Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (71)

Search Parameters:
Keywords = sialyllactose

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 1849 KiB  
Article
HMOs Induce Butyrate Production of Faecalibacterium prausnitzii via Cross-Feeding by Bifidobacterium bifidum with Different Mechanisms for HMO Types
by Haruka Onodera, Yohei Sato, Yosuke Komatsu, Makoto Yamashita, Yuta Watanabe and Takeshi Kokubo
Microorganisms 2025, 13(7), 1705; https://doi.org/10.3390/microorganisms13071705 - 21 Jul 2025
Viewed by 375
Abstract
Human milk oligosaccharides (HMOs) have garnered significant attention as one of the bioactive components in human milk, with growing applications in infant formula and food products. HMOs enhance butyrate production, which is produced by butyrate-producing bacteria such as Faecalibacterium prausnitzii and contributes to [...] Read more.
Human milk oligosaccharides (HMOs) have garnered significant attention as one of the bioactive components in human milk, with growing applications in infant formula and food products. HMOs enhance butyrate production, which is produced by butyrate-producing bacteria such as Faecalibacterium prausnitzii and contributes to gut health through its diverse biological functions. However, the specific mechanisms by which individual HMOs promote butyrate production remain unclear. In this study, we conducted in vitro co-culture experiments of F. prausnitzii and Bifidobacterium bifidum, examining their relative abundance, fatty acid production, residual sugar levels, and gene expression. Our results revealed that B. bifidum utilizes HMOs and provides the constituent sugars to F. prausnitzii, thereby promoting butyrate production by F. prausnitzii. Furthermore, we found that the underlying mechanisms vary depending on the structure of the HMOs. Specifically, 2′-fucosyllactose and 3′-sialyllactose enhance the butyrate production efficiency of F. prausnitzii, while 6′-sialyllactose primarily promotes the growth of F. prausnitzii. These findings not only deepen our understanding of how HMOs influence infant gut health but also suggest new directions for developing nutritional products that leverage the distinct functional properties of each HMO. Full article
(This article belongs to the Special Issue Gut Microbiota, Diet, and Gastrointestinal Cancer)
Show Figures

Figure 1

16 pages, 1816 KiB  
Article
Impact of Maternal Metabolic Status on Human Milk Oligosaccharide Composition: A Population-Based Cross-Sectional Study in Central South China
by Zhi Huang, Shurong Luo, Yuxin Li, Ziming Li, Chuanzhu Yi, Yan Zhang, Yuming Hu and Bo Chen
Nutrients 2025, 17(9), 1480; https://doi.org/10.3390/nu17091480 - 28 Apr 2025
Viewed by 568
Abstract
Background: Human milk oligosaccharides (HMOs) serve as critical bioactive components supporting infant growth and development. However, the influence of maternal metabolic factors during lactation on HMOs remains to be fully elucidated. This study aimed to investigate the association between maternal metabolic factors and [...] Read more.
Background: Human milk oligosaccharides (HMOs) serve as critical bioactive components supporting infant growth and development. However, the influence of maternal metabolic factors during lactation on HMOs remains to be fully elucidated. This study aimed to investigate the association between maternal metabolic factors and HMOs, as well as the potential mediating effects of these factors. Methods: An observational cross-sectional study was conducted in Central South China, enrolling 196 lactating mothers. HMOs were quantified using liquid chromatography-tandem mass spectrometry. Maternal metabolic factors were assessed through physical examinations. Associations between metabolic factors and HMOs were analyzed using linear regression, and mediation effects were evaluated. Results: HMOs from Central South China were predominantly composed of neutral fucosylated HMOs. Significant differences were observed in the levels of several HMOs across maternal age groups and lactation periods. The concentration of 3′-sialyllactose (3′-SL) exhibited a negative association with the pre-pregnancy body mass index (BMI) (β = −0.16, 95% CI: −0.29, −0.03; p = 0.02), while a positive association was found with maternal heart rate (β = 0.14, 95% CI: 0.01, 0.27; p = 0.04). However, these associations were different between secretor and non-secretor mothers. Associations of 3′-SL with pre-pregnancy BMI and maternal HR were only found in the secretor mothers. Triglycerides and low-density lipoprotein cholesterol mediated the associations between maternal pre-pregnancy BMI and 3′-sialyllactose (3′-SL). Conclusions: The variations of several HMOs among mothers from Central South China were associated with maternal age and lactation period. The concentration of 3′-SL was negatively correlated with maternal pre-pregnancy BMI. The potential mechanism underlying the influence of maternal BMI on 3′-SL levels may involve maternal lipid metabolism and genetic factors. Full article
(This article belongs to the Special Issue Maternal Diet, Epigenetic Mechanisms and Metabolic Programming)
Show Figures

Figure 1

19 pages, 10044 KiB  
Article
Sialyllactose Attenuates Inflammation and Injury of Intestinal Epithelial Cells upon Enterotoxigenic Escherichia coli Infection
by Qiming Duan, Bing Yu, Zhiqing Huang, Yuheng Luo, Ping Zheng, Xiangbing Mao, Jie Yu, Junqiu Luo, Hui Yan and Jun He
Int. J. Mol. Sci. 2025, 26(8), 3860; https://doi.org/10.3390/ijms26083860 - 18 Apr 2025
Viewed by 475
Abstract
Sialyllactose (SL), a bioactive trisaccharide abundant in porcine colostrum, demonstrates multifunctional properties including antimicrobial activity, immune regulation, and apoptosis inhibition. This research uncovers the mechanisms by which SL mitigates enterotoxigenic Escherichia coli (ETEC)-mediated damage to intestinal barrier integrity, employing IPEC-J2 porcine epithelial models. [...] Read more.
Sialyllactose (SL), a bioactive trisaccharide abundant in porcine colostrum, demonstrates multifunctional properties including antimicrobial activity, immune regulation, and apoptosis inhibition. This research uncovers the mechanisms by which SL mitigates enterotoxigenic Escherichia coli (ETEC)-mediated damage to intestinal barrier integrity, employing IPEC-J2 porcine epithelial models. SL pre-treatment effectively blocked pathogen adhesion by competitively binding to cellular receptors, concurrently mitigating inflammation through significant suppression of TNF-α, IL-1β, and IL-6 expression (p < 0.05). Notably, SL exhibited functional parallels to the NF-κB inhibitor BAY11-7082, jointly enhancing tight junction integrity via ZO-1 protein stabilization and inhibiting pro-inflammatory signaling through coordinated suppression of IκB-α/NF-κB phosphorylation cascades. The dual-action mechanism combines molecular interception of microbial attachment with intracellular modulation of the TLR4/MyD88/NF-κB pathway, effectively resolving both pathogenic colonization and inflammatory amplification. These findings position SL as a potential therapeutic application nutraceutical for livestock, with the capacity to address post-weaning porcine enteritis through functional feed formulations that synergistically enhance intestinal barrier resilience while curbing ETEC-mediated inflammatory pathogenesis. Full article
(This article belongs to the Section Bioactives and Nutraceuticals)
Show Figures

Graphical abstract

16 pages, 3187 KiB  
Article
Non-Targeted Metabolomics of White Rhinoceros Colostrum and Its Changes During Early Lactation by 1H Nuclear Magnetic Resonance Spectroscopy
by Gernot Osthoff and Petronella Nieuwoudt
Metabolites 2024, 14(11), 637; https://doi.org/10.3390/metabo14110637 - 18 Nov 2024
Cited by 3 | Viewed by 1097
Abstract
Background/Objectives: Dynamic changes in components from colostrum to mature milk occur in any mammal. However, the time it takes to reach the mature milk stage differs between taxa and species, as do the final concentrations of all the components. The white rhinoceros belongs [...] Read more.
Background/Objectives: Dynamic changes in components from colostrum to mature milk occur in any mammal. However, the time it takes to reach the mature milk stage differs between taxa and species, as do the final concentrations of all the components. The white rhinoceros belongs to the family Perissodactyla, of which the milk and milk metabolome of the domesticated Equidae have been studied to some detail. Metabolomic information on the colostrum and milk of the Rhinocerotidae is lacking. Methods: Colostrum and milk were obtained from seven white rhinoceroses. Of note is that it was their first parturition and all followed the same diet, two factors known to affect colostrum composition and its changes during early lactation in domesticated mammals. Milk serum was prepared by the ultrafiltration of the milk samples. Untargeted 1N NMR spectra were processed with Topspin 3.2, calibration was carried out according to the alanine signal and the identification of signals was carried out with Chenomx and assignments in the literature. Statistical analysis of the data was carried out using MetaboAnalyst 6.0. Results: The changes in the metabolites were followed during the first 7 days of lactation as well as on day 20. The amounts of amino acids and their derivatives, organic acids and lipid metabolites decreased over lactation, while carbohydrates and their derivatives increased. The colostrum phase ended on day 2, while the transition to mature milk seemed to be complete by day 7. From day 3 to 7, galactose metabolism and tyrosine metabolism were uprated. Of interest is the presence of the oligosaccharide 3′-sialyllactose on days 3 and 4 of lactation. Conclusions: Mainly the content of carbohydrates increased over lactation, specifically lactose. The 3′-sialyllactose content peaked on days 3 and 4 of lactation. The colostrum phase ended on day 2. The mature milk stage was reached by day 7. The galactose metabolism and tyrosine metabolism were uprated after day 3 of lactation. Full article
(This article belongs to the Special Issue Animal Nutritional Metabolism and Toxicosis Disease)
Show Figures

Figure 1

12 pages, 768 KiB  
Brief Report
Effects of 3′-Sialyllactose on Symptom Improvement in Patients with Knee Osteoarthritis: A Randomized Pilot Study
by Eun-Jung Park, Li-La Kim, Hiroe Go and Sung-Hoon Kim
Nutrients 2024, 16(19), 3410; https://doi.org/10.3390/nu16193410 - 8 Oct 2024
Cited by 1 | Viewed by 1412
Abstract
Background/Objectives: 3′-Sialyllactose (3′-SL), a human milk oligosaccharide, has anti-inflammatory effects and is demonstrated to have protective effects against osteoarthritis (OA) in vitro and in vivo. However, this hypothesis remains to be investigated in a clinical setting. Herein, we investigated the effects of 3′-SL [...] Read more.
Background/Objectives: 3′-Sialyllactose (3′-SL), a human milk oligosaccharide, has anti-inflammatory effects and is demonstrated to have protective effects against osteoarthritis (OA) in vitro and in vivo. However, this hypothesis remains to be investigated in a clinical setting. Herein, we investigated the effects of 3′-SL on pain and physical function in patients with knee OA. Methods: Sixty patients with knee OA with Kellgren and Lawrence grades (KL-grades) 1–4 and Korean Western Ontario and McMaster Universities Osteoarthritis Index (KWOMAC) scores ≥30 were randomly assigned to the placebo (n = 20), 3′-SL 200 mg (n = 20), and 3′-SL 600 mg (n = 20) groups. For 12 weeks, 3′-SL or placebo was administered to patients once a day. Clinical efficacy was evaluated using a visual analog scale (VAS) for pain and KWOMAC for physical function at baseline and at 6 and 12 weeks. Adverse effects were assessed for 12 weeks. Results: Significant reductions in VAS and KWOMAC scores were observed at 12 weeks compared with the baseline in the 3′-SL group. No severe adverse effects were observed over 12 weeks. Conclusions: 3′-SL reduced pain in patients with knee OA, improved daily life movements, and was safe, suggesting that 3′-SL might be an effective treatment for knee OA without severe side effects. Full article
(This article belongs to the Section Nutritional Immunology)
Show Figures

Figure 1

14 pages, 2841 KiB  
Article
Bifidogenic Effect of Human Milk Oligosaccharides on Pediatric IBD Fecal Microbiota
by Nize Otaru, Danica Bajic, Pieter Van den Abbeele, Saskia Vande Velde, Stephanie Van Biervliet, Robert E. Steinert and Ateequr Rehman
Microorganisms 2024, 12(10), 1977; https://doi.org/10.3390/microorganisms12101977 - 30 Sep 2024
Cited by 1 | Viewed by 2012
Abstract
The prevalence of pediatric inflammatory bowel disease (pIBD) has been increasing over the last two decades. Yet, treatment strategies are still limited, in part due to the multifactorial nature of the disease and the complex interplay between genetic, environmental, dietary, immune, and gut [...] Read more.
The prevalence of pediatric inflammatory bowel disease (pIBD) has been increasing over the last two decades. Yet, treatment strategies are still limited, in part due to the multifactorial nature of the disease and the complex interplay between genetic, environmental, dietary, immune, and gut microbial factors in its etiology. With their direct and indirect anti-inflammatory properties, human milk oligosaccharides (HMOs) are a promising treatment and management strategy for IBD. However, to date there are no insights into how HMOs may affect pIBD microbiota. Here, we compared the effects of 2′fucosyllactose (2′FL), difucosyllactose (DFL), 3′sialyllactose (3′SL), and blends thereof with fructooligosaccharide (FOS) on microbiota functionality (short- and branched-chain fatty acids, pH, and gas production) and composition (quantitative shallow shotgun sequencing) using fecal material from eight different pediatric Crohn’s disease patients inoculated in the SIFR® technology. In general, all HMO treatments significantly increased total short-chain fatty acid production when compared with FOS, despite equal gas production. We found that 2′FL, either alone or in combination with DFL and 3′SL, exhibited a strong acetogenic and propiogenic effect, and 3′SL an acetogenic effect that surpassed the effects observed with FOS. No differences in overall community diversity between HMO- and FOS-treated pIBD microbiota were observed. There was, however, a stronger bifidogenic effect of 2′FL, 3′SL, 2′FL/DFL, and 2′FL/DFL + 3′SL when compared with FOS. In general, 3′SL and HMO blends enriched a broader species profile, including taxa with potentially anti-inflammatory properties, such as Faecalibacterium prausnitzii and Blautia species. This study suggests HMOs as a promising strategy to beneficially alter the gut microbial profile in pIBD. Full article
(This article belongs to the Special Issue Intestinal Dysbiosis)
Show Figures

Figure 1

11 pages, 2085 KiB  
Brief Report
6′-Sialyllactose Alleviates Muscle Fatigue through Reduced Blood Lactate Level after Treadmill Exercise in Mice
by Eun-Jung Park, Li-La Kim, Jie-Oh Lee, Hay-Young Lee, Yong-An Kim and Hiroe Go
Nutrients 2024, 16(17), 2957; https://doi.org/10.3390/nu16172957 - 3 Sep 2024
Cited by 1 | Viewed by 2437
Abstract
6′-Sialyllactose (6′-SL), found in human breast milk, exhibits anti-inflammatory, immune function-enhancing, brain development-promoting, and gut health-improving effects. However, its effects on muscle fatigue remain unknown. Here, we aimed to investigate the effects of 6′-SL on blood lactate level, muscle fiber type, and oxidative [...] Read more.
6′-Sialyllactose (6′-SL), found in human breast milk, exhibits anti-inflammatory, immune function-enhancing, brain development-promoting, and gut health-improving effects. However, its effects on muscle fatigue remain unknown. Here, we aimed to investigate the effects of 6′-SL on blood lactate level, muscle fiber type, and oxidative phosphorylation protein complexes (OXPHOS) in muscle after exercise using C57BL/6J male mice. C57BL/6J mice were randomly assigned to control or 100 mg/kg 6′-SL. After 12 weeks of 6′-SL administration, the mice were made to perform treadmill exercise; their blood lactate and glucose levels were measured at the basal level (rest) and 0, 5, and 10 min after treadmill exercise. Results showed that 6′-SL treatment in C57BL/6J mice significantly reduced blood lactate level and improved blood glucose level. Moreover, 6′-SL increased the expression of slow-myosin heavy chain (MHC) and OXPHOS in gastrocnemius muscle. In addition, 6′-SL treatment for 12 weeks did not affect food intake, serum biomarkers of tissue injury, and lipid profiles compared with those of the controls. These findings indicate that non-toxic 6′-SL suppressed muscle fatigue during exercise by promoting protein expression of muscle fibers, especially slow-twitch muscle fibers characterized by abundant OXPHOS complexes and decreased blood lactate level. This study suggests that 6′-SL holds promise as a nutritional supplement in exercise and clinical settings, subject to further validation. Full article
(This article belongs to the Section Sports Nutrition)
Show Figures

Figure 1

18 pages, 3939 KiB  
Article
Structural Characterization and Abundance of Sialylated Milk Oligosaccharides in Holstein Cows during Early Lactation
by Lisa Isernhagen, Christina E. Galuska, Andreas Vernunft and Sebastian P. Galuska
Foods 2024, 13(16), 2484; https://doi.org/10.3390/foods13162484 - 7 Aug 2024
Cited by 1 | Viewed by 1430
Abstract
Among other bioactive molecules, milk contains high amounts of sialylated milk oligosaccharides (MOs) that influence numerous processes in the offspring. For instance, sialylated MOs inhibit the invasion of pathogens and positively influence the gut microbiome to support the optimal development of the offspring. [...] Read more.
Among other bioactive molecules, milk contains high amounts of sialylated milk oligosaccharides (MOs) that influence numerous processes in the offspring. For instance, sialylated MOs inhibit the invasion of pathogens and positively influence the gut microbiome to support the optimal development of the offspring. For these reasons, sialylated MOs are also used in infant formula as well as food supplements and are potential therapeutic substances for humans and animals. Because of the high interest in sialylated bovine MOs (bMOs), we used several analytical approaches, such as gas and liquid chromatography in combination with mass spectrometry, to investigate in detail the profile of sialylated bMOs in the milk of Holstein Friesian cows during early lactation. Most of the 40 MOs identified in this study were sialylated, and a rapid decrease in all detected sialylated bMOs took place during the first day of lactation. Remarkably, we observed a high variance within the sialylation level during the first two days after calving. Therefore, our results suggest that the content of sialylated MOs might be an additional quality marker for the bioactivity of colostrum and transitional milk to ensure its optimized application for the production of milk replacer and food supplements. Full article
Show Figures

Figure 1

9 pages, 924 KiB  
Brief Report
6′-Sialyllactose Enhances Exercise Performance via Increased Muscle Mass and Strength
by Eun-Jung Park, Li-La Kim, Jie-Oh Lee, Hay-Young Lee, Yong-An Kim and Hi-Roe Go
Nutrients 2024, 16(16), 2600; https://doi.org/10.3390/nu16162600 - 7 Aug 2024
Cited by 2 | Viewed by 3131
Abstract
Sialyllactose (SL) is a functional human milk oligosaccharide essential for immune support, brain development, intestinal maturation, and antiviral defense. However, despite its established health benefits, the effect of SL on exercise performance and muscle mass in mice remains unknown. Here, we aimed to [...] Read more.
Sialyllactose (SL) is a functional human milk oligosaccharide essential for immune support, brain development, intestinal maturation, and antiviral defense. However, despite its established health benefits, the effect of SL on exercise performance and muscle mass in mice remains unknown. Here, we aimed to investigate, for the first time, the effects of 6′-SL on muscle functions. Seven-week-old male C57BL/6J mice were administered 100 mg/kg 6′-SL for 12 weeks, after which exhaustive treadmill performance was conducted. Moreover, muscle strength was examined by grip strength, and muscle phenotype characteristics such as muscle mass, muscle fiber size, and muscle protein expression were also examined. The administration of 6′-SL significantly improved exhaustive treadmill performance metrics, including distance and exhaustion time. Grip strength was also increased by 6′-SL administration. Additionally, 6′-SL increased muscle mass in both the gastrocnemius (GAS) and soleus. 6′-SL administration led to an increase in the minimum Feret’s diameter and the protein expression of total myosin heavy chain in the GAS muscle. In conclusion, 6′-SL administration in vivo led to increased running distance and time by increasing muscle mass and strength. These findings collectively indicate that 6′-SL is a potential agent for improving muscle health and exercise performance. Full article
(This article belongs to the Special Issue Sports Nutrition in Endurance Performance)
Show Figures

Graphical abstract

19 pages, 4281 KiB  
Article
NMR Studies of the Interactions between Sialyllactoses and the Polysialytransferase Domain for Polysialylation Inhibition
by Bo Lu, Si-Ming Liao, Shi-Jie Liang, Jian-Xiu Li, Xue-Hui Liu, Ri-Bo Huang and Guo-Ping Zhou
Curr. Issues Mol. Biol. 2024, 46(6), 5682-5700; https://doi.org/10.3390/cimb46060340 - 7 Jun 2024
Viewed by 1759
Abstract
It is known that sialyllactose (SL) in mammalians is a major source of sialic acid (Sia), which can further form cytidine monophosphate sialic acid (CMP-Sia), and the final product is polysialic acid (polySia) using polysialyltransferases (polySTs) on the neural cell adhesion molecule (NCAM). [...] Read more.
It is known that sialyllactose (SL) in mammalians is a major source of sialic acid (Sia), which can further form cytidine monophosphate sialic acid (CMP-Sia), and the final product is polysialic acid (polySia) using polysialyltransferases (polySTs) on the neural cell adhesion molecule (NCAM). This process is called NCAM polysialylation. The overexpression of polysialylation is strongly related to cancer cell migration, invasion, and metastasis. In order to inhibit the overexpression of polysialylation, in this study, SL was selected as an inhibitor to test whether polysialylation could be inhibited. Our results suggest that the interactions between the polysialyltransferase domain (PSTD) in polyST and CMP-Siaand the PSTD and polySia could be inhibited when the 3′-sialyllactose (3′-SL) or 6′-sialyllactose (6′-SL) concentration is about 0.5 mM or 6′-SL and 3 mM, respectively. The results also show that SLs (particularly for 3′-SL) are the ideal inhibitors compared with another two inhibitors, low-molecular-weight heparin (LMWH) and cytidine monophosphate (CMP), because 3’-SL can not only be used to inhibit NCAM polysialylation, but is also one of the best supplements for infant formula and the gut health system. Full article
(This article belongs to the Section Biochemistry, Molecular and Cellular Biology)
Show Figures

Figure 1

21 pages, 2536 KiB  
Article
Patterns of Human Milk Oligosaccharides in Mature Milk Are Associated with Certain Gut Microbiota in Infants
by Shuai Mao, Ai Zhao, Hua Jiang, Jingyu Yan, Wuxian Zhong, Yiping Xun and Yumei Zhang
Nutrients 2024, 16(9), 1287; https://doi.org/10.3390/nu16091287 - 25 Apr 2024
Cited by 4 | Viewed by 2560
Abstract
Human milk oligosaccharides (HMOs) are complexes that play a crucial role in shaping the early-life gut microbiota. This study intends to explore whether HMO patterns are associated with the gut microbiota of infants. We included 96 Chinese breastfeeding mother–infant dyads. Breast milk and [...] Read more.
Human milk oligosaccharides (HMOs) are complexes that play a crucial role in shaping the early-life gut microbiota. This study intends to explore whether HMO patterns are associated with the gut microbiota of infants. We included 96 Chinese breastfeeding mother–infant dyads. Breast milk and infant faecal samples were collected and tested. With milk 2′-fucosyllactose, difucosyllactose, and lacto-N-fucopentaose-I as biomarkers, we divided the mothers into secretor and non-secretor groups. HMO patterns were extracted using principal component analysis. The majority (70.7%) of mothers were categorised as secretor and five different HMO patterns were identified. After adjustment, the infants of secretor mothers exhibited a lower relative abundance of Bifidobacterium bifidum (β = −0.245, 95%CI: −0.465~−0.025). An HMO pattern characterised by high levels of 3-fucosyllactose, lacto-N-fucopentaose-III, and lacto-N-neodifucohexaose-II was positively associated with the relative abundance of Bifidobacterium breve (p = 0.014), while the pattern characterised by lacto-N-neotetraose, 6′-sialyllactose, and sialyllacto-N-tetraose-b was negatively associated with Bifidobacterium breve (p = 0.027). The pattern characterised by high levels of monofucosyl-lacto-N-hexaose-III and monofucosyl-lacto-N-neohexaose was positively associated with Bifidobacterium dentium (p = 0.025) and Bifidobacterium bifidum (p < 0.001), respectively. This study suggests that HMO patterns from mature breast milk were associated with certain gut microbiota of breastfed infants. Full article
(This article belongs to the Special Issue Roles of Dairy Intake in Health Development)
Show Figures

Figure 1

16 pages, 3296 KiB  
Article
Isolation and Characterisation of Streptococcus spp. with Human Milk Oligosaccharides Utilization Capacity from Human Milk
by Ye Zhou, Xiaoming Liu, Haiqin Chen, Jianxin Zhao, Hao Zhang, Wei Chen and Bo Yang
Foods 2024, 13(9), 1291; https://doi.org/10.3390/foods13091291 - 23 Apr 2024
Cited by 1 | Viewed by 2105
Abstract
Human milk oligosaccharides (HMO) that promote the growth of beneficial gut microbes in infants are abundant in human milk. Streptococcus, one of the dominant genera in human milk microbiota, is also highly prevalent in the infant gut microbiota, possibly due to its [...] Read more.
Human milk oligosaccharides (HMO) that promote the growth of beneficial gut microbes in infants are abundant in human milk. Streptococcus, one of the dominant genera in human milk microbiota, is also highly prevalent in the infant gut microbiota, possibly due to its adeptness at utilizing HMOs. While previous studies have mainly focused on HMO interactions with gut bacteria like Bifidobacterium and Bacteroides spp., the interaction with Streptococcus spp. has not been fully explored. In this study, Streptococcus spp. was isolated from human milk and identified to exhibit extensive capabilities in utilizing HMOs. Their consumption rates of 2′-fucosyllactose (2′-FL), 6′-sialyllactose (6′-SL), and lacto-N-tetraose (LNT) closely matched those of Bifidobacterium longum subsp. infantis ATCC 15697. Furthermore, we assessed the safety-related genes in the genomes of the Streptococcus species capable of utilizing HMOs, revealing potential virulence and resistance genes. In addition, no haemolytic activity was observed. These findings expand the knowledge of metabolic interactions and networks within the microbiota of human milk and the early life human gut. Full article
Show Figures

Figure 1

19 pages, 2508 KiB  
Article
HMOs Impact the Gut Microbiome of Children and Adults Starting from Low Predicted Daily Doses
by Danica Bajic, Frank Wiens, Eva Wintergerst, Stef Deyaert, Aurélien Baudot and Pieter Van den Abbeele
Metabolites 2024, 14(4), 239; https://doi.org/10.3390/metabo14040239 - 20 Apr 2024
Cited by 4 | Viewed by 4030
Abstract
Recent studies suggest that the dietary intake of human milk oligosaccharides (HMOs) provides health benefits from infancy up to adulthood. Thus far, beneficial changes in the adult gut microbiome have been observed at oral doses of 5–20 g/day of HMOs. Efficacy of lower [...] Read more.
Recent studies suggest that the dietary intake of human milk oligosaccharides (HMOs) provides health benefits from infancy up to adulthood. Thus far, beneficial changes in the adult gut microbiome have been observed at oral doses of 5–20 g/day of HMOs. Efficacy of lower doses has rarely been tested. We assessed four HMO molecular species—2′Fucosyllactose (2′FL), Lacto-N-neotetraose (LNnT), 3′Sialyllactose (3′SL), and 6′Sialyllactose (6′SL)—at predicted doses from 0.3 to 5 g/day for 6-year-old children and adults (n = 6 each), using ex vivo SIFR® technology (Cryptobiotix, Ghent, Belgium). This technology employing bioreactor fermentation on fecal samples enables us to investigate microbial fermentation products that are intractable in vivo given their rapid absorption/consumption in the human gut. We found that HMOs significantly increased short-chain fatty acids (SCFAs), acetate, propionate (in children/adults), and butyrate (in adults) from predicted doses of 0.3–0.5 g/day onwards, with stronger effects as dosing increased. The fermentation of 6′SL had the greatest effect on propionate, LNnT most strongly increased butyrate, and 2′FL and 3′SL most strongly increased acetate. An untargeted metabolomic analysis revealed that HMOs enhanced immune-related metabolites beyond SCFAs, such as aromatic lactic acids (indole-3-lactic acid/3-phenyllactic acid) and 2-hydroxyisocaproic acid, as well as gut–brain-axis-related metabolites (γ-aminobutyric acid/3-hydroxybutyric acid/acetylcholine) and vitamins. The effects of low doses of HMOs potentially originate from the highly specific stimulation of keystone species belonging to, for example, the Bifidobacteriaceae family, which had already significantly increased at doses of only 0.5 g/day LNnT (adults) and 1 g/day 2′FL (children/adults). Full article
Show Figures

Graphical abstract

21 pages, 5285 KiB  
Article
An In Vitro Colonic Fermentation Study of the Effects of Human Milk Oligosaccharides on Gut Microbiota and Short-Chain Fatty Acid Production in Infants Aged 0–6 Months
by Menglu Li, Han Lu, Yuling Xue, Yibing Ning, Qingbin Yuan, Huawen Li, Yannan He, Xianxian Jia and Shijie Wang
Foods 2024, 13(6), 921; https://doi.org/10.3390/foods13060921 - 18 Mar 2024
Cited by 9 | Viewed by 3320
Abstract
The impact of five human milk oligosaccharides (HMOs)—2′-fucosyllactose (2FL), 3′-sialyllactose (3SL), 6′-sialyllactose (6SL), lacto-N-tetraose (LNT), and lacto-N-neotetraose (LNnT)—on the gut microbiota and short-chain fatty acid (SCFA) metabolites in infants aged 0–6 months was assessed through in vitro fermentation. Analyses of the influence of [...] Read more.
The impact of five human milk oligosaccharides (HMOs)—2′-fucosyllactose (2FL), 3′-sialyllactose (3SL), 6′-sialyllactose (6SL), lacto-N-tetraose (LNT), and lacto-N-neotetraose (LNnT)—on the gut microbiota and short-chain fatty acid (SCFA) metabolites in infants aged 0–6 months was assessed through in vitro fermentation. Analyses of the influence of different HMOs on the composition and distribution of infant gut microbiota and on SCFA levels were conducted using 16S rRNA sequencing, quantitative real-time PCR (qPCR), and gas chromatography (GC), respectively. The findings indicated the crucial role of the initial microbiota composition in shaping fermentation outcomes. Fermentation maintained the dominant genera species in the intestine but influenced their abundance and distribution. Most of the 10 Bifidobacteria strains effectively utilized HMOs or their degradation products, particularly demonstrating proficiency in utilizing 2FL and sialylated HMOs compared to non-fucosylated neutral HMOs. Moreover, our study using B. infantis-dominant strains and B. breve-dominant strains as inocula revealed varying acetic acid levels produced by Bifidobacteria upon HMO degradation. Specifically, the B. infantis-dominant strain yielded notably higher acetic acid levels than the B. breve-dominant strain (p = 0.000), with minimal propionic and butyric acid production observed at fermentation’s conclusion. These findings suggest the potential utilization of HMOs in developing microbiota-targeted foods for infants. Full article
Show Figures

Figure 1

12 pages, 1710 KiB  
Article
Sialyllactose Enhances the Short-Chain Fatty Acid Production and Barrier Function of Gut Epithelial Cells via Nonbifidogenic Modification of the Fecal Microbiome in Human Adults
by Yohei Sato, Masaya Kanayama, Shiori Nakajima, Yukihiro Hishida and Yuta Watanabe
Microorganisms 2024, 12(2), 252; https://doi.org/10.3390/microorganisms12020252 - 25 Jan 2024
Cited by 6 | Viewed by 2708
Abstract
Although various benefits of human milk oligosaccharides (HMOs) have been reported, such as promoting Bifidobacterium growth in the infant gut, their effects on adults have not been fully studied. This study investigated the effects of two types of sialyllactose, 3′-sialyllactose (3′-SL) and 6′-sialyllactose [...] Read more.
Although various benefits of human milk oligosaccharides (HMOs) have been reported, such as promoting Bifidobacterium growth in the infant gut, their effects on adults have not been fully studied. This study investigated the effects of two types of sialyllactose, 3′-sialyllactose (3′-SL) and 6′-sialyllactose (6′-SL), on the adult intestinal microbiome using the simulator of human intestinal microbial ecosystem (SHIME®), which can simulate human gastrointestinal conditions. HPLC metabolite analysis showed that sialyllactose (SL) supplementation increased the short-chain fatty acid content of SHIME culture broth. Moreover, 16S rRNA gene sequencing analysis revealed that SL promoted the growth of Phascolarctobacterium and Lachnospiraceae, short-chain fatty acid-producing bacteria, but not the growth of Bifidobacterium. Altogether, both types of SL stimulated an increase in short-chain fatty acids, including propionate and butyrate. Additionally, SHIME culture supernatant supplemented with SL improved the intestinal barrier function in Caco-2 cell monolayers. These results suggest that SL could act as a unique prebiotic among other HMOs with a nonbifidogenic effect, resulting in intestinal barrier protection. Full article
Show Figures

Figure 1

Back to TopTop