Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (21)

Search Parameters:
Keywords = short-beam three-point bending test

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 6813 KB  
Article
Effects of Matrix Properties on the Interfacial Shear Strength Between Carbon Fiber and Various Thermoplastic Polymers, and Their Influence on the Mechanical Properties of Composites
by Kazuto Tanaka and Ryota Sakakibara
J. Compos. Sci. 2025, 9(4), 174; https://doi.org/10.3390/jcs9040174 - 2 Apr 2025
Viewed by 1070
Abstract
Although fiber–matrix interfacial strengths, which affect the mechanical properties of fiber-reinforced plastics (FRPs), are considered to be determined by complex factors, few studies have systematically evaluated the relationship between the matrix properties and the fiber–matrix interfacial shear strength. In this study, the properties [...] Read more.
Although fiber–matrix interfacial strengths, which affect the mechanical properties of fiber-reinforced plastics (FRPs), are considered to be determined by complex factors, few studies have systematically evaluated the relationship between the matrix properties and the fiber–matrix interfacial shear strength. In this study, the properties of various thermoplastics were measured, and the matrix tightening stress that constricts the fiber was simulated using finite element method (FEM) analysis. The relationships between the fiber–matrix interfacial shear strength and the matrix properties were clarified. The mechanical properties of carbon fiber reinforced thermoplastic (CFRTP) laminates were also evaluated, and the relationships between the fiber–matrix interfacial shear strength and the mechanical properties of CFRTP laminates were examined. The fiber–matrix interfacial shear strength showed a positive correlation with the matrix tightening stress tightening the fiber in the radial direction, as well as with matrix density, tensile strength, modulus, and melting temperature, while a negative correlation was found with the coefficient of linear expansion of the matrix. A higher fiber–matrix interfacial shear strength can be achieved by using a matrix with higher density, even without direct evaluation of the fiber–matrix interfacial strength, as the fiber–matrix interfacial shear strength showed a strong positive correlation with matrix density. Furthermore, the mechanical properties of CFRTP laminates were enhanced when matrices with higher fiber–matrix interfacial shear strength were used. Full article
(This article belongs to the Special Issue Carbon Fiber Composites, 4th Edition)
Show Figures

Figure 1

16 pages, 28127 KB  
Article
Impact Behavior and Residual Strength of PEEK/CF-Laminated Composites with Various Stacking Sequences
by Alexander V. Eremin, Mikhail V. Burkov, Alexey A. Bogdanov, Anastasia A. Kononova and Pavel S. Lyubutin
Polymers 2024, 16(5), 717; https://doi.org/10.3390/polym16050717 - 6 Mar 2024
Cited by 5 | Viewed by 2766
Abstract
Carbon fiber-reinforced composites are popular due to their high strength and light weight; thus, the structures demonstrate high performance and specific strength. However, these composites are susceptible to impact damage. The objective of this research was to study the behavior of carbon fiber-reinforced [...] Read more.
Carbon fiber-reinforced composites are popular due to their high strength and light weight; thus, the structures demonstrate high performance and specific strength. However, these composites are susceptible to impact damage. The objective of this research was to study the behavior of carbon fiber-reinforced laminates based on a polyetheretherketone (PEEK) matrix with six stacking sequences under static and impact loading. Four-point bending, short-beam bending, drop weight impact, and compression after impact tests were carried out. The results were complemented with digital shearography to estimate the damaged areas. Finite element modeling served to assess the failure mechanisms, such as fiber and matrix failure, in different layers due to tension of compression. Three behavior pattern of layups under drop-weight impact were found: (i)—energy redistribution due to mostly linear behavior (like a trampoline) and thus lower kinetic energy absorption for damage initiation, (ii)—moderate absorption of energy with initiation and propagation of concentrated damage with depressed redistribution of energy in the material, (iii)—moderate energy absorption with good redistribution due to initiation of small, dispersed damage. The results can be used to predict the mechanical behavior of composites with different stacking sequences in materials for proper structural design. Full article
(This article belongs to the Special Issue Dynamic Behavior of Polymer Composite Materials and Structures)
Show Figures

Figure 1

18 pages, 14551 KB  
Article
Design and Optimization of 3D-Printed Variable Cross-Section I-Beams Reinforced with Continuous and Short Fibers
by Xin Zhang, Peijie Sun, Yu Zhang, Fei Wang, Yun Tu, Yunsheng Ma and Chun Zhang
Polymers 2024, 16(5), 684; https://doi.org/10.3390/polym16050684 - 2 Mar 2024
Cited by 8 | Viewed by 2665
Abstract
By integrating fiber-reinforced composites (FRCs) with Three-dimensional (3D) printing, the flexibility of lightweight structures was promoted while eliminating the mold’s limitations. The design of the I-beam configuration was performed according to the equal-strength philosophy. Then, a multi-objective optimization analysis was conducted based on [...] Read more.
By integrating fiber-reinforced composites (FRCs) with Three-dimensional (3D) printing, the flexibility of lightweight structures was promoted while eliminating the mold’s limitations. The design of the I-beam configuration was performed according to the equal-strength philosophy. Then, a multi-objective optimization analysis was conducted based on the NSGA-II algorithm. 3D printing was utilized to fabricate I-beams in three kinds of configurations and seven distinct materials. The flexural properties of the primitive (P-type), the designed (D-type), and the optimized (O-type) configurations were verified via three-point bending testing at a speed of 2 mm/min. Further, by combining different reinforcements, including continuous carbon fibers (CCFs), short carbon fibers (SCFs), and short glass fibers (SGFs) and distinct matrices, including polyamides (PAs), and polylactides (PLAs), the 3D-printed I-beams were studied experimentally. The results indicate that designed and optimized I-beams exhibit a 14.46% and 30.05% increase in the stiffness-to-mass ratio and a 7.83% and 40.59% increment in the load-to-mass ratio, respectively. The CCFs and SCFs result in an outstanding accretion in the flexural properties of 3D-printed I-beams, while the accretion is 2926% and 1070% in the stiffness-to-mass ratio and 656.7% and 344.4% in the load-to-mass ratio, respectively. For the matrix, PAs are a superior choice compared to PLAs for enhancing the positive impact of reinforcements. Full article
(This article belongs to the Special Issue Additive Manufacturing of Fibre Reinforced Polymer Composites)
Show Figures

Graphical abstract

19 pages, 6811 KB  
Article
Mechanical Anisotropy of Injection-Molded PP/PS Polymer Blends and Correlation with Morphology
by Tetsuo Takayama and Rin Shibazaki
Polymers 2023, 15(20), 4167; https://doi.org/10.3390/polym15204167 - 20 Oct 2023
Cited by 4 | Viewed by 2189
Abstract
The molecular orientation formed by melt-forming processes depends strongly on the flow direction. Quantifying this anisotropy, which is more pronounced in polymer blends, is important for assessing the mechanical properties of thermoplastic molded products. For injection-molded polymer blends, this study used short-beam shear [...] Read more.
The molecular orientation formed by melt-forming processes depends strongly on the flow direction. Quantifying this anisotropy, which is more pronounced in polymer blends, is important for assessing the mechanical properties of thermoplastic molded products. For injection-molded polymer blends, this study used short-beam shear testing to evaluate the mechanical anisotropy as a stress concentration factor, and clarified the correlation between the evaluation results and the phase structure. Furthermore, because only shear yielding occurs with short-beam shear testing, the yielding conditions related to uniaxial tensile loading were identified by comparing the results with those of three-point bending tests. For continuous-phase PP, the phase structure formed a sea-island structure. The yield condition under uniaxial tensile loading was interface debonding. For continuous-phase PS, the phase structure was dispersed and elongated in the flow direction. The addition of styrene–ethylene–butadiene–styrene (SEBS) altered this structure. The yielding condition under uniaxial tensile loading was shear yielding. The aspect ratio of the dispersed phase was found to correlate with the stress concentration factor. When the PP forming the sea-island structure was of continuous phase, the log-complex law was sufficient to explain the shear yield initiation stress without consideration of the interfacial interaction stress. Full article
(This article belongs to the Special Issue Injection Molding of Polymers and Polymer Composites)
Show Figures

Graphical abstract

10 pages, 2322 KB  
Article
The Time-Dependent Behavior of Glulam Beams from European Hornbeam
by Jelena Lovrić Vranković, Ivica Boko, Ivana Uzelac Glavinić, Neno Torić and Mario Abramović
Buildings 2023, 13(7), 1864; https://doi.org/10.3390/buildings13071864 - 22 Jul 2023
Cited by 2 | Viewed by 1733
Abstract
This paper presents the results of an experimental investigation of glued laminated timber (glulam) beams made from European hornbeam (Carpinus betulus L.) under constant loading for three months. Glulam beams were experimentally tested as a part of the last phase of the [...] Read more.
This paper presents the results of an experimental investigation of glued laminated timber (glulam) beams made from European hornbeam (Carpinus betulus L.) under constant loading for three months. Glulam beams were experimentally tested as a part of the last phase of the research project conducted by Drvene konstrukcije Ltd. and the Faculty of Civil Engineering, Architecture and Geodesy, Split. Beams were loaded in four-point bending tests with the applied load levels of 20% and 30% of the maximum force obtained from previously performed short-term tests. The experiments were carried out under minor environmental changes at the specialized laboratory unit at the Faculty of Civil Engineering, Architecture, and Geodesy, Split. The objective of this study is to present the research results of bending creep tests for hardwood species not included in the European Assessment Document. The experimentally obtained deflection-time curves were fitted with the power law equation used for the prediction of creep behavior. The results indicate that the power law fits well with experimental data. A comparison with requirements from Eurocode 5 is given. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

19 pages, 3201 KB  
Article
Spatio-Temporal Distribution of the Sources of Acoustic Events in Notched Fiber-Reinforced Concrete Beams under Three-Point Bending
by Dimos Triantis, Ilias Stavrakas, Andronikos Loukidis, Ermioni D. Pasiou and Stavros K. Kourkoulis
Materials 2023, 16(14), 5118; https://doi.org/10.3390/ma16145118 - 20 Jul 2023
Cited by 6 | Viewed by 1658
Abstract
The acoustic activity, generated in notched, beam-shaped concrete specimens, loaded under three-point bending, is studied in terms of the position of the sources of acoustic events, and the frequency of their generation. Both plain specimens (without any internal reinforcement) and specimens reinforced with [...] Read more.
The acoustic activity, generated in notched, beam-shaped concrete specimens, loaded under three-point bending, is studied in terms of the position of the sources of acoustic events, and the frequency of their generation. Both plain specimens (without any internal reinforcement) and specimens reinforced with various types of short fibers were tested. The target of the study is to investigate the existence of indices that could be considered as pre-failure indicators of the upcoming fracture. In addition, an attempt is undertaken to classify the damage mechanisms activated to tensile or shear nature. Considering comparatively the spatio-temporal evolution of the position of the acoustic sources and the respective temporal evolution of the frequency of generation of acoustic events, it was concluded that for relatively low load levels the acoustic sources are rather randomly distributed all over the volume of the specimens. As the load increases toward its maximum value, the acoustic sources tend to accumulate in the immediate vicinity of the crown of the notch and the average distance between them approaches a minimum value. When this minimum value is attained, the load is maximized and the generation frequency of the acoustic events increases rapidly. The simultaneous fulfillment of these three conditions is observed a few seconds before the onset of propagation of the catastrophic macrocrack for all classes of specimens tested, providing a kind of warning signal about the upcoming fracture. Moreover, the classification of the damage mechanisms to tensile and shear ones revealed a crucial difference between the plain and the reinforced specimens after the maximization of the load applied. Indeed, while for the plain specimens, the prevailing damage mechanism is tensile microcracking, for the reinforced specimens a balance between tensile and shear damage mechanisms is observed after the load applied has attained its peak and starts decreasing. Full article
Show Figures

Figure 1

10 pages, 2899 KB  
Article
Oxidation and Mechanical Behavior of Cr-Coated Laser Beam Welds Made from E110 Zirconium Alloy
by E. B. Kashkarov, K. S. Gusev, D. A. Ashikhmin, A. V. Abdulmenova and D. V. Sidelev
Coatings 2022, 12(11), 1623; https://doi.org/10.3390/coatings12111623 - 26 Oct 2022
Cited by 2 | Viewed by 2386
Abstract
This article describes the oxidation resistance of laser beam welds made from E110 zirconium alloy with a chromium coating obtained using multi-cathode magnetron sputtering. Oxidation tests of the welded Zr alloy without and with Cr coating were performed in an air atmosphere at [...] Read more.
This article describes the oxidation resistance of laser beam welds made from E110 zirconium alloy with a chromium coating obtained using multi-cathode magnetron sputtering. Oxidation tests of the welded Zr alloy without and with Cr coating were performed in an air atmosphere at 1100 °C for 2–90 min. Then, analysis of their cross-section microstructure in different regions (weld, heat-affected, and bulk zones) was done using optical microscopy. Hardness measurements and three-point bending tests demonstrated the hardening of the Cr-coated welded Zr alloy after the oxidation that is discussed in the article. Brittle fracture behavior was observed for uncoated Zr weld even after a short period of high-temperature oxidation. Full article
(This article belongs to the Special Issue Advanced Coatings for Accident Tolerant Fuel Claddings)
Show Figures

Figure 1

15 pages, 5173 KB  
Article
Experimental Study on Dynamic Performance of Tubular Flange Grid-Type Dam under Impact Load
by Xiu-Li Wang, Yong Yao, Sai-Long Wang, Zhu-Jun Feng and Yun-Peng Chu
Symmetry 2022, 14(7), 1486; https://doi.org/10.3390/sym14071486 - 20 Jul 2022
Viewed by 1888
Abstract
As one of the most dangerous geological hazards in the world, debris flows can destroy trees and structures, break electrical, water, and gas lines, and disrupt bridges and roadways in a short period of time, threatening life and property. In particular, fast-moving large [...] Read more.
As one of the most dangerous geological hazards in the world, debris flows can destroy trees and structures, break electrical, water, and gas lines, and disrupt bridges and roadways in a short period of time, threatening life and property. In particular, fast-moving large boulders carried by debris-induced destructive impact loading can strike objects without warning. To resist impact loading caused by rocks in debris, this paper proposed an innovative grid-type debris dam (or Sabo dam) design composed of symmetrical cross-sections of steel tubular flange beams and columns. This paper studied the dynamic performance of the tubular flange columns under impact loading by conducting lab tests and numerical simulations. Moreover, the dynamic response of the grid-type debris dam was simulated under various loading conditions. Comparing three different types of columns with similar configurations under the same loading condition, the tubular flange column proposed in this research exhibits better performance in overall strain, displacement, acceleration, and bending conditions. Furthermore, the results also prove that the proposed structure has excellent interoperability and energy absorption capabilities. When increasing the testing impact load, the failure modes of the dam change from dent at the impact point to local buckling and total failure of the structure, which indicates that the structure has superior performance under impact loading. Full article
(This article belongs to the Special Issue Symmetry in Applied Mechanics Analysis on Smart Optical Fiber Sensors)
Show Figures

Figure 1

23 pages, 10321 KB  
Article
Investigation of Interlaminar Shear Properties of CFRP Composites at Elevated Temperatures Using the Lempel-Ziv Complexity of Acoustic Emission Signals
by Claudia Barile, Caterina Casavola, Giovanni Pappalettera, Vimalathithan Paramsamy Kannan and Gilda Renna
Materials 2022, 15(12), 4252; https://doi.org/10.3390/ma15124252 - 15 Jun 2022
Cited by 10 | Viewed by 2649
Abstract
Three-point bending tests on Short Beam Shear (SBS) specimens are performed to investigate the interlaminar shear properties of plain weave fabric CFRP composites. The tests are performed in a controlled environmental chamber at two different elevated temperatures. The interlaminar shear properties of the [...] Read more.
Three-point bending tests on Short Beam Shear (SBS) specimens are performed to investigate the interlaminar shear properties of plain weave fabric CFRP composites. The tests are performed in a controlled environmental chamber at two different elevated temperatures. The interlaminar shear properties of the specimens remain largely unaffected by the testing temperature. However, the SEM micrographs show different damage progressions between the specimens tested at 100 °C and 120 °C. Fibre ruptures and longer delamination between the plies, as a result of a high temperature, are observed in the specimens tested at 120 °C, which are not observed in the specimens tested at 100 °C. In addition, the acoustic emission activities during the tests are investigated by using piezoelectric sensors. The information-theoretic parameter, the Lempel-Ziv (LZ) complexity, is calculated for the recorded acoustic signals. The LZ Complexities are used for identifying the occurrence of the first delamination failure in the specimens. Additionally, the two features of the acoustic signals, LZ complexity and Weighted Peak Frequency (W.P-Freq), are used for distinguishing the different damage sources in the CFRP specimens. The results are well-supported by the time-frequency analysis of the acoustic signals using a Continuous Wavelet Transform (CWT). Full article
(This article belongs to the Topic Recent Advances in Structural Health Monitoring)
Show Figures

Figure 1

17 pages, 2721 KB  
Article
Comprehensive Self-Healing Evaluation of Asphalt Concrete Containing Encapsulated Rejuvenator
by Ali Zain Ul Abadeen, Arshad Hussain, Veerappan Sathish Kumar, Gunasekaran Murali, Nikolai Ivanovich Vatin and Hassan Riaz
Materials 2022, 15(10), 3672; https://doi.org/10.3390/ma15103672 - 20 May 2022
Cited by 17 | Viewed by 4541
Abstract
Ultraviolet radiation, oxidation, temperature, moisture, and traffic loads produce degradation and brittleness in the asphalt pavement. Microcracks develop into macrocracks, which eventually lead to pavement failure. Although asphalt has an inherent capacity for self-healing, it is constricted. As a result, damages build beyond [...] Read more.
Ultraviolet radiation, oxidation, temperature, moisture, and traffic loads produce degradation and brittleness in the asphalt pavement. Microcracks develop into macrocracks, which eventually lead to pavement failure. Although asphalt has an inherent capacity for self-healing, it is constricted. As a result, damages build beyond the ability of asphalt to repair themselves. This research employs the in-situ crack healing method of encapsulated rejuvenator technology to enhance the insufficient self-healing capability of roads. This allows the extrinsically induced healing in asphalt to assist it in recovering from damage sustained during service life. Optical microscopy, thermogravimetric analysis, and the compressive load test of capsules were done to characterise their properties. We measured the self-healing behaviour of encapsulated rejuvenator-induced asphalt utilising the three-point bending beam tests on unaged, short-term aged and long-term aged asphalt beams. The rate of oil release before and after healing was quantified using Fourier transform infrared spectroscopy. The results of these tests were utilised to explain the link between healing time, temperature, asphalt ageing, and healing level. Overall, it was determined that the encapsulated rejuvenator was acceptable for mending asphalt mixes because it increased healing temperature and duration, resulting in an up to 80% healing index. Full article
(This article belongs to the Special Issue Asphalt Road Paving Materials)
Show Figures

Figure 1

20 pages, 6911 KB  
Article
Development and Experimental Assessment of Friction-Type Shear Connectors for FRP Bridge Girders with Composite Concrete Decks
by William G. Davids, Dante Guzzi and Andrew P. Schanck
Materials 2022, 15(9), 3014; https://doi.org/10.3390/ma15093014 - 21 Apr 2022
Cited by 8 | Viewed by 2461
Abstract
This paper details the development and experimental assessment of a friction-type connector, designed to transfer shear flow between the top flange of a fiber-reinforced polymer (FRP) tub girder and a composite concrete deck for bridge applications. In contrast with previously used bearing-type connectors, [...] Read more.
This paper details the development and experimental assessment of a friction-type connector, designed to transfer shear flow between the top flange of a fiber-reinforced polymer (FRP) tub girder and a composite concrete deck for bridge applications. In contrast with previously used bearing-type connectors, this system relies on a deformed FRP surface to transfer shear via direct interlock with the concrete deck. The connector is materially efficient, simple to fabricate, can be used with lower-grade structural or stainless-steel fasteners, and provides a high degree of interface stiffness. Six compression-shear specimens were tested to assess the connector fatigue resistance and ultimate connection strength. Additionally, two short beam specimens were tested in three-point bending, one of which was subjected to fatigue loading. Based on the compression-shear tests and short beam tests, the connection exhibited strength exceeding that predicted by AASHTO for frictional concrete-concrete connections. The connection strengths were significantly greater than the factored demand required by AASHTO for a typical model FRP bridge girder. The cyclic loading of the connection in both compression-shear and beam bending showed that connection stiffness and strength do not significantly degrade, due to the application of 1 × 106 to 6 × 106 cycles of traffic-induced factored fatigue load. Full article
(This article belongs to the Special Issue Research on Mechanical Properties of Construction Materials)
Show Figures

Figure 1

11 pages, 6611 KB  
Article
Concrete Reinforced by Hybrid Mix of Short Fibers under Bending
by Vitalijs Lusis, Krishna Kiran Annamaneni and Andrejs Krasnikovs
Fibers 2022, 10(2), 11; https://doi.org/10.3390/fib10020011 - 25 Jan 2022
Cited by 17 | Viewed by 5002
Abstract
In the present study, the mechanical behavior of Fiber-Reinforced Concrete (FRC) beams was studied under bending until rupture. Each beam was reinforced with a hybrid mix of short fibers randomly distributed in its volume. Concrete beams with three different fiber combinations were investigated, [...] Read more.
In the present study, the mechanical behavior of Fiber-Reinforced Concrete (FRC) beams was studied under bending until rupture. Each beam was reinforced with a hybrid mix of short fibers randomly distributed in its volume. Concrete beams with three different fiber combinations were investigated, namely, beams reinforced with (1) a homogeneously distributed mix of short polypropylene fibers (PP) and steel fibers, (2) PP fibers and Alkali Resistant Glass (ARG) fibers, and (3) PP and composite fibers (CF). The amount of short PP fibers was the same in all FRCs. The investigation focused on the fracture mechanisms and the load-bearing capacity of FRC beams with the developing macro cracks. In total, 12 FRC composite prismatic specimens were casted and tested in four-point bending experiments (4PBT). The current load value versus the Crack Mouth Opening Displacement (CMOD) for all FRCs was analyzed. The crack opening relationship and the influence of fibers on the fracture energy and flexural tensile strength were determined. Rupture surfaces of all samples were investigated using an optical microscope. Full article
(This article belongs to the Special Issue Mechanics of Fiber Reinforced Cementitious Composites)
Show Figures

Figure 1

18 pages, 6321 KB  
Article
Interface Controlled Micro- and Macro-Mechanical Properties of Vibration Processed Carbon Fiber/Epoxy Composites
by Xiaobo Yang, Lihua Zhan, Yifeng Peng, Cong Liu and Rui Xiong
Polymers 2021, 13(16), 2764; https://doi.org/10.3390/polym13162764 - 17 Aug 2021
Cited by 9 | Viewed by 3872
Abstract
The fiber-resin interface is an important component that significantly affects mechanical properties of composites. Random vibration-assisted vacuum processing (RVAVP), a new method to improve the adhesion of the fiber-resin interface, was presented. The effects of different curing processes on mechanical properties were comprehensively [...] Read more.
The fiber-resin interface is an important component that significantly affects mechanical properties of composites. Random vibration-assisted vacuum processing (RVAVP), a new method to improve the adhesion of the fiber-resin interface, was presented. The effects of different curing processes on mechanical properties were comprehensively assessed by combining the fiber push-out test, finite element model simulation, cure monitoring approach, and short-beam three-point bending test, and the correlation between fiber volume fraction and mechanical properties was quantified by a facile thermogravimetric analysis-based methodology. The results revealed that application of random vibration during the curing process can promote the impregnation of resin into fibers and impede the growth of interface defects while improving mechanical properties at the same time. For this reason, the laminates produced by RVAVP exhibited the average interfacial shear strength of 78.02 MPa and the average interface fracture toughness of 51.7 J/m2, which is obtained a 48.26% and 90.77% improvement compared with the 0 MPa autoclave process. With the large observed increase in micro-mechanical properties, the average interlaminar shear strength of 93.91 MPa showed a slight reduction of 5.07% compared with the 0.6 MPa autoclave process. Meanwhile, the mechanical properties tended to be stable at the fiber volume fraction of 65.5%. Full article
(This article belongs to the Special Issue Polymer Composites for Structural Applications)
Show Figures

Graphical abstract

10 pages, 1381 KB  
Article
Effect of Thermal Ageing on the Mechanical Strength of Carbon Fibre Reinforced Epoxy Composites
by Nicola Zavatta, Francesco Rondina, Maria Pia Falaschetti and Lorenzo Donati
Polymers 2021, 13(12), 2006; https://doi.org/10.3390/polym13122006 - 19 Jun 2021
Cited by 43 | Viewed by 4364
Abstract
Applications of Carbon Fibre Reinforced Polymers (CFRP) at temperatures over 150–200 °C are becoming common in aerospace and automotive applications. Exposure of CFRP to these temperatures can lead to permanent changes in their mechanical properties. In this work, we investigated the effect of [...] Read more.
Applications of Carbon Fibre Reinforced Polymers (CFRP) at temperatures over 150–200 °C are becoming common in aerospace and automotive applications. Exposure of CFRP to these temperatures can lead to permanent changes in their mechanical properties. In this work, we investigated the effect of thermal ageing in air on the strength of carbon fabric/epoxy composites. To this end, accelerated artificial ageing at different temperatures was performed on carbon fabric/epoxy specimens. The flexural and interlaminar shear strengths of the aged specimens were assessed by three-point bending and short beam shear tests, respectively, and compared to those of unaged samples. For ageing at temperatures below the glass transition temperature of the resin, Tg, a moderate reduction of strength was found, with a maximum decrease of 25% for 2160 h at 75% Tg. On the other hand, a rapid strength decrease was observed for ageing temperatures above Tg. This was attributed to degradation of the epoxy matrix and of the fibre/epoxy interface. In particular, a 30% strength decrease was found for less than 6 h at 145% Tg. Therefore, it was concluded that even a short exposure to operating temperatures above Tg could substantially impair the load-carrying capability of CFRP components. Full article
Show Figures

Figure 1

19 pages, 8405 KB  
Article
Mixed Mode I/II Fracture Analysis of Bi-Material Adhesive Bonded Joints Using a Novel Short Beam Specimen
by Mohammad Reza Mohammad Aliha, Hadi Ghesmati Kucheki and Mirmilad Mirsayar
Appl. Sci. 2021, 11(11), 5232; https://doi.org/10.3390/app11115232 - 4 Jun 2021
Cited by 19 | Viewed by 3589
Abstract
Until now, some test specimens with different shapes and loading mechanisms have been utilized for investigating the cracking behavior of adhesive bounded joints. In this research, using a novel test configuration called adhesive short bend beam specimen containing an inclined crack and loaded [...] Read more.
Until now, some test specimens with different shapes and loading mechanisms have been utilized for investigating the cracking behavior of adhesive bounded joints. In this research, using a novel test configuration called adhesive short bend beam specimen containing an inclined crack and loaded by three-point bending, mixed mode I/II fracture parameters of a crack initiated in the adhesive part is studied. Compared to other test methods, the specimen used in this research needs a lesser amount of material and the fracture test can be performed easily. A large number of finite element models of this specimen were analyzed using ABAQUS code to study the effect of adhesive and adherent type, and also the crack length and loading span distance on KI, KII, T-stress and fracture initiation direction under different mode mixities. The results showed that the fracture parameters (and in particular the shear mode component) are sensitive to the type and location of adherent in the bounded joint; however, the shape and size of fracture plastic zone is not affected noticeably by the type of adhesive-adherent materials. It was also shown that the complete mode mixities ranging from pure mode I to pure mode II can be introduced for adhesive bounded joints using the proposed test specimen and therefore the specimen is a good candidate test configuration for investigating the mixed mode I/II fracture behavior of adhesive bounded joints. Full article
(This article belongs to the Special Issue Mechanical Properties and Characterization of Bonded Composites)
Show Figures

Figure 1

Back to TopTop