Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (43)

Search Parameters:
Keywords = shiga toxin receptor

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 3594 KiB  
Article
Identification of GB3 as a Novel Biomarker of Tumor-Derived Vasculature in Neuroblastoma Using a Stiffness-Based Model
by Aranzazu Villasante, Josep Corominas, Clara Alcon, Andrea Garcia-Lizarribar, Jaume Mora, Monica Lopez-Fanarraga and Josep Samitier
Cancers 2024, 16(5), 1060; https://doi.org/10.3390/cancers16051060 - 5 Mar 2024
Cited by 1 | Viewed by 2407
Abstract
Neuroblastoma (NB) is a childhood cancer in sympathetic nervous system cells. NB exhibits cellular heterogeneity, with adrenergic and mesenchymal states displaying distinct tumorigenic potentials. NB is highly vascularized, and blood vessels can form through various mechanisms, including endothelial transdifferentiation, leading to the development [...] Read more.
Neuroblastoma (NB) is a childhood cancer in sympathetic nervous system cells. NB exhibits cellular heterogeneity, with adrenergic and mesenchymal states displaying distinct tumorigenic potentials. NB is highly vascularized, and blood vessels can form through various mechanisms, including endothelial transdifferentiation, leading to the development of tumor-derived endothelial cells (TECs) associated with chemoresistance. We lack specific biomarkers for TECs. Therefore, identifying new TEC biomarkers is vital for effective NB therapies. A stiffness-based platform simulating human arterial and venous stiffness was developed to study NB TECs in vitro. Adrenergic cells cultured on arterial-like stiffness transdifferentiated into TECs, while mesenchymal state cells did not. The TECs derived from adrenergic cells served as a model to explore new biomarkers, with a particular focus on GB3, a glycosphingolipid receptor implicated in angiogenesis, metastasis, and drug resistance. Notably, the TECs unequivocally expressed GB3, validating its novelty as a marker. To explore targeted therapeutic interventions, nanoparticles functionalized with the non-toxic subunit B of the Shiga toxin were generated, because they demonstrated a robust affinity for GB3-positive cells. Our results demonstrate the value of the stiffness-based platform as a predictive tool for assessing NB aggressiveness, the discovery of new biomarkers, and the evaluation of the effectiveness of targeted therapeutic strategies. Full article
(This article belongs to the Section Cancer Biomarkers)
Show Figures

Graphical abstract

23 pages, 2472 KiB  
Article
A Shiga Toxin B-Subunit-Based Lectibody Boosts T Cell Cytotoxicity towards Gb3-Positive Cancer Cells
by Jana Tomisch, Vincent Busse, Francesca Rosato, Olga N. Makshakova, Pavel Salavei, Anna-Sophia Kittel, Emilie Gillon, Levin Lataster, Anne Imberty, Ana Valeria Meléndez and Winfried Römer
Cells 2023, 12(14), 1896; https://doi.org/10.3390/cells12141896 - 20 Jul 2023
Cited by 5 | Viewed by 3121
Abstract
Aberrant glycosylation plays a crucial role in tumour progression and invasiveness. Tumour-associated carbohydrate antigens (TACAs) represent a valuable set of targets for immunotherapeutic approaches. The poor immunogenicity of glycan structures, however, requires a more effective and well-directed way of targeting TACAs on the [...] Read more.
Aberrant glycosylation plays a crucial role in tumour progression and invasiveness. Tumour-associated carbohydrate antigens (TACAs) represent a valuable set of targets for immunotherapeutic approaches. The poor immunogenicity of glycan structures, however, requires a more effective and well-directed way of targeting TACAs on the surface of cancer cells than antibodies. The glycosphingolipid globotriaosylceramide (Gb3) is a well-established TACA present in a multitude of cancer types. Its overexpression has been linked to metastasis, invasiveness, and multidrug resistance. In the present study, we propose to use a dimeric fragment of the Shiga toxin B-subunit (StxB) to selectively target Gb3-positive cancer cells in a StxB-scFv UCHT1 lectibody. The lectibody, comprised of a lectin and the UCHT1 antibody fragment, was produced in E. coli and purified via Ni-NTA affinity chromatography. Specificity of the lectibody towards Gb3-positive cancer cell lines and specificity towards the CD3 receptor on T cells, was assessed using flow cytometry. We evaluated the efficacy of the lectibody in redirecting T cell cytotoxicity towards Gb3-overexpressing cancer cells in luciferase-based cytotoxicity in vitro assays. The StxB-scFv UCHT1 lectibody has proven specific for Gb3 and could induce the killing of up to 80% of Gb3-overexpressing cancer cells in haemorrhagic and solid tumours. The lectibody developed in this study, therefore, highlights the potential that lectibodies and lectins in general have for usage in immunotherapeutic approaches to boost the efficacy of established cancer treatments. Full article
(This article belongs to the Section Intracellular and Plasma Membranes)
Show Figures

Figure 1

33 pages, 4978 KiB  
Review
AB Toxins as High-Affinity Ligands for Cell Targeting in Cancer Therapy
by Ana Márquez-López and Mónica L. Fanarraga
Int. J. Mol. Sci. 2023, 24(13), 11227; https://doi.org/10.3390/ijms241311227 - 7 Jul 2023
Cited by 6 | Viewed by 3871
Abstract
Conventional targeted therapies for the treatment of cancer have limitations, including the development of acquired resistance. However, novel alternatives have emerged in the form of targeted therapies based on AB toxins. These biotoxins are a diverse group of highly poisonous molecules that show [...] Read more.
Conventional targeted therapies for the treatment of cancer have limitations, including the development of acquired resistance. However, novel alternatives have emerged in the form of targeted therapies based on AB toxins. These biotoxins are a diverse group of highly poisonous molecules that show a nanomolar affinity for their target cell receptors, making them an invaluable source of ligands for biomedical applications. Bacterial AB toxins, in particular, are modular proteins that can be genetically engineered to develop high-affinity therapeutic compounds. These toxins consist of two distinct domains: a catalytically active domain and an innocuous domain that acts as a ligand, directing the catalytic domain to the target cells. Interestingly, many tumor cells show receptors on the surface that are recognized by AB toxins, making these high-affinity proteins promising tools for developing new methods for targeting anticancer therapies. Here we describe the structure and mechanisms of action of Diphtheria (Dtx), Anthrax (Atx), Shiga (Stx), and Cholera (Ctx) toxins, and review the potential uses of AB toxins in cancer therapy. We also discuss the main advances in this field, some successful results, and, finally, the possible development of innovative and precise applications in oncology based on engineered recombinant AB toxins. Full article
(This article belongs to the Special Issue Bacterial Toxins and Cancer)
Show Figures

Figure 1

12 pages, 10084 KiB  
Article
Engineered Synthetic STxB for Enhanced Cytosolic Delivery
by Justine Hadjerci, Anne Billet, Pascal Kessler, Gilles Mourier, Marine Ghazarian, Anthony Gonzalez, Christian Wunder, Nesrine Mabrouk, Eric Tartour, Denis Servent and Ludger Johannes
Cells 2023, 12(9), 1291; https://doi.org/10.3390/cells12091291 - 30 Apr 2023
Cited by 3 | Viewed by 2593
Abstract
Many molecular targets for cancer therapy are located in the cytosol. Therapeutic macromolecules are generally not able to spontaneously translocate across membranes to reach these cytosolic targets. Therefore a strong need exists for tools that enhance cytosolic delivery. Shiga toxin B-subunit (STxB) is [...] Read more.
Many molecular targets for cancer therapy are located in the cytosol. Therapeutic macromolecules are generally not able to spontaneously translocate across membranes to reach these cytosolic targets. Therefore a strong need exists for tools that enhance cytosolic delivery. Shiga toxin B-subunit (STxB) is used to deliver therapeutic principles to disease-relevant cells that express its receptor, the glycolipid Gb3. Based on its naturally existing membrane translocation capacity, STxB delivers antigens to the cytosol of Gb3-positive dendritic cells, leading to the induction of CD8+ T cells. Here, we have explored the possibility of further increasing the membrane translocation of STxB to enable other therapeutic applications. For this, our capacity to synthesize STxB chemically was exploited to introduce unnatural amino acids at different positions of the protein. These were then functionalized with hydrophobic entities to locally destabilize endosomal membranes. Intracellular trafficking of these functionalized STxB was measured by confocal microscopy and their cytosolic arrival with a recently developed highly robust, sensitive, and quantitative translocation assay. From different types of hydrophobic moieties that were linked to STxB, the most efficient configuration was determined. STxB translocation was increased by a factor of 2.5, paving the path for new biomedical opportunities. Full article
(This article belongs to the Special Issue Innovative Drug Treatment of Cancer Cells)
Show Figures

Figure 1

28 pages, 1825 KiB  
Review
Diagnosis and Treatment for Shiga Toxin-Producing Escherichia coli Associated Hemolytic Uremic Syndrome
by Yang Liu, Hatim Thaker, Chunyan Wang, Zhonggao Xu and Min Dong
Toxins 2023, 15(1), 10; https://doi.org/10.3390/toxins15010010 - 23 Dec 2022
Cited by 29 | Viewed by 20643
Abstract
Shiga toxin-producing Escherichia coli (STEC)-associated hemolytic uremic syndrome (STEC-HUS) is a clinical syndrome involving hemolytic anemia (with fragmented red blood cells), low levels of platelets in the blood (thrombocytopenia), and acute kidney injury (AKI). It is the major infectious cause of AKI in [...] Read more.
Shiga toxin-producing Escherichia coli (STEC)-associated hemolytic uremic syndrome (STEC-HUS) is a clinical syndrome involving hemolytic anemia (with fragmented red blood cells), low levels of platelets in the blood (thrombocytopenia), and acute kidney injury (AKI). It is the major infectious cause of AKI in children. In severe cases, neurological complications and even death may occur. Treating STEC-HUS is challenging, as patients often already have organ injuries when they seek medical treatment. Early diagnosis is of great significance for improving prognosis and reducing mortality and sequelae. In this review, we first briefly summarize the diagnostics for STEC-HUS, including history taking, clinical manifestations, fecal and serological detection methods for STEC, and complement activation monitoring. We also summarize preventive and therapeutic strategies for STEC-HUS, such as vaccines, volume expansion, renal replacement therapy (RRT), antibiotics, plasma exchange, antibodies and inhibitors that interfere with receptor binding, and the intracellular trafficking of the Shiga toxin. Full article
(This article belongs to the Collection Shiga Toxins)
Show Figures

Figure 1

22 pages, 3126 KiB  
Review
SARS-CoV-2 and Emerging Foodborne Pathogens: Intriguing Commonalities and Obvious Differences
by Ahmed G. Abdelhamid, Julia N. Faraone, John P. Evans, Shan-Lu Liu and Ahmed E. Yousef
Pathogens 2022, 11(8), 837; https://doi.org/10.3390/pathogens11080837 - 27 Jul 2022
Cited by 1 | Viewed by 5114
Abstract
The coronavirus disease 2019 (COVID-19) has resulted in tremendous human and economic losses around the globe. The pandemic is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a virus that is closely related to SARS-CoV and other human and animal coronaviruses. [...] Read more.
The coronavirus disease 2019 (COVID-19) has resulted in tremendous human and economic losses around the globe. The pandemic is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a virus that is closely related to SARS-CoV and other human and animal coronaviruses. Although foodborne diseases are rarely of pandemic proportions, some of the causative agents emerge in a manner remarkably similar to what was observed recently with SARS-CoV-2. For example, Shiga toxin-producing Escherichia coli (STEC), the most common cause of hemolytic uremic syndrome, shares evolution, pathogenesis, and immune evasion similarities with SARS-CoV-2. Both agents evolved over time in animal hosts, and during infection, they bind to specific receptors on the host cell’s membrane and develop host adaptation mechanisms. Mechanisms such as point mutations and gene loss/genetic acquisition are the main driving forces for the evolution of SARS-CoV-2 and STEC. Both pathogens affect multiple body organs, and the resulting diseases are not completely cured with non-vaccine therapeutics. However, SARS-CoV-2 and STEC obviously differ in the nature of the infectious agent (i.e., virus vs. bacterium), disease epidemiological details (e.g., transmission vehicle and symptoms onset time), and disease severity. SARS-CoV-2 triggered a global pandemic while STEC led to limited, but sometimes serious, disease outbreaks. The current review compares several key aspects of these two pathogenic agents, including the underlying mechanisms of emergence, the driving forces for evolution, pathogenic mechanisms, and the host immune responses. We ask what can be learned from the emergence of both infectious agents in order to alleviate future outbreaks or pandemics. Full article
(This article belongs to the Special Issue Pathogenesis of Viral Diseases)
Show Figures

Figure 1

36 pages, 3864 KiB  
Review
Enterohemorrhagic Escherichia coli and a Fresh View on Shiga Toxin-Binding Glycosphingolipids of Primary Human Kidney and Colon Epithelial Cells and Their Toxin Susceptibility
by Johanna Detzner, Gottfried Pohlentz and Johannes Müthing
Int. J. Mol. Sci. 2022, 23(13), 6884; https://doi.org/10.3390/ijms23136884 - 21 Jun 2022
Cited by 10 | Viewed by 4296
Abstract
Enterohemorrhagic Escherichia coli (EHEC) are the human pathogenic subset of Shiga toxin (Stx)-producing E. coli (STEC). EHEC are responsible for severe colon infections associated with life-threatening extraintestinal complications such as the hemolytic-uremic syndrome (HUS) and neurological disturbances. Endothelial cells in various human organs [...] Read more.
Enterohemorrhagic Escherichia coli (EHEC) are the human pathogenic subset of Shiga toxin (Stx)-producing E. coli (STEC). EHEC are responsible for severe colon infections associated with life-threatening extraintestinal complications such as the hemolytic-uremic syndrome (HUS) and neurological disturbances. Endothelial cells in various human organs are renowned targets of Stx, whereas the role of epithelial cells of colon and kidneys in the infection process has been and is still a matter of debate. This review shortly addresses the clinical impact of EHEC infections, novel aspects of vesicular package of Stx in the intestine and the blood stream as well as Stx-mediated extraintestinal complications and therapeutic options. Here follows a compilation of the Stx-binding glycosphingolipids (GSLs), globotriaosylceramide (Gb3Cer) and globotetraosylceramide (Gb4Cer) and their various lipoforms present in primary human kidney and colon epithelial cells and their distribution in lipid raft-analog membrane preparations. The last issues are the high and extremely low susceptibility of primary renal and colonic epithelial cells, respectively, suggesting a large resilience of the intestinal epithelium against the human-pathogenic Stx1a- and Stx2a-subtypes due to the low content of the high-affinity Stx-receptor Gb3Cer in colon epithelial cells. The review closes with a brief outlook on future challenges of Stx research. Full article
Show Figures

Figure 1

19 pages, 7416 KiB  
Article
Shiga Toxin 2 Triggers C3a-Dependent Glomerular and Tubular Injury through Mitochondrial Dysfunction in Hemolytic Uremic Syndrome
by Simona Buelli, Monica Locatelli, Claudia Elisa Carminati, Daniela Corna, Domenico Cerullo, Barbara Imberti, Luca Perico, Maurizio Brigotti, Mauro Abbate, Carlamaria Zoja, Ariela Benigni, Giuseppe Remuzzi and Marina Morigi
Cells 2022, 11(11), 1755; https://doi.org/10.3390/cells11111755 - 26 May 2022
Cited by 5 | Viewed by 2871
Abstract
Shiga toxin (Stx)-producing Escherichia coli is the predominant offending agent of post-diarrheal hemolytic uremic syndrome (HUS), a rare disorder of microvascular thrombosis and acute kidney injury possibly leading to long-term renal sequelae. We previously showed that C3a has a critical role in the [...] Read more.
Shiga toxin (Stx)-producing Escherichia coli is the predominant offending agent of post-diarrheal hemolytic uremic syndrome (HUS), a rare disorder of microvascular thrombosis and acute kidney injury possibly leading to long-term renal sequelae. We previously showed that C3a has a critical role in the development of glomerular damage in experimental HUS. Based on the evidence that activation of C3a/C3a receptor (C3aR) signaling induces mitochondrial dysregulation and cell injury, here we investigated whether C3a caused podocyte and tubular injury through induction of mitochondrial dysfunction in a mouse model of HUS. Mice coinjected with Stx2/LPS exhibited glomerular podocyte and tubular C3 deposits and C3aR overexpression associated with cell damage, which were limited by C3aR antagonist treatment. C3a promoted renal injury by affecting mitochondrial wellness as demonstrated by data showing that C3aR blockade reduced mitochondrial ultrastructural abnormalities and preserved mitochondrial mass and energy production. In cultured podocytes and tubular cells, C3a caused altered mitochondrial fragmentation and distribution, and reduced anti-oxidant SOD2 activity. Stx2 potentiated the responsiveness of renal cells to the detrimental effects of C3a through increased C3aR protein expression. These results indicate that C3aR may represent a novel target in Stx-associated HUS for the preservation of renal cell integrity through the maintenance of mitochondrial function. Full article
Show Figures

Graphical abstract

21 pages, 3751 KiB  
Article
Stx2 Induces Differential Gene Expression and Disturbs Circadian Rhythm Genes in the Proximal Tubule
by Fumiko Obata, Ryo Ozuru, Takahiro Tsuji, Takashi Matsuba and Jun Fujii
Toxins 2022, 14(2), 69; https://doi.org/10.3390/toxins14020069 - 19 Jan 2022
Cited by 4 | Viewed by 3552
Abstract
Shiga toxin-producing Escherichia coli (STEC) causes proximal tubular defects in the kidney. However, factors altered by Shiga toxin (Stx) within the proximal tubules are yet to be shown. We determined Stx receptor Gb3 in murine and human kidneys and confirmed the receptor expression [...] Read more.
Shiga toxin-producing Escherichia coli (STEC) causes proximal tubular defects in the kidney. However, factors altered by Shiga toxin (Stx) within the proximal tubules are yet to be shown. We determined Stx receptor Gb3 in murine and human kidneys and confirmed the receptor expression in the proximal tubules. Stx2-injected mouse kidney tissues and Stx2-treated human primary renal proximal tubular epithelial cell (RPTEC) were collected and microarray analysis was performed. We compared murine kidney and RPTEC arrays and selected common 58 genes that are differentially expressed vs. control (0 h, no toxin-treated). We found that the most highly expressed gene was GDF15, which may be involved in Stx2-induced weight loss. Genes associated with previously reported Stx2 activities such as src kinase Yes phosphorylation pathway activation, unfolded protein response (UPR) and ribotoxic stress response (RSR) showed differential expressions. Moreover, circadian clock genes were differentially expressed, suggesting Stx2-induced renal circadian rhythm disturbance. Circadian rhythm-regulated proximal tubular Na+-glucose transporter SGLT1 (SLC5A1) was down-regulated, indicating proximal tubular functional deterioration, and mice developed glucosuria confirming proximal tubular dysfunction. Stx2 alters gene expression in murine and human proximal tubules through known activities and newly investigated circadian rhythm disturbance, which may result in proximal tubular dysfunctions. Full article
(This article belongs to the Special Issue Shiga Toxin: Occurrence, Pathogenicity, Detection and Therapies)
Show Figures

Figure 1

13 pages, 2777 KiB  
Article
The Shiga Toxin Receptor Globotriaosylceramide as Therapeutic Target in Shiga Toxin E. coli Mediated HUS
by Wouter J. C. Feitz, Romy Bouwmeester, Thea J. A. M. van der Velden, Susan Goorden, Christoph Licht, Lambert P. J. W. van den Heuvel and Nicole C. A. J. van de Kar
Microorganisms 2021, 9(10), 2157; https://doi.org/10.3390/microorganisms9102157 - 16 Oct 2021
Cited by 10 | Viewed by 3853
Abstract
In 90% of the cases, childhood hemolytic uremic syndrome (HUS) is caused by an infection with the Shiga toxin (Stx) producing E. coli bacteria (STEC-HUS). Stx preferentially binds to its receptor, the glycosphingolipid, globotriaosylceramide (Gb3), present on the surface of human kidney cells [...] Read more.
In 90% of the cases, childhood hemolytic uremic syndrome (HUS) is caused by an infection with the Shiga toxin (Stx) producing E. coli bacteria (STEC-HUS). Stx preferentially binds to its receptor, the glycosphingolipid, globotriaosylceramide (Gb3), present on the surface of human kidney cells and various organs. In this study, the glycosphingolipid pathway in endothelial cells was explored as therapeutic target for STEC-HUS. Primary human glomerular microvascular endothelial cells (HGMVECs) and human blood outgrowth endothelial cells (BOECs) in quiescent and activated state were pre-incubated with Eliglustat (Cerdelga®; glucosylceramide synthase inhibitor) or Agalsidase alpha (Replagal®; human cell derived alpha-galactosidase) in combination with various concentrations of Stx2a. Preincubation of endothelial cells with Agalsidase resulted in an increase of α-galactosidase activity in the cell, but had no effect on the binding of Stx to the cell surface when compared to control cells. However, the incubation of both types of endothelial cells incubated with or without the pro-inflammatory cytokine TNFα in combination with Eliglustat resulted in significant decrease of Stx binding to the cell surface, a decrease in protein synthesis by Stx2a, and diminished cellular Gb3 levels as compared to control cells. In conclusion, inhibition of the synthesis of Gb3 may be a potential future therapeutic target to protect against (further) endothelial damage caused by Stx. Full article
Show Figures

Figure 1

13 pages, 2060 KiB  
Article
Targeting Nanomaterials to Head and Neck Cancer Cells Using a Fragment of the Shiga Toxin as a Potent Natural Ligand
by Elena Navarro-Palomares, Lorena García-Hevia, Esperanza Padín-González, Manuel Bañobre-López, Juan C. Villegas, Rafael Valiente and Mónica L. Fanarraga
Cancers 2021, 13(19), 4920; https://doi.org/10.3390/cancers13194920 - 30 Sep 2021
Cited by 13 | Viewed by 3417
Abstract
Head and Neck Cancer (HNC) is the seventh most common cancer worldwide with a 5-year survival from diagnosis of 50%. Currently, HNC is diagnosed by a physical examination followed by an histological biopsy, with surgery being the primary treatment. Here, we propose the [...] Read more.
Head and Neck Cancer (HNC) is the seventh most common cancer worldwide with a 5-year survival from diagnosis of 50%. Currently, HNC is diagnosed by a physical examination followed by an histological biopsy, with surgery being the primary treatment. Here, we propose the use of targeted nanotechnology in support of existing diagnostic and therapeutic tools to prevent recurrences of tumors with poorly defined or surgically inaccessible margins. We have designed an innocuous ligand-protein, based on the receptor-binding domain of the Shiga toxin (ShTxB), that specifically drives nanoparticles to HNC cells bearing the globotriaosylceramide receptor on their surfaces. Microscopy images show how, upon binding to the receptor, the ShTxB-coated nanoparticles cause the clustering of the globotriaosylceramide receptors, the protrusion of filopodia, and rippling of the membrane, ultimately allowing the penetration of the ShTxB nanoparticles directly into the cell cytoplasm, thus triggering a biomimetic cellular response indistinguishable from that triggered by the full-length Shiga toxin. This functionalization strategy is a clear example of how some toxin fragments can be used as natural biosensors for the detection of some localized cancers and to target nanomedicines to HNC lesions. Full article
(This article belongs to the Special Issue Modern Treatment of Head and Neck Cancer)
Show Figures

Figure 1

15 pages, 1173 KiB  
Review
Shiga Toxins as Antitumor Tools
by Aude Robert and Joëlle Wiels
Toxins 2021, 13(10), 690; https://doi.org/10.3390/toxins13100690 - 28 Sep 2021
Cited by 24 | Viewed by 7010
Abstract
Shiga toxins (Stxs), also known as Shiga-like toxins (SLT) or verotoxins (VT), constitute a family of structurally and functionally related cytotoxic proteins produced by the enteric pathogens Shigella dysenteriae type 1 and Stx-producing Escherichia coli (STEC). Infection with these bacteria causes bloody diarrhea [...] Read more.
Shiga toxins (Stxs), also known as Shiga-like toxins (SLT) or verotoxins (VT), constitute a family of structurally and functionally related cytotoxic proteins produced by the enteric pathogens Shigella dysenteriae type 1 and Stx-producing Escherichia coli (STEC). Infection with these bacteria causes bloody diarrhea and other pathological manifestations that can lead to HUS (hemolytic and uremic syndrome). At the cellular level, Stxs bind to the cellular receptor Gb3 and inhibit protein synthesis by removing an adenine from the 28S rRNA. This triggers multiple cellular signaling pathways, including the ribotoxic stress response (RSR), unfolded protein response (UPR), autophagy and apoptosis. Stxs cause several pathologies of major public health concern, but their specific targeting of host cells and efficient delivery to the cytosol could potentially be exploited for biomedical purposes. Moreover, high levels of expression have been reported for the Stxs receptor, Gb3/CD77, in Burkitt’s lymphoma (BL) cells and on various types of solid tumors. These properties have led to many attempts to develop Stxs as tools for biomedical applications, such as cancer treatment or imaging, and several engineered Stxs are currently being tested. We provide here an overview of these studies. Full article
Show Figures

Figure 1

27 pages, 3728 KiB  
Article
Primary Human Colon Epithelial Cells (pHCoEpiCs) Do Express the Shiga Toxin (Stx) Receptor Glycosphingolipids Gb3Cer and Gb4Cer and Are Largely Refractory but Not Resistant towards Stx
by Johanna Detzner, Charlotte Püttmann, Gottfried Pohlentz, Hans-Ulrich Humpf, Alexander Mellmann, Helge Karch and Johannes Müthing
Int. J. Mol. Sci. 2021, 22(18), 10002; https://doi.org/10.3390/ijms221810002 - 16 Sep 2021
Cited by 4 | Viewed by 2196
Abstract
Shiga toxin (Stx) is released by enterohemorrhagic Escherichia coli (EHEC) into the human intestinal lumen and transferred across the colon epithelium to the circulation. Stx-mediated damage of human kidney and brain endothelial cells and renal epithelial cells is a renowned feature, while the [...] Read more.
Shiga toxin (Stx) is released by enterohemorrhagic Escherichia coli (EHEC) into the human intestinal lumen and transferred across the colon epithelium to the circulation. Stx-mediated damage of human kidney and brain endothelial cells and renal epithelial cells is a renowned feature, while the sensitivity of the human colon epithelium towards Stx and the decoration with the Stx receptor glycosphingolipids (GSLs) globotriaosylceramide (Gb3Cer, Galα1-4Galβ1-4Glcβ1-1Cer) and globotetraosylceramide (Gb4Cer, GalNAcβ1-3Galα1-4Galβ1-4Glcβ1-1Cer) is a matter of debate. Structural analysis of the globo-series GSLs of serum-free cultivated primary human colon epithelial cells (pHCoEpiCs) revealed Gb4Cer as the major neutral GSL with Cer (d18:1, C16:0), Cer (d18:1, C22:1/C22:0) and Cer (d18:1, C24:2/C24:1) accompanied by minor Gb3Cer with Cer (d18:1, C16:0) and Cer (d18:1, C24:1) as the dominant lipoforms. Gb3Cer and Gb4Cer co-distributed with cholesterol and sphingomyelin to detergent-resistant membranes (DRMs) used as microdomain analogs. Exposure to increasing Stx concentrations indicated only a slight cell-damaging effect at the highest toxin concentration of 1 µg/mL for Stx1a and Stx2a, whereas a significant effect was detected for Stx2e. Considerable Stx refractiveness of pHCoEpiCs that correlated with the rather low cellular content of the high-affinity Stx-receptor Gb3Cer renders the human colon epithelium questionable as a major target of Stx1a and Stx2a. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

12 pages, 2368 KiB  
Article
Effect of Shiga Toxin on Inhomogeneous Biological Membrane Structure Determined by Small-Angle Scattering
by Shuyang Tu, Haijiao Zhang, Yawen Li, Yongchao Zhang, Qiang Tian, László Almásy, Xianhui Xu, Rongguang Zhang, Aihua Zou and Na Li
Appl. Sci. 2021, 11(15), 6965; https://doi.org/10.3390/app11156965 - 28 Jul 2021
Cited by 1 | Viewed by 2123
Abstract
Inhomogeneous structure occurring in biological membranes being rich in glycosphingolipids (GSL) has been proposed as an important phenomenon involved in the cellular endocytosis process. However, little is known about the correlation between the formation of microdomains and the GSL-dependent biogenesis for tubular endocytic [...] Read more.
Inhomogeneous structure occurring in biological membranes being rich in glycosphingolipids (GSL) has been proposed as an important phenomenon involved in the cellular endocytosis process. However, little is known about the correlation between the formation of microdomains and the GSL-dependent biogenesis for tubular endocytic pits occurred on the surface of the cellular membrane. In the present work, the interaction between the bacterial Shiga toxin from Escherichia coli (STxB) and its cellular receptor GSL globotriaosylceramide (Gb3) were studied using small unilamellar vesicle (SUV). The model membrane invagination induced by STxB was determined by the contrast variation small-angle neutron scattering (SANS) and the synchrotron radiation facility based small-angle X-ray scattering (SR-SAXS). The results revealed that Gb3 molecules provided the binding sites for STxB, inducing increased membrane fluctuation. The formation of protein–lipid complex (STxB-Gb3) apparently induced the thinning of model membrane with the thickness decreased from 3.10 nm to 2.50 nm. It is the first time to successfully characterize the mesoscopic change on membrane thickness upon GSL-dependent endocytic process using a small-angle scattering technique. Overall, this paper provided a practical method to quantify the inhomogeneous biological membrane structures, which is important to understand the cellular endocytosis process. Full article
(This article belongs to the Special Issue Biological Small Angle Scattering Techniques and Applications)
Show Figures

Figure 1

24 pages, 2880 KiB  
Article
Primary Human Renal Proximal Tubular Epithelial Cells (pHRPTEpiCs): Shiga Toxin (Stx) Glycosphingolipid Receptors, Stx Susceptibility, and Interaction with Membrane Microdomains
by Johanna Detzner, Anna-Lena Klein, Gottfried Pohlentz, Elisabeth Krojnewski, Hans-Ulrich Humpf, Alexander Mellmann, Helge Karch and Johannes Müthing
Toxins 2021, 13(8), 529; https://doi.org/10.3390/toxins13080529 - 28 Jul 2021
Cited by 6 | Viewed by 3140
Abstract
Tubular epithelial cells of the human kidney are considered as targets of Shiga toxins (Stxs) in the Stx-mediated pathogenesis of hemolytic–uremic syndrome (HUS) caused by Stx-releasing enterohemorrhagic Escherichia coli (EHEC). Analysis of Stx-binding glycosphingolipids (GSLs) of primary human renal proximal tubular epithelial cells [...] Read more.
Tubular epithelial cells of the human kidney are considered as targets of Shiga toxins (Stxs) in the Stx-mediated pathogenesis of hemolytic–uremic syndrome (HUS) caused by Stx-releasing enterohemorrhagic Escherichia coli (EHEC). Analysis of Stx-binding glycosphingolipids (GSLs) of primary human renal proximal tubular epithelial cells (pHRPTEpiCs) yielded globotriaosylceramide (Gb3Cer) and globotetraosylceramide (Gb4Cer) with Cer (d18:1, C16:0), Cer (d18:1, C22:0), and Cer (d18:1, C24:1/C24:0) as the dominant lipoforms. Investigation of detergent-resistant membranes (DRMs) and nonDRMs, serving as equivalents for the liquid-ordered and liquid-disordered membrane phase, respectively, revealed the prevalence of Gb3Cer and Gb4Cer together with cholesterol and sphingomyelin in DRMs, suggesting lipid raft association. Stx1a and Stx2a exerted strong cellular damage with half-maximal cytotoxic doses (CD50) of 1.31 × 102 pg/mL and 1.66 × 103 pg/mL, respectively, indicating one order of magnitude higher cellular cytotoxicity of Stx1a. Surface acoustic wave (SAW) real-time interaction analysis using biosensor surfaces coated with DRM or nonDRM fractions gave stronger binding capability of Stx1a versus Stx2a that correlated with the lower cytotoxicity of Stx2a. Our study underlines the substantial role of proximal tubular epithelial cells of the human kidney being associated with the development of Stx-mediated HUS at least for Stx1a, while the impact of Stx2a remains somewhat ambiguous. Full article
(This article belongs to the Section Bacterial Toxins)
Show Figures

Figure 1

Back to TopTop