Syntrophic Butyrate-Oxidizing Consortium Mitigates Acetate Inhibition through a Shift from Acetoclastic to Hydrogenotrophic Methanogenesis and Alleviates VFA Stress in Thermophilic Anaerobic Digestion
Abstract
:1. Introduction
2. Materials and Methods
2.1. Inoculum
2.2. Enrichment of Syntrophic Consortium
2.3. Bioaugmentation Experiment
2.4. Analytical Methods
2.5. Analysis of Microbial Diversity
2.5.1. DNA Extraction
2.5.2. Amplification, Cloning and Sequencing
2.5.3. Phylogenetic Analysis
2.6. Statistical Analysis
- —the average value;
- s—the standard deviation;
- n—the number of replicates;
- t—the corresponding t-statistical distribution value, depending on the number of samples and on the degree of confidence (95% in the present study).
3. Results
3.1. Dynamics of Processes Involved in Syntrophic Degradation of Butyrate
3.2. Changes in the Composition of the Microbial Community during the Degradation of 170 mM Butyrate
3.3. Improvement in AD Performance though Bioaugmentation with the Syntrophic Enrichment Culture
4. Discussion
4.1. Dynamics of Butyrate Degradation
4.2. Changes in Microbial Community Composition during the Degradation of 170 mM Butyrate
4.3. Improvement in AD Performance through Bioaugmentation, Comparison with Recent Research
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Stams, A.J.M.; Sousa, D.Z.; Kleerebezem, R.; Plugge, C.M. Role of Syntrophic Microbial Communities in High-Rate Methanogenic Bioreactors. Water Sci. Technol. 2012, 66, 352–362. [Google Scholar] [CrossRef] [PubMed]
- Schnürer, A. Biogas Production: Microbiology and Technology. In Anaerobes in Biotechnology; Hatti-Kaul, R., Mamo, G., Mattiasson, B., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 195–234. [Google Scholar] [CrossRef]
- Mcinerney, M.; Sieber, J.; Gunsalus, R. Syntrophy in Anaerobic Global Carbon Cycles. Curr. Opin. Biotechnol. 2009, 20, 623–632. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Schnürer, A.; Jarvis, Ä. Microbiological Handbook for Biogas Plants. Swedish Waste Management U. 2009. Available online: https://www.researchgate.net/profile/Anoop-Srivastava/post/Suggestion-on-Research-gaps-in-microbiology-of-biogas-production-and-optimization-Ideas-suggestions-and-links-to-relevant-works-are-welcome/attachment/59d6522779197b80779aa77d/AS%3A510890374070272%401498817165514/download/Microbiological_handbook_for_biogas_plants.pdf (accessed on 1 August 2021).
- Fotidis, I.A.; Karakashev, D.; Angelidaki, I. Bioaugmentation with an Acetate-Oxidising Consortium as a Tool to Tackle Ammonia Inhibition of Anaerobic Digestion. Bioresour. Technol. 2013, 146, 57–62. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Zhang, W.; Li, L.; Xing, W.; Chen, B.; Zhang, L.; Li, A.; Li, R.; Yang, T. Dynamic Behaviors of Batch Anaerobic Systems of Food Waste for Methane Production under Different Organic Loads, Substrate to Inoculum Ratios and Initial PH. J. Biosci. Bioeng. 2019, 128, 733–743. [Google Scholar] [CrossRef]
- Duan, N.; Dong, B.; Wu, B.; Dai, X. High-Solid Anaerobic Digestion of Sewage Sludge under Mesophilic Conditions: Feasibility Study. Bioresour. Technol. 2012, 104, 150–156. [Google Scholar] [CrossRef]
- Wu, D.; Li, L.; Zhen, F.; Liu, H.; Xiao, F.; Sun, Y.; Peng, X.; Li, Y.; Wang, X. Thermodynamics of Volatile Fatty Acid Degradation during Anaerobic Digestion under Organic Overload Stress: The Potential to Better Identify Process Stability. Water Res. 2022, 214, 118187. [Google Scholar] [CrossRef]
- Nikitina, A.A.; Kevbrina, M.V.; Kallistova, A.Y.; Nekrasova, V.K.; Litti, Y.V.; Nozhevnikova, A.N. Intensification of Microbial Decomposition of Organic Fraction of Municipal Waste: Laboratory and Field Experiments. Appl. Biochem. Microbiol. 2015, 51, 393–401. [Google Scholar] [CrossRef]
- Pan, X.; Zhao, L.; Li, C.; Angelidaki, I.; Lv, N.; Ning, J.; Cai, G.; Zhu, G. Deep Insights into the Network of Acetate Metabolism in Anaerobic Digestion: Focusing on Syntrophic Acetate Oxidation and Homoacetogenesis. Water Res. 2021, 190, 116774. [Google Scholar] [CrossRef]
- Wang, H.-Z.; Li, J.; Yi, Y.; Nobu, M.K.; Narihiro, T.; Tang, Y.-Q. Response to Inhibitory Conditions of Acetate-Degrading Methanogenic Microbial Community. J. Biosci. Bioeng. 2020, 129, 476–485. [Google Scholar] [CrossRef]
- Ruiz-Sánchez, J.; Guivernau, M.; Fernández, B.; Vila, J.; Viñas, M.; Riau, V.; Prenafeta-Boldú, F.X. Functional Biodiversity and Plasticity of Methanogenic Biomass from a Full-Scale Mesophilic Anaerobic Digester Treating Nitrogen-Rich Agricultural Wastes. Sci. Total Environ. 2019, 649, 760–769. [Google Scholar] [CrossRef]
- Westerholm, M.; Müller, B.; Singh, A.; Karlsson Lindsjö, O.; Schnürer, A. Detection of Novel Syntrophic Acetate-Oxidizing Bacteria from Biogas Processes by Continuous Acetate Enrichment Approaches. Microb. Biotechnol. 2018, 11, 680–693. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Wang, H.-Z.; Gou, M.; Yi, Y.; Xia, Z.-Y.; Tang, Y.-Q. Identification of Novel Potential Acetate-Oxidizing Bacteria in an Acetate-Fed Methanogenic Chemostat Based on DNA Stable Isotope Probing. J. Gen. Appl. Microbiol. 2018, 64, 221–231. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Pap, B.; Györkei, Á.; Boboescu, I.Z.; Nagy, I.K.; Bíró, T.; Kondorosi, É.; Maróti, G. Temperature-Dependent Transformation of Biogas-Producing Microbial Communities Points to the Increased Importance of Hydrogenotrophic Methanogenesis under Thermophilic Operation. Bioresour. Technol. 2015, 177, 375–380. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhang, Y.; Wang, J.; Meng, L. Effects of Volatile Fatty Acid Concentrations on Methane Yield and Methanogenic Bacteria. Biomass Bioenergy 2009, 33, 848–853. [Google Scholar] [CrossRef]
- Lins, P.; Malin, C.; Wagner, A.O.; Illmer, P. Reduction of Accumulated Volatile Fatty Acids by an Acetate-Degrading Enrichment Culture. FEMS Microbiol. Ecol. 2010, 71, 469–478. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Jannat, A.; Lee, J.; Shin, S.G.; Hwang, S. Long-Term Enrichment of Anaerobic Propionate-Oxidizing Consortia: Syntrophic Culture Development and Growth Optimization. J. Hazard. Mater. 2020, 401, 123230. [Google Scholar] [CrossRef]
- Cao, L.; Cox, C.D.; He, Q. Patterns of Syntrophic Interactions in Methanogenic Conversion of Propionate. Appl. Microbiol. Biotechnol. 2021, 105, 8937–8949. [Google Scholar] [CrossRef]
- Ahmad, A.; Ghufran, R.; Wahid, Z. Effect of Cod Loading Rate on an Upflow Anaerobic Sludge Blanket Reactor during Anaerobic Digestion of Palm Oil Mill Effluent with POME. J. Environ. Eng. Landsc. Manag. 2012, 20, 256–264. [Google Scholar] [CrossRef]
- Meng, X.; Cao, Q.; Sun, Y.; Huang, S.; Liu, X.; Li, D. 16S RRNA Genes- and Metagenome-Based Confirmation of Syntrophic Butyrate-Oxidizing Methanogenesis Enriched in High Butyrate Loading. Bioresour. Technol. 2022, 345, 126483. [Google Scholar] [CrossRef]
- Ryue, J.; Lin, L.; Kakar, F.L.; Elbeshbishy, E.; Al-Mamun, A.; Dhar, B.R. A Critical Review of Conventional and Emerging Methods for Improving Process Stability in Thermophilic Anaerobic Digestion. Energy Sustain. Dev. 2020, 54, 72–84. [Google Scholar] [CrossRef]
- Nozhevnikova, A.N.; Russkova, Y.I.; Litti, Y.V.; Parshina, S.N.; Zhuravleva, E.A.; Nikitina, A.A. Syntrophy and Interspecies Electron Transfer in Methanogenic Microbial Communities. Microbiology 2020, 89, 129–147. [Google Scholar] [CrossRef]
- Litti, Y.; Nikitina, A.; Kovalev, D.; Ermoshin, A.; Mahajan, R.; Goel, G.; Nozhevnikova, A. Influence of Cationic Polyacrilamide Flocculant on High-Solids Anaerobic Digestion of Sewage Sludge under Thermophilic Conditions. Environ. Technol. 2019, 40, 1146–1155. [Google Scholar] [CrossRef]
- Pfennig, N. Anreicherungskulturen Für Röte und Grune Schwefelbakteria. Zentralbl. Bacterial. Farasiten. Infektionskr. Hyg. Abt. 1965, 1, 503–504. [Google Scholar]
- Pfennig, N.; Lippert, K.D. Über Das Vitamin B12-Bedürfnis Phototropher Schwefelbakterien. Arch. Mikrobiol. 1966, 55, 245–256. [Google Scholar] [CrossRef]
- Wolin, E.A.; Wolin, M.J.; Wolfe, R.S. Formation of Methane by Bacterial Extracts. J. Biol. Chem. 1963, 238, 2882–2886. [Google Scholar] [CrossRef]
- Kotsyurbenko, O.; Glagolev, M. Protocols for Measuring Methanogenesis. In Hydrocarbon and Lipid Microbiology Protocols; Springer: Berlin/Heidelberg, Germany, 2015; pp. 227–244. [Google Scholar] [CrossRef]
- Ali Shah, F.; Mahmood, Q.; Maroof Shah, M.; Pervez, A.; Ahmad Asad, S. Microbial Ecology of Anaerobic Digesters: The Key Players of Anaerobiosis. Sci. World J. 2014, 2014, 183752. [Google Scholar] [CrossRef]
- Kovalev, A.A.; Kovalev, D.A.; Zhuravleva, E.A.; Katraeva, I.V.; Panchenko, V.; Fiore, U.; Litti, Y.V. Two-Stage Anaerobic Digestion with Direct Electric Stimulation of Methanogenesis: The Effect of a Physical Barrier to Retain Biomass on the Surface of a Carbon Cloth-Based Biocathode. Renew. Energy 2022, 181, 966–977. [Google Scholar] [CrossRef]
- Boulygina, E.S.; Kuznetsov, B.B.; Marusina, A.I.; Tourova, T.P.; Kravchenko, I.K.; Bykova, S.A.; Kolganova, T.V.; Galchenko, V.F. A Study of Nucleotide Sequences of NifH Genes of Some Methanotrophic Bacteria. Microbiology 2002, 71, 425–432. [Google Scholar] [CrossRef]
- Lane, D.J. 16S/23S rRNA sequencing. In Nucleic Acid Techniques in Bacterial Systematics; Stackebrandt, E., Goodfellow, M., Eds.; John Wiley & Sons: New York, NY, USA, 1991; pp. 115–175. [Google Scholar]
- Kolganova, T.; Kuznetsov, B.; Tourova, T. Designing and Testing Oligonucleotide Primers for Amplification and Sequencing of Archaeal 16S RRNA Genes. Mikrobiologiia 2002, 71, 283–286. [Google Scholar] [CrossRef]
- Huber, T.; Faulkner, G.; Philip, H. Bellerophon: A Program to Detect Chimeric Sequences in Multiple Sequence Alignments. Bioinformatics 2004, 20, 2317–2319. [Google Scholar] [CrossRef][Green Version]
- Tamura, K.; Stecher, G.; Peterson, D.; Filipski, A.; Kumar, S. MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0. Mol. Biol. Evol. 2013, 30, 2725–2729. [Google Scholar] [CrossRef][Green Version]
- Nikitina, A.A.; Ermoshin, A.A.; Zhuravleva, E.A.; Kovalev, A.A.; Kovalev, D.A.; Panchenko, V.; Litti, Y.V. Application of polyacrylamide flocculant for stabilization of anaerobic digestion under conditions of excessive accumulation of volatile fatty acids. Appl. Sci. 2020, 11, 100. [Google Scholar] [CrossRef]
- Xu, K.; Liu, H.; Li, X.; Chen, J.; Wang, A. Typical Methanogenic Inhibitors Can Considerably Alter Bacterial Populations and Affect the Interaction between Fatty Acid Degraders and Homoacetogens. Appl. Microbiol. Biotechnol. 2010, 87, 2267–2279. [Google Scholar] [CrossRef]
- Li, L.; He, Q.; Ma, Y.; Wang, X.; Peng, X. A Mesophilic Anaerobic Digester for Treating Food Waste: Process Stability and Microbial Community Analysis Using Pyrosequencing. Microbial Cell Factories 2016, 15, 65. [Google Scholar] [CrossRef][Green Version]
- Win, T.T.; Kim, H.; Cho, K.; Song, K.G.; Park, J. Monitoring the Microbial Community Shift throughout the Shock Changes of Hydraulic Retention Time in an Anaerobic Moving Bed Membrane Bioreactor. Bioresour. Technol. 2016, 202, 125–132. [Google Scholar] [CrossRef]
- Zheng, D.; Raskin, L. Quantification of Methanosaeta Species in Anaerobic Bioreactors Using Genus- and Species-Specific Hybridization Probes. Microb. Ecol. 2000, 39, 246–262. [Google Scholar] [CrossRef]
- Ma, K.; Liu, X.; Dong, X. Methanosaeta Harundinacea Sp. Nov., a Novel Acetate-Scavenging Methanogen Isolated from a UASB Reactor. Int. J. Syst. Evol. Microbiol. 2006, 56, 127–131. [Google Scholar] [CrossRef]
- Vavilin, V.; Qu, X.; Mazeas, L.; Lemunier, M.; Duquennoi, C.; He, P.; Bouchez, T. Methanosarcina as the Dominant Aceticlastic Methanogens during Mesophilic Anaerobic Digestion of Putrescible Waste. Antonie Leeuwenhoek 2008, 94, 593–605. [Google Scholar] [CrossRef]
- Ho, D.P.; Jensen, P.D.; Batstone, D.J. Methanosarcinaceae and Acetate-Oxidizing Pathways Dominate in High-Rate Thermophilic Anaerobic Digestion of Waste-Activated Sludge. Appl. Environ. Microbiol. 2013, 79, 6491–6500. [Google Scholar] [CrossRef]
- Wagner, D.; Schirmack, J.; Ganzert, L.; Morozova, D.; Mangelsdorf, K. Methanosarcina Soligelidi Sp Nov., a Desiccation- and Freeze-Thaw-Resistant Methanogenic Archaeon from a Siberian Permafrost-Affected Soil. Int. J. Syst. Evol. Microbiol. 2013, 63, 2986–2991. [Google Scholar] [CrossRef][Green Version]
- Nozhevnikova, A.N.; Nekrasova, V.; Ammann, A.; Zehnder, A.J.B.; Wehrli, B.; Holliger, C. Influence of Temperature and High Acetate Concentrations on Methanogenensis in Lake Sediment Slurries. FEMS Microbiol. Ecol. 2007, 62, 336–344. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Dogan, T.; Ince, O.; Oz, N.A.; Ince, B.K. Inhibition of Volatile Fatty Acid Production in Granular Sludge from a UASB Reactor. J. Environ. Sci. Health Part A 2005, 40, 633–644. [Google Scholar] [CrossRef] [PubMed]
- Amani, T.; Nosrati, M.; Mousavi, S.M. Using Enriched Cultures for Elevation of Anaerobic Syntrophic Interactions between Acetogens and Methanogens in a High-Load Continuous Digester. Bioresour. Technol. 2011, 102, 3716–3723. [Google Scholar] [CrossRef] [PubMed]
- Illmer, P.; Gstraunthaler, G. Effect of Seasonal Changes in Quantities of Biowaste on Full Scale Anaerobic Digester Performance. Waste Manag. 2008, 29, 162–167. [Google Scholar] [CrossRef]
- Mcinerney, M.; Bryant, M.P.; Hespell, R.B.; Costerton, J.W. Syntrophomonas Wolfei Gen. Nov. Sp. Nov., an Anaerobic, Syntrophic, Fatty Acid-Oxidizing Bacterium. Appl. Environ. Microbiol. 1981, 41, 1029–1039. [Google Scholar] [CrossRef][Green Version]
- Westerholm, M.; Roos, S.; Schnürer, A. Syntrophaceticus Schinkii Gen. Nov., Sp. Nov., an Anaerobic, Syntrophic Acetate-Oxidizing Bacterium Isolated from a Mesophilic Anaerobic Filter. FEMS Microbiol. Lett. 2010, 309, 100–104. [Google Scholar] [CrossRef][Green Version]
- Maune, M.; Tanner, R. Description of Anaerobaculum Hydrogeniformans Sp. Nov., an Anaerobe That Produces Hydrogen from Glucose, and Emended Description of the Genus Anaerobaculum. Int. J. Syst. Evol. Microbiol. 2011, 62, 832–838. [Google Scholar] [CrossRef][Green Version]
- Jang, H.M.; Kim, J.H.; Ha, J.H.; Park, J.M. Bacterial and Methanogenic Archaeal Communities during the Single-Stage Anaerobic Digestion of High-Strength Food Wastewater. Bioresour. Technol. 2014, 165, 174–182. [Google Scholar] [CrossRef]
- Welte, C.; Deppenmeier, U. Bioenergetics and Anaerobic Respiratory Chains of Aceticlastic Methanogens. Biochim. Biophys. Acta 2013, 1837, 1130–1147. [Google Scholar] [CrossRef]
- Dridi, B.; Fardeau, M.-L.; Ollivier, B.; Raoult, D.; Drancourt, M. Methanomassiliicoccus Luminyensis Gen. Nov., Sp. Nov., a Methanogenic Archaeon Isolated from Human Faeces. Int. J. Syst. Evol. Microbiol. 2012, 62, 1902–1907. [Google Scholar] [CrossRef][Green Version]
- Jetten, M.S.M.; Stams, A.J.M.; Zehnder, A.J.B. Methanogenesis from acetate: A comparison of the acetate metabolism in Methanothrix soehngenii and Methanosarcina spp. FEMS Microbiol. Rev. 1992, 88, 181–198. [Google Scholar] [CrossRef]
- Hattori, S. Syntrophic Acetate-Oxidizing Microbes in Methanogenic Environments. Microbes Environ./JSME 2008, 23, 118–127. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Hao, L.-P.; Lü, F.; He, P.-J.; Li, L.; Shao, L.-M. Predominant Contribution of Syntrophic Acetate Oxidation to Thermophilic Methane Formation at High Acetate Concentrations. Environ. Sci. Technol. 2011, 45, 508–513. [Google Scholar] [CrossRef] [PubMed]
- Hori, T.; Haruta, S.; Ueno, Y.; Ishii, M.; Igarashi, Y. Methanogenic Pathway and Community Structure in a Thermophilic Anaerobic Digestion Process of Organic Solid Waste. J. Biosci. Bioeng. 2010, 111, 41–46. [Google Scholar] [CrossRef]
- Li, M.-T.; Rao, L.; Wang, L.; Gou, M.; Sun, Z.-Y.; Xia, Z.-Y.; Song, W.-F.; Tang, Y.-Q. Bioaugmentation with Syntrophic Volatile Fatty Acids-Oxidizing Consortia to Alleviate the Ammonia Inhibition in Continuously Anaerobic Digestion of Municipal Sludge. Chemosphere 2022, 288, 132389. [Google Scholar] [CrossRef]
- Lebiocka, M.; Montusiewicz, A.; Cydzik-Kwiatkowska, A. Effect of Bioaugmentation on Biogas Yields and Kinetics in Anaerobic Digestion of Sewage Sludge. Int. J. Environ. Res. Public Health 2018, 15, 1717. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Li, Y.; Li, L.; Sun, Y.; Yuan, Z. Bioaugmentation Strategy for Enhancing Anaerobic Digestion of High C/N Ratio Feedstock with Methanogenic Enrichment Culture. Bioresour. Technol. 2018, 261, 188–195. [Google Scholar] [CrossRef]
- Venkiteshwaran, K.; Milferstedt, K.; Hamelin, J.; Zitomer, D.H. Anaerobic Digester Bioaugmentation Influences Quasi Steady State Performance and Microbial Community. Water Res. 2016, 104, 128–136. [Google Scholar] [CrossRef][Green Version]
- Cai, G.; Zhao, L.; Wang, T.; Lv, N.; Li, J.; Ning, J.; Pan, X.; Zhu, G. Variation of Volatile Fatty Acid Oxidation and Methane Production during the Bioaugmentation of Anaerobic Digestion System: Microbial Community Analysis Revealing the Influence of Microbial Interactions on Metabolic Pathways. Sci. Total Environ. 2021, 754, 142425. [Google Scholar] [CrossRef] [PubMed]
- Gagliano, M.C.; Ismail, S.B.; Stams, A.J.M.; Plugge, C.M.; Temmink, H.; Van Lier, J.B. Biofilm Formation and Granule Properties in Anaerobic Digestion at High Salinity. Water Res. 2017, 121, 61–71. [Google Scholar] [CrossRef]
Maximum/Average Rates, mmol/(L Day) | Initial Butyrate Concentration, mmol/L | |||
---|---|---|---|---|
20 | 50 | 95 | 170 | |
butyrate degradation | 7.1/1.3 | 1.6/1.2 | 10.3/4.5 | 7.5/3.3 |
acetate production | 15.7/4.8 | 3.6/2.8 | 3.3/3.1 | 7.7/3.8 |
acetate consumption | 3.65/1.2 | 3.1/1.8 | 10.1/5.8 | 1.03/- |
methane production from butyrate | 3.3/0.48 | 3.6/2.5 | 21.2/8.3 | 9.4/2.8 |
Sample | VS Removal, % | Cumulative Methane Production, mL/g VS | Average Methane Production Rate, mL CH4/(g VS Day) | Maximum Methane Production Rate, mL CH4/(g VS Day) |
---|---|---|---|---|
Bioaugmentation Mixture 1 (ISR = 50/50) | 34.6 ± 1.7 | 178.5 ± 8.7 | 5.19 ± 0.11 | 24.5 ± 0.4 |
Control 1 (ISR = 50/50) | 12.0 ± 0.6 | 28.6 ± 1.3 | 1.50 ± 0.04 | 8.19 ± 0.16 |
Bioaugmentation Mixture 2 (ISR = 20/80) | 38.1 ± 1.8 | 174.0 ± 8.7 | 5.11 ± 0.11 | 27.7 ± 0.5 |
Control 2 (ISR = 20/80) | 5.2 ± 0.3 | 4.25 ± 0.22 | - * | 2.04 ± 0.04 |
Feedstock | Temperature/ Operation Mode | Enrichment (Bioaugmentation) Culture | Improvements | Reference | |
---|---|---|---|---|---|
Bacteria | Archaea | ||||
Municipal sludge | 37 °C/fed-batch | Mesophilic acetate and propionate-oxidizing consortia | [59] | ||
Carbohydrates fermenter (Lentimicrobium), syntrophic VFAs-oxidizing bacteria (Rikenellaceae_DMER64, Smithella and Syntrophobacter) | Acetoclastic and hydrogenotrophic methanogens (Methanosaeta, Methanolinea and Methanospirillum) | Increased biogas yield by 175% | |||
53 °C/fed-batch | Thermophilic acetate and propionate oxidizing consortia | ||||
Proteolytic bacteria (Keratinibaculum, and Tepidimicrobium), syntrophic VFAs- oxidizing bacteria (Syntrophomonas) | Hydrogenotrophic methanogen (Methanosarcina) | Increased biogas yield by 746.7%, mitigated ammonia inhibition | |||
Sewage sludge | 35 °C/semi-flow | Exiguobacterium, Janthinobacterium, Acinetobacter, and Stenotrophomonas | Methanosaeta | Rate constant k increased from 0.071 h−1 to 0.087 h−1 | [60] |
High C/N artificial feedstock made up with rice flour, whole egg powder and milk powder | 35 °C/continuous | Culture from propionate-degrading bioreactor | Organic loading rate, methane percentage, volumetric methane production and volatile solid methane production higher at 1.0 g L/d, 24%, 0.22 L/L/d and 0.23 L/gVS/d, respectively | [61] | |
Syntrophobacter (40–63%) | Methanothrix (53–70%) and Methanoculleus (10–25%) | ||||
Synthetic wastewater (non-fat, dry milk) | 35 °C/continuous | Methanogenic, aero-tolerant propionate enrichment culture | 11 ± 3% increase in CH4 production | [62] | |
Spirochaetaceae (30%) and Thermovirga (12%) | Methanosaeta (65%) | ||||
Simulated readily biodegradable waste (dog food) | 50 °C/batch | Syntrophic butyrate-degrading consortium | More than 3.5, 6.2 and 2.9 times higher methane production rate, methane yield, and VS removal, respectively | ||
Syntrophaceticus (42.9%), Syntrophomonas (26.2%), Firmicutes (26.2%), and Anaerobaculum (14.3%) | Methanosarcina (25%), Methanomassiliicoccus (21.9%), and Methanothermobacter (53.1%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nikitina, A.A.; Kallistova, A.Y.; Grouzdev, D.S.; Kolganova, T.V.; Kovalev, A.A.; Kovalev, D.A.; Panchenko, V.; Zekker, I.; Nozhevnikova, A.N.; Litti, Y.V. Syntrophic Butyrate-Oxidizing Consortium Mitigates Acetate Inhibition through a Shift from Acetoclastic to Hydrogenotrophic Methanogenesis and Alleviates VFA Stress in Thermophilic Anaerobic Digestion. Appl. Sci. 2023, 13, 173. https://doi.org/10.3390/app13010173
Nikitina AA, Kallistova AY, Grouzdev DS, Kolganova TV, Kovalev AA, Kovalev DA, Panchenko V, Zekker I, Nozhevnikova AN, Litti YV. Syntrophic Butyrate-Oxidizing Consortium Mitigates Acetate Inhibition through a Shift from Acetoclastic to Hydrogenotrophic Methanogenesis and Alleviates VFA Stress in Thermophilic Anaerobic Digestion. Applied Sciences. 2023; 13(1):173. https://doi.org/10.3390/app13010173
Chicago/Turabian StyleNikitina, Anna A., Anna Y. Kallistova, Denis S. Grouzdev, Tat’yana V. Kolganova, Andrey A. Kovalev, Dmitriy A. Kovalev, Vladimir Panchenko, Ivar Zekker, Alla N. Nozhevnikova, and Yuriy V. Litti. 2023. "Syntrophic Butyrate-Oxidizing Consortium Mitigates Acetate Inhibition through a Shift from Acetoclastic to Hydrogenotrophic Methanogenesis and Alleviates VFA Stress in Thermophilic Anaerobic Digestion" Applied Sciences 13, no. 1: 173. https://doi.org/10.3390/app13010173