doi.org/10.3390/ma18143408 - 21 Jul 2025
Viewed by 286
Abstract
Fluidized solidified soil (FSS) has emerged as a promising material for marine pile scour remediation, yet its limited construction window and vulnerability to hydraulic erosion before sufficient curing constrain its broader application. This study systematically evaluates FSS formulations based on dredged sediment, cement [...] Read more.
Fluidized solidified soil (FSS) has emerged as a promising material for marine pile scour remediation, yet its limited construction window and vulnerability to hydraulic erosion before sufficient curing constrain its broader application. This study systematically evaluates FSS formulations based on dredged sediment, cement partially replaced by silica fume (i.e., 0%, 4%, 8%, and 12%), and quicklime activation under three water–solid ratios (WSR, i.e., 0.525, 0.55, and 0.575). Experimental assessments included flowability tests, unconfined compressive strength, direct shear tests, and microstructural analysis via XRD and SEM. The results indicate that SF substitution significantly mitigates flowability loss during the 90–120 min interval, thereby extending the operational period. Moreover, the greatest enhancement in mechanical performance was achieved at an 8% SF replacement: at WSR = 0.55, the 3-day UCS increased by 22.78%, while the 7-day cohesion and internal friction angle rose by 13.97% and 2.59%, respectively. Microscopic analyses also confirmed that SF’s pozzolanic reaction generated additional C-S-H gel. However, the SF substitution exhibits a pronounced threshold effect, with levels above 8% introducing unreacted particles that disrupt the cementitious network. These results underscore the critical balance between flowability and early-age strength for stable marine pile scour repair, with WSR = 0.525 and 8% SF substitution identified as the optimal mix. Full article
Show Figures

Figure 1

22 pages, 3224 KiB  
Article
Performance Optimization of SBR-Modified Pervious Composite Incorporating Recycled Concrete Aggregates
by Abdulkader El-Mir, Perla Tannouri, Joseph J. Assaad, Dana Nasr, Maria Ghannoum, Firas Barraj and Hilal El-Hassan
J. Compos. Sci. 2025, 9(7), 372; https://doi.org/10.3390/jcs9070372 - 16 Jul 2025
Viewed by 301
Abstract
This study aimed to optimize the performance of pervious concrete (PC) while promoting sustainability using recycled concrete aggregates (RCAs), styrene butadiene rubber (SBR) waste, and silica fume (SF). The mixtures were developed using the Taguchi approach with four mix design factors, each at [...] Read more.
This study aimed to optimize the performance of pervious concrete (PC) while promoting sustainability using recycled concrete aggregates (RCAs), styrene butadiene rubber (SBR) waste, and silica fume (SF). The mixtures were developed using the Taguchi approach with four mix design factors, each at three levels: the water-to-binder ratio (w/b), RCA replacement percentage by weight of natural aggregates, the cement substitution rate with SF, and the SBR addition rate by binder mass. Thus, a total of nine mixes were prepared and tested for density, porosity, permeability, compressive strength, splitting tensile strength, abrasion resistance, and resistance to freezing and thawing. The results revealed that incorporating RCA and SBR decreased density and compressive strength but increased porosity and permeability. The performance of PC enhanced with SF addition and reduced w/b. TOPSIS was then employed to find the optimum mixture design proportions by considering multiple performance criteria. The results indicated that a high-performing sustainable PC mixture, with enhanced strength and durability characteristics, was formulated with a w/b ratio of 0.30, 25% RCA, 5% SF replacement, and 4% SBR addition. Full article
(This article belongs to the Special Issue Novel Cement and Concrete Materials)
Show Figures

Figure 1

27 pages, 14650 KiB  
Article
Development of High-Performance Composite Cementitious Materials for Offshore Engineering Applications
by Risheng Wang, Hongrui Wu, Zengwu Liu, Hanyu Wang and Yongzhuang Zhang
Materials 2025, 18(14), 3324; https://doi.org/10.3390/ma18143324 - 15 Jul 2025
Viewed by 214
Abstract
This study focuses on the development of high-performance composite cementitious materials for offshore engineering applications, addressing the critical challenges of durability, environmental degradation, and carbon emissions. By incorporating polycarboxylate superplasticizers (PCE) and combining fly ash (FA), ground granulated blast furnace slag (GGBS), and [...] Read more.
This study focuses on the development of high-performance composite cementitious materials for offshore engineering applications, addressing the critical challenges of durability, environmental degradation, and carbon emissions. By incorporating polycarboxylate superplasticizers (PCE) and combining fly ash (FA), ground granulated blast furnace slag (GGBS), and silica fume (SF) in various proportions, composite mortars were designed and evaluated. A series of laboratory tests were conducted to assess workability, mechanical properties, volume stability, and durability under simulated marine conditions. The results demonstrate that the optimized composite exhibits superior performance in terms of strength development, shrinkage control, and resistance to chloride penetration and freeze–thaw cycles. Microstructural analysis further reveals that the enhanced performance is attributed to the formation of additional calcium silicate hydrate (C–S–H) gel and a denser internal matrix resulting from secondary hydration. These findings suggest that the proposed material holds significant potential for enhancing the long-term durability and sustainability of marine infrastructure. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

19 pages, 5321 KiB  
Article
Influence of Polymers on the Performance and Protective Effect of Cement-Based Coating Materials
by Yihao Yin and Yingjun Mei
Materials 2025, 18(14), 3321; https://doi.org/10.3390/ma18143321 - 15 Jul 2025
Viewed by 243
Abstract
Traditional cementitious coating materials struggle to meet the performance criteria for protective coatings in complex environments. This study developed a polymer-modified cement-based coating material with polymer, silica fume (SF), and quartz sand (QS) as the principal admixtures. It also investigated the influence of [...] Read more.
Traditional cementitious coating materials struggle to meet the performance criteria for protective coatings in complex environments. This study developed a polymer-modified cement-based coating material with polymer, silica fume (SF), and quartz sand (QS) as the principal admixtures. It also investigated the influence of material composition on the coating’s mechanical properties, durability, interfacial bond characteristics with concrete, and the durability enhancement of coated concrete. The results demonstrated that compared with ordinary cementitious coating material (OCCM), the interfacial bonding performance between 3% Styrene Butadiene Rubber Powder (SBR) coating material and concrete was improved by 42%; the frost resistance and sulfate erosion resistance of concrete protected by 6% polyurethane (PU) coating material were improved by 31.5% and 69.6%. The inclusion of polymers reduces the mechanical properties. The re-addition of silica fume can lower the porosity while increasing durability and strength. The coating material, mixed with 12% SF and 6% PU, exhibits mechanical properties not lower than those of OCCM. Meanwhile, the interfacial bonding performance and durability of the coated concrete have been improved by 45% and 48%, respectively. The grey relational analysis indicated that the coating material with the best comprehensive performance is the one mixed with 12% SF + 6% PU, and the grey correlation degree is 0.84. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

25 pages, 9967 KiB  
Article
Study on the Influence and Mechanism of Mineral Admixtures and Fibers on Frost Resistance of Slag–Yellow River Sediment Geopolymers
by Ge Zhang, Huawei Shi, Kunpeng Li, Jialing Li, Enhui Jiang, Chengfang Yuan and Chen Chen
Nanomaterials 2025, 15(13), 1051; https://doi.org/10.3390/nano15131051 - 6 Jul 2025
Viewed by 291
Abstract
To address the demands for resource utilization of Yellow River sediment and the durability requirements of engineering materials in cold regions, this study systematically investigates the mechanisms affecting the frost resistance of slag-Yellow River sediment geopolymers through the incorporation of mineral admixtures (silica [...] Read more.
To address the demands for resource utilization of Yellow River sediment and the durability requirements of engineering materials in cold regions, this study systematically investigates the mechanisms affecting the frost resistance of slag-Yellow River sediment geopolymers through the incorporation of mineral admixtures (silica fume and metakaolin) and fibers (steel fiber and PVA fiber). Through 400 freeze-thaw cycles combined with microscopic characterization techniques such as SEM, XRD, and MIP, the results indicate that the group with 20% silica fume content (SF20) exhibited optimal frost resistance, showing a 19.9% increase in compressive strength after 400 freeze-thaw cycles. The high pozzolanic reactivity of SiO2 in SF20 promoted continuous secondary gel formation, producing low C/S ratio C-(A)-S-H gels and increasing the gel pore content from 24% to 27%, thereby refining the pore structure. Due to their high elastic deformation capacity (6.5% elongation rate), PVA fibers effectively mitigate frost heave stress. At the same dosage, the compressive strength loss rate (6.18%) and splitting tensile strength loss rate (21.79%) of the PVA fiber-reinforced group were significantly lower than those of the steel fiber-reinforced group (9.03% and 27.81%, respectively). During the freeze-thaw process, the matrix pore structure exhibited a typical two-stage evolution characteristic of “refinement followed by coarsening”: In the initial stage (0–100 cycles), secondary hydration products from mineral admixtures filled pores, reducing the proportion of macropores by 5–7% and enhancing matrix densification; In the later stage (100–400 cycles), due to frost heave pressure and differences in thermal expansion coefficients between matrix phases (e.g., C-(A)-S-H gel and fibers), interfacial microcracks propagated, causing the proportion of macropores to increase back to 35–37%. This study reveals the synergistic interaction between mineral admixtures and fibers in enhancing freeze–thaw performance. It provides theoretical support for the high-value application of Yellow River sediment in F400-grade geopolymer composites. The findings have significant implications for infrastructure in cold regions, including subgrade materials, hydraulic structures, and related engineering applications. Full article
(This article belongs to the Special Issue Nanomaterials and Nanotechnology in Civil Engineering)
Show Figures

Figure 1

16 pages, 2539 KiB  
Article
Improving Durability and Compressive Strength of Concrete with Rhyolite Aggregates and Recycled Supplementary Cementitious Materials
by Christian Karin Valenzuela-Leyva, Magnolia Soto-Felix, Jose Ramon Gaxiola-Camacho, Omar Farid Ojeda-Farias, Jose Martin Herrera-Ramirez and Caleb Carreño-Gallardo
Buildings 2025, 15(13), 2257; https://doi.org/10.3390/buildings15132257 - 27 Jun 2025
Viewed by 381
Abstract
The concrete industry increasingly seeks sustainable alternatives to conventional materials to reduce the environmental impact while maintaining structural performance. This study evaluates the use of locally sourced rhyolite as a coarse aggregate combined with recycled supplementary cementitious materials (SCMs) to address the sustainability [...] Read more.
The concrete industry increasingly seeks sustainable alternatives to conventional materials to reduce the environmental impact while maintaining structural performance. This study evaluates the use of locally sourced rhyolite as a coarse aggregate combined with recycled supplementary cementitious materials (SCMs) to address the sustainability and durability. Due to its high silica content, rhyolite is prone to the alkali–silica reaction (ASR), which may affect concrete durability. Concrete mixtures incorporating rhyolite with silica fume (SF), Class F fly ash (FA), and slag cement (SC) were tested for compressive strength, porosity, density, absorption, mortar bar expansion, electrical resistivity, and rapid chloride permeability. All rhyolite-based mixtures—regardless of SCM incorporation—achieved higher 90-day compressive strengths than the conventional control mixture, with 10% SF reaching the highest value. Additionally, each recycled SCM effectively reduced ASR-induced expansion, with 20% FA showing the most significant reduction and superior durability, including the greatest decrease in chloride permeability and the highest electrical resistivity, indicating enhanced corrosion resistance. These results confirm that rhyolite aggregates, when combined with SCMs, can improve durability and reduce ASR. Therefore, rhyolite shows potential for use in structural concrete under standard exposure conditions. This strategy supports circular economy goals by incorporating regional and recycled materials to develop concrete with improved durability characteristics. Full article
(This article belongs to the Special Issue Studies on the Durability of Building Composite Materials)
Show Figures

Figure 1

18 pages, 3882 KiB  
Review
Sustainable Soil–Cement Composites with Rice Husk Ash and Silica Fume: A Review of Performance and Environmental Benefits
by Xiaosan Yin, Md Mashiur Rahman, Yuzhou Sun, Yi Zhao and Jian Wang
Materials 2025, 18(12), 2880; https://doi.org/10.3390/ma18122880 - 18 Jun 2025
Viewed by 535
Abstract
The construction industry urgently requires sustainable alternatives to conventional cement to mitigate its environmental footprint, which includes 8% of global CO2 emissions. This review critically examines the potential of rice husk ash (RHA) and silica fume (SF)—industrial and agricultural byproducts—as high-performance supplementary [...] Read more.
The construction industry urgently requires sustainable alternatives to conventional cement to mitigate its environmental footprint, which includes 8% of global CO2 emissions. This review critically examines the potential of rice husk ash (RHA) and silica fume (SF)—industrial and agricultural byproducts—as high-performance supplementary cementitious materials (SCMs) in soil–cement composites. Their pozzolanic reactivity, microstructural enhancement mechanisms, and durability improvements (e.g., compressive strength gains of up to 31.7% for RHA and 250% for SF) are analyzed. This study highlights the synergistic effects of RHA/SF blends in refining pore structure, reducing permeability, and enhancing resistance to chemical attacks. Additionally, this paper quantifies the environmental benefits, including CO2 emission reduction (up to 25% per ton of cement replaced) and resource recovery from agricultural/industrial waste streams. Challenges such as material variability, optimal dosage (10–15% RHA, 5–8% SF), and regulatory barriers are discussed, alongside future directions for scalable adoption. This work aligns with SDGs 9, 11, and 12, offering actionable insights for sustainable material design. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Graphical abstract

17 pages, 4180 KiB  
Article
Geopolymer Modified with Insoluble Calcite and Various Silica Fumes Originated from Different Manufacturing Processes
by Yong Xu, Xiaonan Wang, Lilin Yang, Yang Liu, Tong Gao, Han Li, Yukai Wang, Ning Xie, Jing Meng, Jinping Ou and Wenshou Wang
Materials 2025, 18(12), 2795; https://doi.org/10.3390/ma18122795 - 13 Jun 2025
Viewed by 362
Abstract
It has been proven that silica fume (SF), which is a by-product from the manufacturing of single-crystal silicon, is beneficial for enhancing the mechanical properties, durability, and workability of geopolymers, as it can be quickly dissolved and form silicate-based cementitious phases in alkaline [...] Read more.
It has been proven that silica fume (SF), which is a by-product from the manufacturing of single-crystal silicon, is beneficial for enhancing the mechanical properties, durability, and workability of geopolymers, as it can be quickly dissolved and form silicate-based cementitious phases in alkaline environments. However, the reinforcement mechanism of SF on geopolymer remains unclear due to the chemical complexity of geopolymer and the variety of SF types. Additionally, the solubility of calcite in an alkali environment is quite limited, and thus the formation of the amorphous calcium-based gels will be thwarted due to the lack of soluble calcium ions. Most importantly, with the development of the single-crystal industry, the amorphous silica content, crystallinity, and trace elements of SF itself have changed, which blocks the understanding of the activation mechanism of geopolymers combined with SF and insoluble calcite. To unveil the underlying modification mechanisms of SF on geopolymer materials along with insoluble calcite, in this study, two types of SF were used as the fly ash replacement in a fly ash/limestone system to prepare geopolymer materials. The reinforcement effect significantly depends on the SF types even with similar particle size and chemical compositions. The results indicate that the mechanical properties of geopolymer materials modified with SFs are not only governed by the ratio and contents of Si, Ca, Al, and Mg in SFs but also depend on the crystallinity and activity of the SFs. The hydration products could be varied according to the reaction environment. The research results not only contribute to the optimization design and application of geopolymer materials but also pave new pathways for the upcycling use of solid wastes such as SF, low-grade fly ash, or even other aluminosilicate solid wastes to achieve sustainable development. Full article
Show Figures

Figure 1

18 pages, 2648 KiB  
Article
Fundamental Properties of Expanded Perlite Aggregated Foamed Concrete with Different Supplementary Cementitious Materials
by Kaixing Fan, Jie Wei and Chengdong Feng
Materials 2025, 18(12), 2671; https://doi.org/10.3390/ma18122671 - 6 Jun 2025
Viewed by 575
Abstract
This study investigates the effects of supplementary cementitious materials (SCMs) on the material performance of foamed concrete containing lightweight coarse aggregates, namely hydrophobically modified expanded perlite (EP). The EP aggregates were treated with a sodium methyl silicate solution to impart water-repellent properties prior [...] Read more.
This study investigates the effects of supplementary cementitious materials (SCMs) on the material performance of foamed concrete containing lightweight coarse aggregates, namely hydrophobically modified expanded perlite (EP). The EP aggregates were treated with a sodium methyl silicate solution to impart water-repellent properties prior to being incorporated into the foamed concrete mixtures. Ordinary Portland cement (OPC) was partially replaced with various SCMs, namely, silica fume (SF), mineral powder (MP), and metakaolin (MK) at substitution levels of 3%, 6%, and 9%. Key indicators to evaluate the material performance of foamed concrete included 28-day uniaxial compressive strength, thermal conductivity, mass loss rate under thermal cycling, volumetric water absorption, and shrinkage. The results noted that all three SCMs improved the uniaxial compressive strength of foamed concrete, with MP achieving the greatest improvement, approximately 97% at the 9% replacement level. Thermal conductivity increased slightly with the addition of SF or MP but decreased with MK, highlighting the superior insulation capability of MK. Both SF and MK reduced the mass loss rate under thermal cycling, with SF exhibiting the highest thermal stability. Furthermore, MK was most effective in minimizing water absorption and shrinkage, attributed to its high pozzolanic reactivity and the resulting refinement of the microstructures. Full article
Show Figures

Figure 1

22 pages, 11588 KiB  
Article
Seawater-Activated Mineral Synergy in Sulfoaluminate Cement: Corrosion Resistance Optimization via Orthogonal Design
by Chuanlin Wang, Shupeng Zhou, Qingyou Ou, Junkai Liu and Ming Wu
Materials 2025, 18(11), 2428; https://doi.org/10.3390/ma18112428 - 22 May 2025
Cited by 1 | Viewed by 349
Abstract
Mineral admixtures exhibit significant enhancement effects on the seawater corrosion resistance of sulfoaluminate cement (SAC). This study systematically investigates the influence mechanisms of fly ash (FA), silica fume (SF), and slag powder (SP) on the physicochemical properties of SAC-based materials. Experimental results demonstrate [...] Read more.
Mineral admixtures exhibit significant enhancement effects on the seawater corrosion resistance of sulfoaluminate cement (SAC). This study systematically investigates the influence mechanisms of fly ash (FA), silica fume (SF), and slag powder (SP) on the physicochemical properties of SAC-based materials. Experimental results demonstrate that FA effectively enhances the fluidity of fresh SAC paste while mitigating drying shrinkage. Under standard curing conditions, the compressive strength of SAC mortar decreases with increasing FA content, reaching optimal performance at a 5% replacement level. However, in seawater immersion environments, FA undergoes chemical activation induced by seawater ions, leading to a positive correlation between mortar strength and FA content, with the 10% replacement ratio demonstrating maximum efficacy. SF addition reduces workability but significantly suppresses shrinkage deformation. While exhibiting detrimental effects on flexural strength under standard curing (optimal dosage: 7.5%), a 5.0% SF content manifests superior seawater resistance in marine environments. SP incorporation minimally impacts mortar rheology but exacerbates shrinkage behavior, showing limited improvement in both standard-cured compressive strength and seawater corrosion resistance. Orthogonal experimental analysis reveals that SF exerts the most pronounced influence on SAC mortar fluidity. Both standard curing and seawater immersion conditions indicate FA as the dominant factor affecting mechanical strength parameters. The optimal composite formulation, determined through orthogonal combination testing, achieves peak compressive strength with 5% FA, 5% SF, and 5% SP synergistic incorporation. Full article
Show Figures

Figure 1

14 pages, 3210 KiB  
Article
Performance Improvement of Steel Fiber Reinforced High-Performance Concrete Cured by Electric-Induced Heating Under Negative Temperature by Mix Proportion Optimization
by Yishu Zhang, Han Wang and Wei Wang
Materials 2025, 18(10), 2231; https://doi.org/10.3390/ma18102231 - 12 May 2025
Cited by 1 | Viewed by 387
Abstract
To address the insufficient early strength development of steel-fiber-reinforced high-performance concrete (SF-HPC) under subzero temperatures, this study proposes an electric-induced heating curing method for SF-HPC fabrication at −20 °C. The effects of mix parameters, including steel fiber content, water-to-binder ratio, silica fume dosage, [...] Read more.
To address the insufficient early strength development of steel-fiber-reinforced high-performance concrete (SF-HPC) under subzero temperatures, this study proposes an electric-induced heating curing method for SF-HPC fabrication at −20 °C. The effects of mix parameters, including steel fiber content, water-to-binder ratio, silica fume dosage, and fine aggregate gradation, on the curing temperature and mechanical properties of SF-HPC were systematically investigated. The optimal mix proportion was identified through the curing temperature and compressive strength development for the specimens. Results revealed that compressive strength initially increased and then decreased with higher silica fume content and fine aggregate replacement ratios, while increased water-to-binder ratios positively influenced curing efficiency and strength development. The optimal mix comprised 2.0 vol% steel fibers, a water-to-binder ratio of 0.22, 20% silica fume, and 60% fine aggregate replacement. Further, comparative analyses of electric-induced heating curing, room-temperature curing, and high-temperature steam curing revealed that electric-induced heating curing can promote the strength formation of SF-HPC in a negative-temperature environment. Microstructural characterization via BET analysis demonstrated that electric-induced heating curing refined the pore structure of SF-HPC. These findings highlight the benefits of electric-induced heating as an efficient strategy for fabricating SF-HPC in cold climates, providing theoretical and practical insights for winter construction. Full article
(This article belongs to the Special Issue Advances in Low Carbon Concrete and Structures)
Show Figures

Figure 1

30 pages, 7676 KiB  
Article
Investigation of Mechanical and Fresh Properties of Ultra-High-Performance Concrete Incorporating Second-Generation Superplasticizers
by Sama Tajasosi, Jalil Barandoust, Ashkan Saradar, Mohammad Mohtasham Moein, Sam E. Rigby and Moses Karakouzian
Appl. Sci. 2025, 15(9), 5133; https://doi.org/10.3390/app15095133 - 5 May 2025
Viewed by 884
Abstract
Ultra-high-performance concrete (UHPC) has been following economic and environmental trends for the past two decades. Limited research has been conducted on the significance of superplasticizers in UHPC products, despite the high costs they entail for projects. The current study assesses UHPC based on [...] Read more.
Ultra-high-performance concrete (UHPC) has been following economic and environmental trends for the past two decades. Limited research has been conducted on the significance of superplasticizers in UHPC products, despite the high costs they entail for projects. The current study assesses UHPC based on rheological properties and mechanical characteristics considering different factors. In this study, the effects of different levels of superplasticizer derived from sulfonated naphthalene formaldehyde (SNF: 0.7%, 0.8%, and 0.9%), silica fume (SF: 15%, 20%, and 25%), and the water-to-binder ratio (w/b: 0.18, 0.20, and 0.22) were examined. Fresh tests such as slump flow, Vicat needle, and squeezing, as well as hardened tests like compressive strength, flexural strength, and electrical resistivity, were conducted. In the analysis, an artificial neural network (ANN) model and a fuzzy logic (FL) model were employed to forecast compressive strength results at 7 and 28 days. The results indicated that a higher SF dosage reduced slump flow and set time, whereas the opposite was observed for SNF and the w/b ratio. Three distinct behaviors were identified in the squeezing flow test findings: (1) specific elastic behavior and low plasticity, (2) extensive plastic behavior and significant dilatancy, and (3) heightened responsiveness to compressive flow rate and material ratio. SNF demonstrated promise in enhancing compressive, flexural, and electrical strength. The prediction models suggested that the FL (error range 3.18–4.36%) and ANN (0.74–1.03%) models performed well in predicting compressive strength at 7 and 28 days. The encouraging findings from this study set the stage for further sustainable and cost-effective construction methods. Full article
(This article belongs to the Special Issue Sustainable Concrete Materials and Resilient Structures)
Show Figures

Figure 1

31 pages, 30962 KiB  
Article
Study on the Effects and Mechanisms of Fly Ash, Silica Fume, and Metakaolin on the Properties of Slag–Yellow River Sediment-Based Geopolymers
by Ge Zhang, Kunpeng Li, Huawei Shi, Chen Chen and Chengfang Yuan
Materials 2025, 18(8), 1845; https://doi.org/10.3390/ma18081845 - 17 Apr 2025
Cited by 1 | Viewed by 495
Abstract
The incorporation of mineral admixtures plays a crucial role in enhancing the performance and sustainability of geopolymer systems. This study evaluates the influence of fly ash (FA), silica fume (SF), and metakaolin (MK) as typical mineral admixtures on slag–Yellow River sediment geopolymer eco-cementitious [...] Read more.
The incorporation of mineral admixtures plays a crucial role in enhancing the performance and sustainability of geopolymer systems. This study evaluates the influence of fly ash (FA), silica fume (SF), and metakaolin (MK) as typical mineral admixtures on slag–Yellow River sediment geopolymer eco-cementitious materials. The impact of varying replacement ratios of these admixtures for slag on setting time, workability, reaction kinetics, and strength development were thoroughly investigated. To understand the underlying mechanisms, microstructural analysis was conducted using thermogravimetric–differential thermal analysis (TG-DTA), X-ray diffraction (XRD), scanning electron microscopy–energy dispersive spectroscopy (SEM-EDS), and mercury intrusion porosimetry (MIP). The results indicate that the incorporation of FA, SF, and metakaolin delayed the initial reaction, prolonged the induction period, and reduced the acceleration rate. These effects hindered early strength development. At 30% FA content, the matrix exhibited excellent flowability and sustained heat release. The 28-day splitting tensile strength increased by 42.40%, while compressive strength decreased by 2.85%. In contrast, 20% SF significantly improved compressive strength, increasing the 28-day compressive and splitting tensile strengths by 11.19% and 6.16%, respectively. At 15% metakaolin, the strength improvement was intermediate, with 28-day compressive and splitting tensile strengths increasing by 3.55% and 10.59%, respectively. However, dosages exceeding 20% for SF and metakaolin significantly reduced workability. The incorporation of FA, SF, and metakaolin did not interfere with the slag’s alkali-activation reaction. The newly formed N-A-S-H and C-S-H gels integrated with the original C-A-S-H gels, optimizing the pore structure and reducing pores larger than 1 µm, enhancing the matrix compactness and microstructural reinforcement. This study provides practical guidance for optimizing the use of sustainable mineral admixtures in geopolymer systems. Full article
Show Figures

Figure 1

Back to TopTop