Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (29)

Search Parameters:
Keywords = shift of methanogen community

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 2090 KiB  
Article
Influence of Adding Conductive Materials and Integrating Bio Electrochemical Systems on the Efficiency of Anaerobic Digestion
by Alberto Mur-Gorgas, Antonio V. García-Triviño, Raúl Mateos, Adrián Escapa and Antonio Morán
Appl. Sci. 2025, 15(1), 143; https://doi.org/10.3390/app15010143 - 27 Dec 2024
Viewed by 1123
Abstract
This study explores the impact of incorporating conductive materials and bioelectrochemical systems (BES) on the efficiency of anaerobic digestion (AD) of sewage sludge. The research consists of two phases: biodegradability tests using 3D-printed polylactic acid-based conductive fillers (PLA/Carbon Black and PLA/Graphene) and semi-continuous [...] Read more.
This study explores the impact of incorporating conductive materials and bioelectrochemical systems (BES) on the efficiency of anaerobic digestion (AD) of sewage sludge. The research consists of two phases: biodegradability tests using 3D-printed polylactic acid-based conductive fillers (PLA/Carbon Black and PLA/Graphene) and semi-continuous assays integrating an external BES into the AD process. Results from biodegradability tests indicate that conductive fillers enhance around 50% methane production during the start-up phase, with microbial communities adapting over time to reduce variability in methane yields. Moreover, as the experiment progressed, the methane yields of the digesters with and without fillers became equal. Semi-continuous experiments demonstrate that BES integration improves process stability and methane production by achieving a 5–10% improvement in the amount of methane in the biogas throughout the entire operation, even under high organic loads, by facilitating diverse electron transfer pathways. The challenges of BES operation highlight the need for optimized designs to ensure scalability. Microbial analyses reveal that BES application shifts methanogenic pathways, favouring acetoclastic methanogenesis. Overall, the findings underscore the potential of conductive materials and BES to improve biogas quality and production, contributing to sustainable wastewater management and renewable energy generation. Full article
(This article belongs to the Special Issue Production, Treatment, Utilization and Future Opportunities of Biogas)
Show Figures

Figure 1

11 pages, 2662 KiB  
Article
Enhancement of Fermentation Performance in the Anaerobic Co-Digestion of Chicken Manure and Corn Straw under Biogas Slurry Reflux via Air Stripping of the Digestate
by Jiaoning Zhu, Jingxuan Zhang, Yun Tang, Xiaoyuan Zhang, Xiangyuan Shi, Xiuhong Wang and Yongping Li
Agronomy 2024, 14(8), 1794; https://doi.org/10.3390/agronomy14081794 - 15 Aug 2024
Cited by 4 | Viewed by 1115
Abstract
Ammonium inhibition is a key limiting factor for anaerobic digestion when using chicken manure as the main substrate, especially in a digestion system with biogas slurry reflux. Air stripping is usually used as a recycled biogas slurry treatment. In this study, we carried [...] Read more.
Ammonium inhibition is a key limiting factor for anaerobic digestion when using chicken manure as the main substrate, especially in a digestion system with biogas slurry reflux. Air stripping is usually used as a recycled biogas slurry treatment. In this study, we carried out the anaerobic co-digestion of chicken manure and corn straw. The fermentation performance was investigated with and without air stripping at different biogas slurry reflux ratios and with an increasing organic loading rate. The results show that air stripping enhanced biogas production, system stability, and volatile solid removal efficiency via the mitigation control of ammonium inhibition. The total ammonium nitrogen in the digesters with air stripping was 20.24–46.40% lower than in those without air stripping. The highest specific biogas production and volatile solid removal efficiency values were obtained in the digesters at an organic loading rate of 3.3 g volatile solid (VS)/(L·d) and a reflux ratio of 75% with air stripping, reaching 480.43 mL/gVSadd and 63.36%, respectively. Moreover, air stripping also improved the organic loading rate and reflux ratio. Stable operation was achieved at an organic loading rate of 5.3 gVS/(L·d) and a reflux ratio of 75%, with specific biogas production of 392.35 mL/gVSadd and a volatile solid removal efficiency of 50.33%. The fermentation performance deteriorated when the organic loading rate was increased to 8.0 gVS/(L·d) at a reflux ratio of 75%, even when air stripping was conducted, indicating that a slighter lower reflux ratio (50%) could be more feasible at a higher organic loading rate (8.0 gVS/(L·d). Additionally, the methanogen community structure varied according to the use of air stripping, with a shift in the methanogenic pathway from hydrogenotrophic to acetoclastic methanogens. Overall, our findings support the adoption of air stripping for ammonium mitigation in anaerobic digestion with biogas slurry reflux. Full article
(This article belongs to the Section Agricultural Biosystem and Biological Engineering)
Show Figures

Figure 1

17 pages, 2150 KiB  
Article
Rotary Tillage Plus Mechanical Transplanting Practices Increased Rice Yields with Lower CH4 Emission in a Single Cropping Rice System
by Linlin Shi, Linlin Dong, Jun Zhang, Jing Huang, Yuan Shen, Yueyue Tao, Haihou Wang and Changying Lu
Agriculture 2024, 14(7), 1065; https://doi.org/10.3390/agriculture14071065 - 1 Jul 2024
Viewed by 1714
Abstract
As the main contributor to greenhouse gas (GHG) in paddy soil, information on methane (CH4) emission characteristics under different tillage and cultivation practices are limited. A five-year field trial was conducted from 2019 in a single-cropping rice system in Taihu Lake [...] Read more.
As the main contributor to greenhouse gas (GHG) in paddy soil, information on methane (CH4) emission characteristics under different tillage and cultivation practices are limited. A five-year field trial was conducted from 2019 in a single-cropping rice system in Taihu Lake region, east of China. The experiment had a completely randomized block design, and the treatments included rotary tillage plus rice dry direct seeding (RD), rotary tillage plus rice mechanical transplanting (RT), and plowing tillage plus rice mechanical transplanting (PT). We determined the rice yield, GHG emission, soil traits, and methanogens and methanotrophs in 2022 and 2023. The results revealed that PT and RT significantly increased rice yield compared to RD, whereas PT simultaneously increased CH4 emissions. The year-averaged cumulative CH4 emissions in PT were increased by 38.5% and 61.4% higher than RT and RD, respectively. Meanwhile, yield-scaled global warming potentials (GWPs) in RT and RD were lower than those in PT. Tillage and cultivation practices shifted mcrA and pmoA abundances, and PT significantly decreased pmoA abundance. The community structure and diversity of the methanogens and methanotrophs were not significantly affected. Structural equation model analyses illustrated that CH4 emissions were regulated by mcrA and pmoA directly, which in turn, regulated by soil carbon and nitrogen. Overall, rotary tillage plus mechanism transplanting was a feasible agronomic technology in a single-cropping rice system in Taihu Lake region, exhibiting higher and more stable rice productivity, accompanied with lower CH4 emissions and yield-scaled GWP. Full article
(This article belongs to the Special Issue Rice Ecophysiology and Production: Yield, Quality and Sustainability)
Show Figures

Figure 1

15 pages, 2619 KiB  
Article
The Effects of Using Evogen Biogas Additive on the Microbiome and Performance of Full-Scale Biogas Plant
by Themistoklis Sfetsas, Manthos Panou, Afroditi G. Chioti, Nikoleta Prokopidou and Ioanna Dalla
Methane 2023, 2(3), 329-343; https://doi.org/10.3390/methane2030022 - 3 Sep 2023
Cited by 3 | Viewed by 2258
Abstract
Biogas production from organic waste is a promising renewable energy source, but achieving optimal production and digester stability can be challenging. This study investigated the impact of the Evogen microbial additive on biogas production and digester status in two biogas plants (BG01 and [...] Read more.
Biogas production from organic waste is a promising renewable energy source, but achieving optimal production and digester stability can be challenging. This study investigated the impact of the Evogen microbial additive on biogas production and digester status in two biogas plants (BG01 and BG02). Microbial abundance and physicochemical parameters were analyzed to assess the effects. The results show distinct microbial community shifts in Evogen-treated digesters, with increased abundance of methanogenic archaea and hydrolytic bacteria, indicating improved anaerobic digestion. Evogen supplementation positively influenced digester performance, as evidenced by higher alkalinity buffer capacity (FOS/TAC ratios), indicating enhanced acidification and methanogenesis, along with reductions in total solids and volatile solids, demonstrating improved organic matter degradation. Evogen-treated digesters exhibited significantly higher biogas production and improved process stability, as indicated by volatile fatty acids (VFAs) profiling. The dominance of Firmicutes, Synergistetes, Proteolytic Bacteroidetes and Actinobacteria highlighted their roles in substrate degradation and VFA production. The findings contribute to optimizing biogas production systems and understanding complex microbial interactions within anaerobic digesters. The addition of Evogen influenced microbial community composition and dynamics, potentially altering substrate utilization, metabolic interactions and overall community structure. Full article
(This article belongs to the Special Issue Anaerobic Digestion Process: Converting Waste to Energy)
Show Figures

Figure 1

16 pages, 2498 KiB  
Article
Effects of Temperature Shifts on Microbial Communities and Biogas Production: An In-Depth Comparison
by Gede Adi Wiguna Sudiartha, Tsuyoshi Imai, Chonticha Mamimin and Alissara Reungsang
Fermentation 2023, 9(7), 642; https://doi.org/10.3390/fermentation9070642 - 8 Jul 2023
Cited by 24 | Viewed by 4422
Abstract
Temperature plays a significant role in anaerobic digestion (AD) as it affects the microbial communities and ultimately controls the efficiency of the process. Few studies have looked at temperature-adjusted AD, but it is unclear how the temperature shifts affect biogas production and the [...] Read more.
Temperature plays a significant role in anaerobic digestion (AD) as it affects the microbial communities and ultimately controls the efficiency of the process. Few studies have looked at temperature-adjusted AD, but it is unclear how the temperature shifts affect biogas production and the dynamics of microorganisms involved in methanogenesis. This study tested two temperature shift scenarios in fed-batch mode using anaerobically digested sewage sludge and glucose-based substrate. The first scenario was acclimatized to upshifting temperatures from 42 °C to 48 °C while the second was acclimatized to downshifting temperatures from 55 °C to 45 °C. Both temperature shift scenarios resulted in a decrease in biogas production, especially at 45 °C. The upshifted scenario experienced a maximum decrease of 83%, and the downshifted scenario experienced a 16–33% decrease in methane production. Next-generation 16S rRNA sequencing revealed the domination of Methanoculleus in the upshifted scenario. However, a low correlation between the number of Methanoculleus and the other hydrogenotrophic methanogens to biogas production indicates inhibition in the hydrogenotrophic pathway. The downshifted scenario showed better biogas production due to the substantial domination of acetoclastic Methanosaeta and the low abundance of sulfate-reducing bacteria. Hence, the temperature shift affects the microbial communities, significantly affecting biogas production performance. Full article
(This article belongs to the Special Issue Anaerobic Digestion: Waste to Energy)
Show Figures

Figure 1

16 pages, 2059 KiB  
Article
Variations in Methanogenic and Methanotrophic Communities Resulted in Different Methane Emissions from Paddy Soil Applied with Two Types of Manure
by Beibei Zhou, Ruirui Chen, Shuang Peng, Jianwei Zhang, Xiangui Lin and Yiming Wang
Agronomy 2023, 13(5), 1268; https://doi.org/10.3390/agronomy13051268 - 28 Apr 2023
Cited by 7 | Viewed by 2431
Abstract
Organic manure application is crucial for the maintenance and improvement of soil fertility. However, it inevitably results in increased paddy CH4 emissions, restricting the use of organic manure in the rice fields. In the present study, two kinds of manures, rapidly composted [...] Read more.
Organic manure application is crucial for the maintenance and improvement of soil fertility. However, it inevitably results in increased paddy CH4 emissions, restricting the use of organic manure in the rice fields. In the present study, two kinds of manures, rapidly composted manure (RCM) and non-composted manure (NCM), were investigated through a 19-week greenhouse experiment, during which the dynamics of CH4 emission, soil parameters (DOC, acetate, NH4+, NO3, and SO42−), and communities of methanogens and methanotrophs were simultaneously measured. The results showed that NCM significantly enhanced CH4 emission, while RCM decreased CH4 emission by 65.03%; there was no significant difference with the manure-free treatment. In order to well understand the methanogenic process, the seasonal CH4 flux was divided into two periods, namely Stage 1 (before drainage) and Stage 2 (after drainage), on the basis of CH4 emission intensity. The different CH4 production abilities among the three treatments could contribute to the varied CH4 emissions at Stage 1. The much higher soil DOC concentrations were observed in the manure-amended soils (NCM- and RCM-treatments), which could correspondingly lead to the relative higher CH4 emissions compared to the control during Stage 1. Furthermore, the increased methanogenic abundance and the shifted methanogenic archaeal community characterized by the functionally stimulated growth of Methanosarcina genus were observed in the NCM-treated soils, which could consequently result in a higher CH4 emission from the NCM treatment relative to the RCM treatment. As for Stage 2, apart from the significant decrease in soil DOC, the increased contents of soil NO3 and SO42−, especially with the RCM-treated soils, were also detected following the drainage, which might retard CH4 production. The lower CH4 emission at Stage 2 could also be attributed to the vigorous aerobic CH4 oxidations, especially in the RCM-treated soils. As a support, the amount of methanotrophs revealed an increasing trend during the late rice growth period, as did the predominance of the methylotrophy of Methylophilaceae species, which showed robust co-occurrence with methanotrophs, inferring interspecies cooperation in methane oxidation. Full article
(This article belongs to the Special Issue Metagenomic Analysis for Unveiling Agricultural Microbiome)
Show Figures

Figure 1

25 pages, 9043 KiB  
Article
Microbial and Biogeochemical Shifts in a Highly Anthropogenically Impacted Estuary (“El Sauce” Valparaíso)
by Francisco Pozo-Solar, Marcela Cornejo-D’Ottone, Roberto Orellana, Carla Acuña, Cecilia Rivera, Polette Aguilar-Muñoz, Céline Lavergne and Verónica Molina
Water 2023, 15(6), 1251; https://doi.org/10.3390/w15061251 - 22 Mar 2023
Cited by 2 | Viewed by 3541
Abstract
Coastal zones are ecosystems that are sensitive to climate change and anthropogenic pollution, resulting in a potential loss of biodiversity and ecosystem services through eutrophication and nutrient imbalances, among others. The coastal El Sauce catchment area, Central Chile, is under multiple anthropogenic pressures [...] Read more.
Coastal zones are ecosystems that are sensitive to climate change and anthropogenic pollution, resulting in a potential loss of biodiversity and ecosystem services through eutrophication and nutrient imbalances, among others. The coastal El Sauce catchment area, Central Chile, is under multiple anthropogenic pressures including wastewater treatment plant (WWTP) discharge, which its broad effect remains underexplored. In order to assess the impact of the WWTP on El Sauce stream, the benthic microbial communities and key functional groups variability (i.e., nitrifiers, methanogens and methanotrophs) were determined by 16S rDNA high-throughput sequencing and by functional genes quantification, respectively, during two contrasted seasons in three catchment areas (pre-, WWTP and post-discharge). The microbial communities’ structure profiles were associated with the water quality, nutrients, greenhouse gas (GHG) distribution, and the organic matter isotopic signatures in the sediments, for the first time, in this ecosystem. The results show that organic matter isotopic signatures using nitrogen and carbon (δ15N and δ13C) and the physicochemical conditions in El Sauce estuary changed from the pre- to WWTP discharge areas (i.e., a pH decrease of 0.5 units and an increase of 4–6 °C in the water temperature). The WWTP discharge area was characterized by a low nutrient concentration and significantly higher GHG distribution (>600 µM CO2, >30,000 nM CH4, and >3000 nM N2O). In addition, the benthic microbial community structure shifted spatially and seasonally, including specific phyla known as sewage bioindicators, such as Firmicutes (Clostridiales order) and Bacteroidetes. In addition, other taxa were enriched or only retrieved in the sediments of the WWTP influenced area, e.g., Tenericutes, Lentisphaerae, Synergistetes, and LCP-89. Methanogens were more enriched near the WWTP discharge compared to those in the pre-discharge site in both seasons, while methanotrophs and ammonia oxidizers were unfavored only during winter. Our results indicate that the WWTP discharge impacts the biogeochemical conditions in El Sauce catchment area modifying the benthic microbial communities, including a decrease in the key functional groups able to mitigate CH4 and regulate nutrients recycling in these aquatic ecosystems. Full article
(This article belongs to the Section Biodiversity and Functionality of Aquatic Ecosystems)
Show Figures

Graphical abstract

21 pages, 6842 KiB  
Article
Wet Anaerobic Codigestion of Sewage Sludge and OFMSW in Pilot-Scale Continuously Stirred Tank Reactors: Focus on the Reactor Microbial Communities
by Isabella Pecorini, Elena Rossi, Simone Becarelli, Francesco Baldi, Simona Di Gregorio and Renato Iannelli
Sustainability 2023, 15(4), 3168; https://doi.org/10.3390/su15043168 - 9 Feb 2023
Cited by 4 | Viewed by 2261
Abstract
Dark fermentation (DF) is a simple method for hydrogen (H2) production through the valorization of various organic wastes that can be used as feedstock. In particular, an organic fraction of municipal solid waste (OFMSW) is a fermentation substrate that can easily [...] Read more.
Dark fermentation (DF) is a simple method for hydrogen (H2) production through the valorization of various organic wastes that can be used as feedstock. In particular, an organic fraction of municipal solid waste (OFMSW) is a fermentation substrate that can easily be gathered and provides high yields in biogas and value-added organic compounds such as volatile fatty acids (VFAs). DF is coupled with a methanogenic reactor to enhance biogas production from the OFMSW. In this study, a two-stage reactor was conducted and monitored to optimize the methane yield by reducing the HRT at the DF reactor. A focus of the functional inference based on a next-generation sequence (NGS) metabarcoding analysis and comparison of microbial communities that populate each reactor stage was performed. Concerning gas quality, the two-stage system observed a hydrogen-rich biogas in the first fermentative reactor (on average 20.2%) and an improvement in the methane content in the second methanogenic digester, which shifted from 61.2% obtained for the one-stage experiment to 73.5%. Such increases were due to the improvement in substrate hydrolysis. As for the specific biogas production, the results showed an overall increase of 50%. Full article
Show Figures

Figure 1

16 pages, 11583 KiB  
Article
Syntrophic Butyrate-Oxidizing Consortium Mitigates Acetate Inhibition through a Shift from Acetoclastic to Hydrogenotrophic Methanogenesis and Alleviates VFA Stress in Thermophilic Anaerobic Digestion
by Anna A. Nikitina, Anna Y. Kallistova, Denis S. Grouzdev, Tat’yana V. Kolganova, Andrey A. Kovalev, Dmitriy A. Kovalev, Vladimir Panchenko, Ivar Zekker, Alla N. Nozhevnikova and Yuriy V. Litti
Appl. Sci. 2023, 13(1), 173; https://doi.org/10.3390/app13010173 - 23 Dec 2022
Cited by 14 | Viewed by 3807
Abstract
In anaerobic digestion (AD), butyrate is degraded by syntrophic consortium, but can accumulate in highly loaded AD systems. The effect of butyrate on the AD process attracts much less attention than propionate or acetate. In this work, an enrichment culture of the thermophilic [...] Read more.
In anaerobic digestion (AD), butyrate is degraded by syntrophic consortium, but can accumulate in highly loaded AD systems. The effect of butyrate on the AD process attracts much less attention than propionate or acetate. In this work, an enrichment culture of the thermophilic butyrate-oxidizing syntrophic consortium was obtained by gradually increasing the initial butyrate concentration from 20 to 170 mM. Surprisingly, even the highest butyrate concentration did not significantly inhibit the methanogenic community, and the stage of acetate degradation was the limiting overall rate of the process. At 170 mM butyrate, the bacterial community changed towards the dominance of syntrophic acetate-oxidizing (SAO) bacteria related to Syntrophaceticus (42.9%), Syntrophomonas (26.2%) and Firmicutes (26.2%), while the archaeal community experienced a sharp decrease in the abundance of Methanosarcina thermophila (from 86.0 to 25.0%) and increase in Methanothermobacter thermautotrophicus (from 3.2 to 53.1%) and Methanomassiliicoccus (from 3.2 to 21.9%). Thus, the shift from acetoclastic methanogenesis to SAO coupled to hydrogenotrophic methanogenesis occurred as an adaptive strategy to overcome high acetate (~200 mM) build-up. Bioaugmentation with the obtained enrichment culture was effective in mitigating the butyrate-dominated VFA build-up during the AD of readily biodegradable waste, increasing the methane production rate, methane yield and volatile solids removal by more than 3.5, 6.2 and 2.9 times, respectively. Our study revealed that the thermophilic butyrate-oxidizing consortia as bioaugmented culture could be the potential strategy to alleviate the high organic load and VFA stress of AD. Full article
(This article belongs to the Special Issue Energy Optimization for Agriculture and Agroengineering Systems)
Show Figures

Figure 1

18 pages, 1835 KiB  
Article
Rumen Microbiome Reveals the Differential Response of CO2 and CH4 Emissions of Yaks to Feeding Regimes on the Qinghai–Tibet Plateau
by Qian Zhang, Tongqing Guo, Xungang Wang, Xiaoling Zhang, Yuanyue Geng, Hongjin Liu, Tianwei Xu, Linyong Hu, Na Zhao and Shixiao Xu
Animals 2022, 12(21), 2991; https://doi.org/10.3390/ani12212991 - 30 Oct 2022
Cited by 4 | Viewed by 2488
Abstract
Shifts in feeding regimes are important factors affecting greenhouse gas (GHG) emissions from livestock farming. However, the quantitative values and associated drivers of GHG emissions from yaks (Bos grunniens) following shifts in feeding regimes have yet to be fully described. In [...] Read more.
Shifts in feeding regimes are important factors affecting greenhouse gas (GHG) emissions from livestock farming. However, the quantitative values and associated drivers of GHG emissions from yaks (Bos grunniens) following shifts in feeding regimes have yet to be fully described. In this study, we aimed to investigate CH4 and CO2 emissions differences of yaks under different feeding regimes and their potential microbial mechanisms. Using static breathing chamber and Picarro G2508 gas concentration analyzer, we measured the CO2 and CH4 emissions from yaks under traditional grazing (TG) and warm-grazing and cold-indoor feeding (WGCF) regimes. Microbial inventories from the ruminal fluid of the yaks were determined via Illumina 16S rRNA and ITS sequencing. Results showed that implementing the TG regime in yaks decreased their CO2 and CH4 emissions compared to the WGCF regime. The alpha diversity of ruminal archaeal community was higher in the TG regime than in the WGCF regime. The beta diversity showed that significant differences in the rumen microbial composition of the TG regime and the WGCF regime. Changes in the rumen microbiota of the yaks were driven by differences in dietary nutritional parameters. The relative abundances of the phyla Neocallimastigomycota and Euryarchaeota and the functional genera Prevotella, Ruminococcus, Orpinomyces, and Methanobrevibacter were significantly higher in the WGCF regime than in the TG regime. CO2 and CH4 emissions from yaks differed mainly because of the enrichment relationship of functional H2- and CO2-producing microorganisms, hydrogen-consuming microbiota, and hydrogenotrophic methanogenic microbiota. Our results provided a view that it is ecologically important to develop GHG emissions reduction strategies for yaks on the Qinghai–Tibet Plateau based on traditional grazing regime. Full article
Show Figures

Figure 1

16 pages, 2958 KiB  
Article
Effects of Ciprofloxacin Alone or in Mixture with Sulfamethoxazole on the Efficiency of Anaerobic Digestion and Its Microbial Community
by Valentina Mazzurco Miritana, Luisa Patrolecco, Anna Barra Caracciolo, Andrea Visca, Flavia Piccinini, Antonella Signorini, Silvia Rosa, Paola Grenni, Gian Luigi Garbini, Francesca Spataro, Jasmin Rauseo and Giulia Massini
Antibiotics 2022, 11(8), 1111; https://doi.org/10.3390/antibiotics11081111 - 17 Aug 2022
Cited by 13 | Viewed by 2506
Abstract
Some livestock farms rely on anaerobic digestion (AD) technology for manure disposal, thus obtaining energy (biogas) and fertilizer (digestate). Mixtures of antibiotics used for animal health often occur in organic waste and their possible synergistic/antagonistic effects on microorganisms involved in AD are still [...] Read more.
Some livestock farms rely on anaerobic digestion (AD) technology for manure disposal, thus obtaining energy (biogas) and fertilizer (digestate). Mixtures of antibiotics used for animal health often occur in organic waste and their possible synergistic/antagonistic effects on microorganisms involved in AD are still poorly studied. This work focuses on the effects of adding ciprofloxacin, alone (5 mg L−1) and in combination with sulfamethoxazole (2.5–5–10 mg L−1), on AD efficiency and microbial community structure. The experiment consisted of 90-day cattle manure batch tests and antibiotic removal percentages were assessed. Adding antibiotics always promoted CH4 and H2 production compared to untreated controls; however, CH4 production was lowered with the highest ciprofloxacin (CIP) concentrations. The overall results show antibiotic degradation caused by acidogenic Bacteria, and CH4 was mainly produced through the hydrogenotrophic-pathway by methanogenic Archaea. Shifts in microbial community abundance (DAPI counts) and composition (Illumina-MiSeq and FISH analyses) were observed. Full article
(This article belongs to the Section Antibiotics Use and Antimicrobial Stewardship)
Show Figures

Graphical abstract

18 pages, 3572 KiB  
Article
Laboratory-Controlled Experiments Reveal Microbial Community Shifts during Sediment Resuspension Events
by Alexis DesRosiers, Nathalie Gassama, Cécile Grosbois and Cassandre Sara Lazar
Genes 2022, 13(8), 1416; https://doi.org/10.3390/genes13081416 - 9 Aug 2022
Cited by 2 | Viewed by 2065
Abstract
In freshwater ecosystems, dynamic hydraulic events (floods or dam maintenance) lead to sediment resuspension and mixing with waters of different composition. Microbial communities living in the sediments play a major role in these leaching events, contributing to organic matter degradation and the release [...] Read more.
In freshwater ecosystems, dynamic hydraulic events (floods or dam maintenance) lead to sediment resuspension and mixing with waters of different composition. Microbial communities living in the sediments play a major role in these leaching events, contributing to organic matter degradation and the release of trace elements. However, the dynamics of community diversity are seldom studied in the context of ecological studies. Therefore, we carried out laboratory-induced leaching experiments, using sediments from the Villerest dam reservoir (Villerest, France). To assess whole microbial community diversity, we sequenced the archaeal and bacterial 16S rRNA genes using Illumina MiSeq. Our results suggest that the degree of dissolved oxygen found in the water during these resuspension episodes influenced community dynamics, with anoxic waters leading to drastic shifts in sedimentary communities compared to oxic waters. Furthermore, the release of microbial cells from sediments to the water column were more favorable to water colonization when events were caused by oxic waters. Most of the bacteria found in the sediments were chemoorganotrophs and most of the archaea were methanogens. Methylotrophic, as well as archaeal, and bacterial chemoorganotrophs were detected in the leachate samples. These results also show that organic matter degradation occurred, likely participating in carbonate dissolution and the release of trace elements during freshwater resuspension events. Full article
(This article belongs to the Special Issue When Genes Meet Microbial Ecology and Evolution)
Show Figures

Graphical abstract

19 pages, 342 KiB  
Article
Consumption of Purple Neem Foliage Rich in Anthocyanins Improves Rumen Fermentation, Growth Performance and Plasma Antioxidant Activity in Growing Goats
by Nittaya Taethaisong, Siwaporn Paengkoum, Chatsirin Nakharuthai, Narawich Onjai-uea, Sorasak Thongpea, Boontum Sinpru, Jariya Surakhunthod, Weerada Meethip and Pramote Paengkoum
Fermentation 2022, 8(8), 373; https://doi.org/10.3390/fermentation8080373 - 6 Aug 2022
Cited by 7 | Viewed by 3004
Abstract
This study aimed to investigate how the consumption of purple neem foliage rich in anthocyanins improves rumen fermentation, growth performance and plasma antioxidant activity in growing goats. In total, 25 Anglo-Nubian Thai native male goats (about 20 ± 2 kg body weight; mean [...] Read more.
This study aimed to investigate how the consumption of purple neem foliage rich in anthocyanins improves rumen fermentation, growth performance and plasma antioxidant activity in growing goats. In total, 25 Anglo-Nubian Thai native male goats (about 20 ± 2 kg body weight; mean standard deviation (SD)) were assigned to 2 × 2 + 1 factorial in a completely randomized study design. There were five treatments: (1) control, (2) 3% normal neem foliage in concentrate, (3) 6% normal neem foliage in concentrate, (4) 3% purple neem foliage in concentrate and (5) 6% purple neem foliage in concentrate. The results show that the goats that were fed 6% purple neem foliage in concentrate had a higher (p < 0.01) feed intake gDM/d, %BW, g/kgBW0.75, nutrient intake, nutrient digestion, final weight, weight change and ADG than did the goats that were fed 3% purple neem foliage in concentrate, 3% normal neem foliage in concentrate, 6% normal neem foliage in concentrate and control treatment. The feeding of 6% purple neem foliage in concentrate had higher (p < 0.01) N intake, N urine, N digestion, N digestion (%), N retention and N retention (%) than the other treatments. The goats receiving 6% purple neem foliage in concentrate had no negative effect (p < 0.01) on pH but had a higher (p < 0.01) level of ammonia nitrogen, BUN, acetic acid, propionic acid, ratio of acetic acid to propionic acid and total VFA at 2 and 4 h after feeding compared to the other treatments. The effect of anthocyanin-rich 6% purple neem foliage was shown to be higher than the other treatments (p < 0.01) for total bacteria, Butyrivibrio fibrisolvens, Fibrobacter succinogenes, Ruminococcus albus, Ruminococcus flavefaciens and Streptococcus bovis at 2 and 4 h after feeding. The goats fed 6% purple neem foliage displayed higher (p < 0.01) levels of total antioxidant (TAC), superoxide dismutase (SOD), glutathione peroxidase (GPX), 2,2-diphenyl-1-picrylhydrazyl (DPPH) and catalase (CAT) antioxidant activity in plasma at 2 and 4 h after feeding. The goats fed 6% purple neem foliage had lower (p < 0.01) protozoa methanogen and malondialdehyde (MDA) at 2 and 4 h after feeding. In developing growing goats, the introduction of anthocyanin-rich purple neem foliage boosted plasma antioxidant capacity, improved rumen volatile fatty acids and caused a shift in the structure and relative abundance of the ruminal microbial community. Full article
(This article belongs to the Special Issue Recent Advances in Rumen Fermentation Efficiency)
16 pages, 1324 KiB  
Article
The Role of Extracellular Polymeric Substances in the Toxicity Response of Anaerobic Granule Sludge to Different Metal Oxide Nanoparticles
by Huiting Li, Fang Chang, Zhendong Li and Fuyi Cui
Int. J. Environ. Res. Public Health 2022, 19(9), 5371; https://doi.org/10.3390/ijerph19095371 - 28 Apr 2022
Cited by 7 | Viewed by 2314
Abstract
Wastewater treatment plants (WWTP) are regarded as the last barriers for the release of incompletely separated and recycled nanoparticles (NPs) into the environment. Despite the importance and ubiquity of microbial extracellular polymeric substances (EPSs) in the complex wastewater matrix, the interaction between NPs [...] Read more.
Wastewater treatment plants (WWTP) are regarded as the last barriers for the release of incompletely separated and recycled nanoparticles (NPs) into the environment. Despite the importance and ubiquity of microbial extracellular polymeric substances (EPSs) in the complex wastewater matrix, the interaction between NPs and EPSs of anaerobic microflora involved in wastewater treatment and the resultant impact on the biomass metabolomics are unclear. Thus, the impacts of different metal oxide (TiO2, ZnO, and CuO) NPs on functional bacteria in anaerobic granular sludge (AGS) and the possible toxicity mechanisms were investigated. In particular, the binding quality, enhanced resistance mechanism, and chemical fractional contribution of EPSs from AGS against the nanotoxicity of different NPs was assessed. The results showed that CuO NPs caused the most severe inhibition towards acetoclastic and hydrogenotrophic methanogens, followed by ZnO NPs, whereas TiO2 NPs caused no inhibition to methanogenesis. Excessive EPS production, especially the protein-like substances, was an effective strategy for reducing certain NPs’ toxicity by immobilizing NPs away from AGS cells, whereas the metabolism restriction on inner microorganisms of AGS induced by CuO NPs can deteriorate the protective role of EPS, indicating that the roles of EPS may not be amenable to generalizations. Further investigations with lactate dehydrogenase (LDH) and reactive oxygen species (ROS) assays indicated that there are greatly essential differences between the toxicity mechanisms of metal NPs to AGS, which varied depending on the NPs’ type and dosage. In addition, dynamic changes in the responses of EPS content to different NPs can result in a significant shift in methanogenic and acidogenic microbial communities. Thus, the production and composition of EPSs will be a key factor in determining the fate and potential effect of NPs in the complex biological matrix. In conclusion, this study broadens the understanding of the inhibition mechanisms of metal oxide NPs on the AGS process, and the influence of EPSs on the fate, behavior, and toxicity of NPs. Full article
(This article belongs to the Special Issue Wastewater Treatment Technologies and Analysis)
Show Figures

Figure 1

14 pages, 1462 KiB  
Article
Effect of Sodium on Methanogens in a Two-Stage Anaerobic System
by Keke Xiao, Yogananda Maspolim, Yan Zhou, Chenghong Guo and Wun Jern Ng
Appl. Sci. 2022, 12(3), 956; https://doi.org/10.3390/app12030956 - 18 Jan 2022
Cited by 7 | Viewed by 2843
Abstract
This study evaluated the effects of sodium on anaerobic biomass from the second-stage reactor of a two-stage anaerobic digester. The results indicated that methanogens showed a relatively high sodium tolerance of 2.4 g Na+ L−1. Microbial community analysis showed that [...] Read more.
This study evaluated the effects of sodium on anaerobic biomass from the second-stage reactor of a two-stage anaerobic digester. The results indicated that methanogens showed a relatively high sodium tolerance of 2.4 g Na+ L−1. Microbial community analysis showed that viable Methanomicrobiales was the most abundant population by a combined propidium monoazide cross-linking quantitative polymerase chain reaction technique. There was a population shift towards higher abundance of Thermotoga (0.02%), Clostridium (2.50%) and Methanoculleus (13.80%). Biomass activity in relation to increased sodium concentrations was investigated with the adenosine triphosphate test coupled with extracellular polymeric substances measurement. The results showed biomass activity decreased from 33 to 16 µg g−1 volatile suspended solids as sodium concentrations increased from 1.3 to 9.1 g Na+ L−1. Higher EPS production, particularly a greater predominance of carbohydrates, was stimulated by higher sodium concentrations. This study provides insights into the superiority of sodium tolerance of two-stage anaerobic digester in compared with a single-stage anaerobic system. Full article
Show Figures

Figure 1

Back to TopTop