Improving Durability and Compressive Strength of Concrete with Rhyolite Aggregates and Recycled Supplementary Cementitious Materials
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Concrete Mixture Design
2.3. Testing Details
3. Results and Discussion
3.1. Slump Tests
3.2. Mechanical Properties of Concrete
3.3. Durability Tests
3.3.1. Absorption, Porosity, and Density
3.3.2. Accelerated Mortar Bar Expansion
3.3.3. Electrical Resistivity of Concrete
3.3.4. Rapid Chloride Permeability Test
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Beushausen, H.; Torrent, R.; Alexander, M.G. Performance-based approaches for concrete durability: State of the art and future research needs. Cem. Concr. Res. 2019, 119, 11–20. [Google Scholar] [CrossRef]
- Figueira, R.; Sousa, R.; Coelho, L.; Azenha, M.; de Almeida, J.; Jorge, P.; da Silva, C.J.R. Alkali-silica reaction in concrete: Mechanisms, mitigation and test methods. Constr. Build. Mater. 2019, 222, 903–931. [Google Scholar] [CrossRef]
- Wang, W.; Noguchi, T. Alkali-silica reaction (ASR) in the alkali-activated cement (AAC) system: A state-of-the-art review. Constr. Build. Mater. 2020, 252, 119105. [Google Scholar] [CrossRef]
- CM, I.; Adeniji, A.A.; Obisesan, A.A.; Odeyemi, O.; Ajayi, J.A. Effects of Carbonation on the Properties of Concrete. Sci. Rev. 2019, 5, 205–214. [Google Scholar]
- Angst, U.M.; Geiker, M.R.; Alonso, M.C.; Polder, R.; Isgor, O.B.; Elsener, B.; Wong, H.; Michel, A.; Hornbostel, K.; Gehlen, C.; et al. The effect of the steel–concrete interface on chloride-induced corrosion initiation in concrete: A critical review by RILEM TC 262-SCI. Mater. Struct. 2019, 52, 1–25. [Google Scholar] [CrossRef]
- Fan, L.; Zhong, W.; Zhang, X. Chloride-induced corrosion of reinforcement in simulated pore solution of geopolymer. Constr. Build. Mater. 2021, 291, 123385. [Google Scholar] [CrossRef]
- Böhni, H. Corrosion in Reinforced Concrete Structures; CRC Press: Boca Raton, FL, USA, 2005. [Google Scholar]
- Broomfield, J.P. Corrosion of Steel in Concrete: Understanding, Investigation and Repair, 3rd ed.; CRC Press: Boca Raton, FL, USA, 2023. [Google Scholar]
- Lindgård, J.; Andiç-Çakır, Ö.; Fernandes, I.; Rønning, T.F.; Thomas, M.D.A. Alkali–silica reactions (ASR): Literature review on parameters influencing laboratory performance testing. Cem. Concr. Res. 2012, 42, 223–243. [Google Scholar] [CrossRef]
- Fanijo, E.O.; Kolawole, J.T.; Almakrab, A. Alkali-silica reaction (ASR) in concrete structures: Mechanisms, effects and evaluation test methods adopted in the United States. Case Stud. Constr. Mater. 2021, 15, e00563. [Google Scholar] [CrossRef]
- Mohammadi, A.; Ghiasvand, E.; Nili, M. Relation between mechanical properties of concrete and alkali-silica reaction (ASR); a review. Constr. Build. Mater. 2020, 258, 119567. [Google Scholar] [CrossRef]
- Li, C.; Thomas, M.D.; Ideker, J.H. A mechanistic study on mitigation of alkali-silica reaction by fine lightweight aggregates. Cem. Concr. Res. 2018, 104, 13–24. [Google Scholar]
- Imam, A.; Kumar, V.; Srivastava, V. Review study towards effect of Silica Fume on the fresh and hardened properties of concrete. Adv. Concr. Constr. 2018, 6, 145. [Google Scholar]
- Mostafaei, H.; Bahmani, H. Sustainable High-Performance Concrete Using Zeolite Powder: Mechanical and Carbon Footprint Analyses. Buildings 2024, 14, 3660. [Google Scholar] [CrossRef]
- Cai, G.; Noguchi, T.; Degée, H.; Zhao, J.; Kitagaki, R. Volcano-related materials in concretes: A comprehensive review. Environ. Sci. Pollut. Res. 2016, 23, 7220–7243. [Google Scholar] [CrossRef] [PubMed]
- Seidlová, Z.; Prikryl, R.; Pertold, Z.; Sachlova, S. Alkali-Silica Reaction of Volcanic Rocks. In Proceedings of the International Conference on Alkali-Aggregate Reaction (Concrete), Austin, Texas, USA, 20–25 May 2012. [Google Scholar]
- Tiecher, F.; Gomes, M.E.; Molin, D.C.D. Alkali-Aggregate Reaction: A study of the influence of the petrographic characteristics of volcanic rocks. Eng. Technol. Appl. Sci. Res. 2018, 8, 2399–2404. [Google Scholar] [CrossRef]
- ASTM C1260-23; Standard Test Method for Potential Alkali Reactivity of Aggregates (Mortar-Bar Method). ASTM International: West Conshohocken, PA, USA, 2014.
- Sims, I.; Hassan, K.; Reid, M.; Al-Kuwari, M.B.; Attia, M.; Sidiq, A.; Al Naemi, A. Wadi gravel—A new concrete aggregate in Qatar: Part 2–Alkali aggregate reactivity. Q. J. Eng. Geol. Hydrogeol. 2020, 53, 400–412. [Google Scholar] [CrossRef]
- Zapała-Sławeta, J. Alkali Silica Reaction In The Presence Of Metakaolin—The Significant Role of Calcium Hydroxide. IOP Conf. Ser. Mater. Sci. Eng. 2017, 245, 022020. [Google Scholar] [CrossRef]
- Wei, J.; Gencturk, B.; Jain, A.; Hanifehzadeh, M. Mitigating alkali-silica reaction induced concrete degradation through cement substitution by metakaolin and bentonite. Appl. Clay Sci. 2019, 182, 105257. [Google Scholar] [CrossRef]
- Luo, D.; Sinha, A.; Adhikari, M.; Wei, J. Mitigating alkali-silica reaction through metakaolin-based internal conditioning: New insights into property evolution and mitigation mechanism. Cem. Concr. Res. 2022, 159, 106888. [Google Scholar] [CrossRef]
- Elsheikh, M.Y.; Elshami, A.A.; Mohsen, I.A. Green Concrete Utilizing Andesite and Rhyolite Aggregate. Int. J. Civ. Eng. Technol. 2020, 11, 1–15. [Google Scholar] [CrossRef]
- Mehta, and Monteiro, Concreto: Microestrutura, Propriedades e Materiais, 2nd ed.; IBRACON: Sao Paulo, Brazil, 2014.
- Scrivener, K.L. Juilland, and P.J. Monteiro, Advances in understanding hydration of Portland cement. Cem. Concr. Res. 2015, 78, 38–56. [Google Scholar] [CrossRef]
- Angulo-Ramírez, D.E.; de Gutiérrez, R.M.; Medeiros, M. Alkali-activated Portland blast furnace slag cement mortars: Performance to alkali-aggregate reaction. Constr. Build. Mater. 2018, 179, 49–56. [Google Scholar] [CrossRef]
- ASTM C1240-20; Standard Specification for Silica Fume Used in Cementitious Mixtures. ASTM International: West Conshohocken, PA, USA, 2015.
- ASTM C618-25a; Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete. ASTM International: West Conshohocken, PA, USA, 2019.
- ASTM C989/C989M-18; Standard Specification for Slag Cement for Use in Concrete and Mortars. ASTM International: West Conshohocken, PA, USA, 2018.
- ASTM C295-08; Standard Guide for Petrographic Examination of Aggregates for Concrete. ASTM International: West Conshohocken, PA, USA, 2008.
- ASTM C127-24; Standard Test Method for Relative Density (Specific Gravity) and Absorption of Coarse Aggregate. ASTM International: West Conshohocken, PA, USA, 2015.
- ASTM C128-22; Standard Test Method for Relative Density (Specific Gravity) and Absorption of Fine Aggregate. ASTM International: West Conshohocken, PA, USA, 2022.
- ASTM C29/C29M-23; Standard Test Method for Bulk Density (“Unit Weight”) and Voids in Aggregate. ASTM International: West Conshohocken, PA, USA, 2023.
- ASTM C192/C192M-22; Standard Practice for Making and Curing Concrete Test Specimens in the Laboratory. ASTM International: West Conshohocken, PA, USA, 2022.
- ASTM C143/C143M-20; Standard Test Method for Slump of Hydraulic-Cement Concrete. ASTM International: West Conshohocken, PA, USA, 2020.
- ASTM C39/C39M-24; Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens. ASTM International: West Conshohocken, PA, USA, 2024.
- ASTM C642-21; Standard Test Method for Density, Absorption, and Voids in Hardened Concrete. ASTM International: West Conshohocken, PA, USA, 2021.
- ASTM C1567-25; Standard Test Method for Determining the Potential Alkali-Silica Reactivity of Combinations of Cementitious Materials and Aggregate (Accelerated Mortar-Bar Method). ASTM International: West Conshohocken, PA, USA, 2023.
- AASHTO T 358-19; Standard Method of Test for Surface Resistivity Indication of Concrete’s Ability to Resist Chloride Ion Penetration. American Association of State Highway and Transportation Officials: Washington, DC, USA, 2019.
- AASHTO T 227-03 (2020); Standard Method of Test for Potential Volume Change of Cementitious Mixtures. American Association of State Highway and Transportation Officials: Washington, DC, USA, 2020.
- Dehghan, A.; Maher, M.; Navarra, M. The Effects of Aggregate Properties on Concrete Mix Design and Behaviour. In Proceedings of the Canadian Society of Civil Engineering Annual Conference 2021; Walbridge, S., Ed.; Lecture Notes in Civil Engineering, Vol. 248; Springer: Singapore, 2023; pp. 457–468. [Google Scholar]
- Kewalramani, M.; Khartabil, A. Porosity evaluation of concrete containing supplementary cementitious materials for durability assessment through volume of permeable voids and water immersion conditions. Buildings 2021, 11, 378. [Google Scholar] [CrossRef]
- Liu, H.B.; Luo, G.B.; Wei, H.B.; Yu, H. Strength, permeability, and freeze-thaw durability of pervious concrete with different aggregate sizes, porosities, and water-binder ratios. Appl. Sci. 2018, 8, 1217. [Google Scholar] [CrossRef]
- Chishi, A.K.; Gautam, L. Sustainable use of silica fume in green cement concrete production: A review. Innov. Infrastruct. Solut. 2023, 8, 195. [Google Scholar] [CrossRef]
- Pramanik, S.; Pradhan, S.S.; Mishra, U. Effect of fly ash inclusion on fresh and hardened properties of concrete: A Review. In Recent Advances in Civil Engineering, Proceedings of the 2nd International Conference on Sustainable Construction Technologies and Advancements in Civil Engineering (ScTACE 2021), Bhubaneswar, India, 22–24 December 2021; Springer: Berlin/Heidelberg, Germany, 2022. [Google Scholar]
- Ahmad, J.; Kontoleon, K.J.; Majdi, A.; Naqash, M.T.; Deifalla, A.F.; Ben Kahla, N.; Isleem, H.F.; Qaidi, S.M.A. A comprehensive review on the ground granulated blast furnace slag (GGBS) in concrete production. Sustainability 2022, 14, 8783. [Google Scholar] [CrossRef]
- Suresh, D.; Nagaraju, K. Ground granulated blast slag (GGBS) in concrete—A review. IOSR J. Mech. Civ. Eng. 2015, 12, 76–82. [Google Scholar]
- Panjehpour, M.; Ali, A.A.A.; Demirboga, R. A review for characterization of silica fume and its effects on concrete properties. Int. J. Sustain. Constr. Eng. Technol. 2011, 2, 1–7. [Google Scholar]
- Alaj, A.; Krelani, V.; Numao, T. Effect of class F fly ash on strength properties of concrete. Civ. Eng. J. 2023, 9, 2249–2258. [Google Scholar] [CrossRef]
- Divsholi, B.S.; Lim, T.Y.D.; Teng, S. Durability properties and microstructure of ground granulated blast furnace slag cement concrete. Int. J. Concr. Struct. Mater. 2014, 8, 157–164. [Google Scholar] [CrossRef]
- Park, S.; Wu, S.; Liu, Z.; Pyo, S. The role of supplementary cementitious materials (SCMs) in ultra high performance concrete (UHPC): A review. Materials 2021, 14, 1472. [Google Scholar] [CrossRef]
- Malhotra, V. Fly ash, slag, silica fume, and rice husk ash in concrete: A review. Concr. Int. 1993, 15, 23–28. [Google Scholar]
- Cao, H.; Mao, Z.; Huang, X.; Deng, M. Inhibition of Alkali-Carbonate Reaction by Fly Ash and Metakaolin on Dolomitic Limestones. Materials 2022, 15, 3538. [Google Scholar] [CrossRef] [PubMed]
- Boakye, K.; Khorami, M. Hydration, Reactivity and Durability Performance of Low-Grade Calcined Clay-Silica Fume Hybrid Mortar. Appl. Sci. 2023, 13, 11906. [Google Scholar] [CrossRef]
- Cassiani, J.; Dugarte, M.; Martinez-Arguelles, G. Evaluation of the chemical index model for predicting supplementary cementitious material dosage to prevent the alkali-silica reaction in concrete. Constr. Build. Mater. 2021, 275, 122158. [Google Scholar] [CrossRef]
- Roberge, P. Corrosion Basics: An Introduction, 3rd ed.; National Association of Corrosion Engineers: Houston, TX, USA, 2018. [Google Scholar]
- Mohamed, O. Durability and compressive strength of high cement replacement ratio self-consolidating concrete. Buildings 2018, 8, 153. [Google Scholar] [CrossRef]
- El-Diadamony, H.; Amer, A.A.; Sokkary, T.M.; El-Hoseny, S. Hydration and characteristics of metakaolin pozzolanic cement pastes. HBRC J. 2018, 14, 150–158. [Google Scholar] [CrossRef]
- Ahmed, A. Assessing the effects of supplementary cementitious materials on concrete properties: A review. Discov. Civ. Eng. 2024, 1, 1–47. [Google Scholar] [CrossRef]
- Huang, X.; Hu, S.; Wang, F.; Yang, L.; Rao, M.; Mu, Y.; Wang, C. The effect of supplementary cementitious materials on the permeability of chloride in steam cured high-ferrite Portland cement concrete. Constr. Build. Mater. 2019, 197, 99–106. [Google Scholar] [CrossRef]
- Layssi, H.; Ghods, P.; Alizadeh, A.R.; Salehi, M. Electrical resistivity of concrete. Concr. Int. 2015, 37, 41–46. [Google Scholar]
- Cleven, S.; Raupach, M.; Matschei, T. Electrical resistivity of steel fibre-reinforced concrete—Influencing parameters. Materials 2021, 14, 3408. [Google Scholar] [CrossRef]
- Chaudhary, S.K.; Sinha, A.K. Effect of silica fume on permeability and microstructure of high strength concrete. Civ. Eng. J. 2020, 6, 1697–1703. [Google Scholar] [CrossRef]
- Bentz, D.; Jensen, O.; Coats, A.; Glasser, F. Influence of silica fume on diffusivity in cement-based materials: I. Experimental and computer modeling studies on cement pastes. Cem. Concr. Res. 2000, 30, 953–962. [Google Scholar] [CrossRef]
- Zhang, W.-M.; Ba, H.-J. Effect of silica fume addition and repeated loading on chloride diffusion coefficient of concrete. Mater. Struct. 2013, 46, 1183–1191. [Google Scholar] [CrossRef]
- Saha, A.K. Effect of class F fly ash on the durability properties of concrete. Sustain. Environ. Res. 2018, 28, 25–31. [Google Scholar] [CrossRef]
- Rao, M.K.; Kumar, D. Durability assessment of concrete with class-F fly ash by chloride ion permeability. Int. J. Recent Technol. Eng. 2019, 8, 8831–8836. [Google Scholar] [CrossRef]
- Yu, Z.; Ma, J.; Ye, G.; van Breugel, K.; Shen, X. Effect of fly ash on the pore structure of cement paste under a curing period of 3 years. Constr. Build. Mater. 2017, 144, 493–501. [Google Scholar] [CrossRef]
- Otieno, M.; Beushausen, H.; Alexander, M. Effect of chemical composition of slag on chloride penetration resistance of concrete. Cem. Concr. Compos. 2014, 46, 56–64. [Google Scholar] [CrossRef]
- Wang, C.; Wang, Y.; Meng, Z. Resistance to Chloride Ion Permeability of Concrete Mixed with Fly Ash, Slag Powder, and Silica Fume. Ann. Chim. Sci. Des Matériaux 2020, 44, 67–72. [Google Scholar] [CrossRef]
Material | SiO2 | Al2O3 | Fe2O3 | CaO | MgO | Na2O | K2O | SO3 |
---|---|---|---|---|---|---|---|---|
PC | 19.01 | 3.05 | 2.48 | 67.79 | 0.68 | 0.11 | 0.13 | 3.31 |
SF | 92.45 | 1.38 | 0.15 | 2.29 | 0.00 | 0.00 | 0.42 | 0.00 |
FA | 54.33 | 14.85 | 5.99 | 13.52 | 3.44 | 0.75 | 0.79 | 1.48 |
SC | 28.76 | 17.85 | 0.61 | 33.61 | 13.05 | 0.47 | 0.12 | 3.46 |
Sample | Relative Density | Absorption (%) |
---|---|---|
River coarse aggregate | 2.58 | 2.23 |
Rhyolite coarse aggregate | 2.38 | 6.00 |
River fine aggregate | 2.69 | 2.12 |
Mixture | Water (kg/m3) | PC (kg/m3) | SCM (kg/m3) | Coarse Aggregate (kg/m3) | Fine Aggregate (kg/m3) | w/c |
---|---|---|---|---|---|---|
M-C | 270 | 472 | - | 1009 | 582 | 0.57 |
M-R | 270 | 472 | - | 807 | 692 | 0.57 |
M-SF | 270 | 425 | 47 | 807 | 676 | 0.57 |
M-FA | 270 | 378 | 94 | 807 | 671 | 0.57 |
M-SC | 270 | 378 | 94 | 807 | 677 | 0.57 |
Mixture | Slump (cm) |
---|---|
M-C | 19.0 |
M-R | 14.0 |
M-SF | 7.5 |
M-FA | 16.5 |
M-SC | 12.0 |
Mixture | Average ER (Ω-m) | SD ER (Ω-m) | Corrosion Risk |
---|---|---|---|
M-C | 8.4 | 0.52 | High |
M-R | 92 | 3.7 | High |
M-SF | 482 | 36 | Moderate |
M-FA | 968 | 66 | Low |
M-SC | 263 | 16.3 | Moderate |
Mixture | Average Charge (Coulomb) | SD Charge | Chloride Ion Permeability |
---|---|---|---|
M-C | 7649.0 | 357.8 | High |
M-R | 8164.6 | 1.26 | High |
M-SF | 1004.2 | 31.42 | Moderate |
M-FA | 450.4 | 34.56 | Very Low |
M-SC | 2100.2 | 100.27 | Moderate |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Valenzuela-Leyva, C.K.; Soto-Felix, M.; Gaxiola-Camacho, J.R.; Ojeda-Farias, O.F.; Herrera-Ramirez, J.M.; Carreño-Gallardo, C. Improving Durability and Compressive Strength of Concrete with Rhyolite Aggregates and Recycled Supplementary Cementitious Materials. Buildings 2025, 15, 2257. https://doi.org/10.3390/buildings15132257
Valenzuela-Leyva CK, Soto-Felix M, Gaxiola-Camacho JR, Ojeda-Farias OF, Herrera-Ramirez JM, Carreño-Gallardo C. Improving Durability and Compressive Strength of Concrete with Rhyolite Aggregates and Recycled Supplementary Cementitious Materials. Buildings. 2025; 15(13):2257. https://doi.org/10.3390/buildings15132257
Chicago/Turabian StyleValenzuela-Leyva, Christian Karin, Magnolia Soto-Felix, Jose Ramon Gaxiola-Camacho, Omar Farid Ojeda-Farias, Jose Martin Herrera-Ramirez, and Caleb Carreño-Gallardo. 2025. "Improving Durability and Compressive Strength of Concrete with Rhyolite Aggregates and Recycled Supplementary Cementitious Materials" Buildings 15, no. 13: 2257. https://doi.org/10.3390/buildings15132257
APA StyleValenzuela-Leyva, C. K., Soto-Felix, M., Gaxiola-Camacho, J. R., Ojeda-Farias, O. F., Herrera-Ramirez, J. M., & Carreño-Gallardo, C. (2025). Improving Durability and Compressive Strength of Concrete with Rhyolite Aggregates and Recycled Supplementary Cementitious Materials. Buildings, 15(13), 2257. https://doi.org/10.3390/buildings15132257