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Abstract: Dark fermentation (DF) is a simple method for hydrogen (H2) production through the
valorization of various organic wastes that can be used as feedstock. In particular, an organic fraction
of municipal solid waste (OFMSW) is a fermentation substrate that can easily be gathered and
provides high yields in biogas and value-added organic compounds such as volatile fatty acids
(VFAs). DF is coupled with a methanogenic reactor to enhance biogas production from the OFMSW.
In this study, a two-stage reactor was conducted and monitored to optimize the methane yield by
reducing the HRT at the DF reactor. A focus of the functional inference based on a next-generation
sequence (NGS) metabarcoding analysis and comparison of microbial communities that populate
each reactor stage was performed. Concerning gas quality, the two-stage system observed a hydrogen-
rich biogas in the first fermentative reactor (on average 20.2%) and an improvement in the methane
content in the second methanogenic digester, which shifted from 61.2% obtained for the one-stage
experiment to 73.5%. Such increases were due to the improvement in substrate hydrolysis. As for the
specific biogas production, the results showed an overall increase of 50%.

Keywords: dark fermentation; food waste; hydrogen; methane; two-stage process

1. Introduction

The organic fraction of municipal solid waste (OFMSW) is the major contributor by
weight to waste production in the European Union (EU), where about 88 billion tons of
biowaste are produced yearly, with an estimated yearly increase of 10% [1]. The OFMSW
has great potential in the bioeconomy model [2]. In the EU, the OFMSW final destination
follows the waste hierarchy: prevention is the priority, followed by material and energy
recovery (e.g., composting and anaerobic digestion), and finally disposal in landfills [3].
No particular attention is paid to OFMSW destination in low-income countries [4]. For
European legislation, valorization for the OFMSW is pursued, as the European Directive
2018/851 [5] prescribes the mandatory segregation of biowastes from 31 December 2023.

Wastewater sludge is the main residue of municipal wastewater treatment plants
(WWTPs) with a production of 9.12 million tons/year in 2018 [6]. The disposal of sludges is
increasing due to the application of the Directive concerning urban wastewater treatment [7].
Typical characteristics of sludges from WWTPs are total solid (TS) content lower than 6%,
high protein content with a total nitrogen ranging from 1 to 6% of TS content, and a
carbon-to-nitrogen (C/N) ratio oscillating between 4 and 9.

Among the routes for the valorization of sewage sludges and OFMSW, biorefinery
to high-added-value products [8] and the production of sustainable energy [9,10] are
the amenable processes [11]. Within the literature, a biorefinery scheme with a high
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technological readiness level (TRL) is the dark fermentation (DF) model [12]. DF is the first
acidogenic step of anaerobic digestion (AD) where, by applying short hydraulic retention
times (HRTs), fermentative bacteria break down organic matter into primarily H2, CO2,
and soluble metabolic products [13,14]. DF can be implemented in a two-stage process
where, in the second step, methanogenic bacteria convert the spent organic effluent from
the first stage into CH4 and CO2 gas [12,15]. The multiple advantages of this technology
include a better degradation of the organic matter; an overall increase in the energy output
by generating two gases that can be used independently, mixed, or as a substrate in
subsequent advanced processes to obtain other byproducts such as bioethanol [12] or even
polyhydroxybutyrate (PHB) [11]; and the production of high-added-value products such as
volatile fatty acids (VFAs) [16]. The interest in these compounds is continuously increasing
since they are used as building blocks in the food, textile, pharmaceutical, leather, and
plastic industry or can be further utilized in biological process as readily biodegradable
substrate to produce bioplastics (i.e., polyhydroxyalkanoates—PHAs) [17].

Researchers initially directed their efforts towards the optimization of DF in a two-
stage process considering the sole OFMSW as feedstock [18] and developing automatic
control systems to control VFAs production [19]. However, the codigestion of sewage
sludge and the OFMSW enhances biogas production due to the synergistic effects of the
digestion of complex substrates [20], and it is more environmentally sustainable than aero-
bic composting [21]. Researchers focused on funding the mixing ratios of sludge and the
OFMSW by maximizing biohydrogen and VFAs production. Batch tests at a lab-scale level
showed that 85.17% of the OFMSW and 5 days of HRT optimize H2 production, while
the maximum VFAs production was found for 79.8% of the OFMSW and 18.7 days of
HRT [22,23]. At the pilot-scale level, a long-term semicontinuous operation shifted the
VFA composition from short- to long-chain organic acids [24]. Other studies revealed that
activated sludge (AS) is the biocatalyst that maximizes the biodegradability of biodegrad-
able waste [25]. A recent study found that a two-stage process where AS and the OFMSW
are codigested increase the biogas production and volatile solids removal by 26% and
9%, respectively [26]. An additional advantage of the two-stage process is working at
low HRTs, which reduce the reactor working volume and investment costs. Therefore,
it is fundamental to assess the HRTs that maximize process performance. However, few
data are available in the literature on this topic. Furthermore, it is fundamental to study
the interactions between the operating conditions and microorganisms that participate in
byproducts production. A recent study found that biohydrogen and VFA production is
mainly promoted by Veillonella and Clostridium [26]. The literature lacks such information
when long-term experimental tests are conducted and the HRTs are changed.

The novelty of this study is to compare a single-stage process and a two-stage process
in which the HRTs of the DF stage are reduced to optimize biohydrogen and VFA production
when using sludge and the OFMSW as feedstock. In particular, two different HRT scenarios
on the fermentative reactor of 1.5 and 3 days were studied. In addition, the microbial
ecology was analyzed to (i) identify the dominant microorganisms responsible for VFA
production and (ii) determine the effects of changing the operating conditions on the
microbial composition.

2. Materials and Methods
2.1. Reactor Configuration

Figure 1 reports a schematic representation of the two-stage system. Continuously
stirred tank reactors (CSTRs) with 3 L of working volume were implemented for the
fermentative phase while the methanogenic phase was conducted in a 12 L CSTR. The
CSTRs were continuously stirred by blades connected to electric gear motors (COAXMR
615 30Q 1/256, Unitec s.r.l., Calenzano, Italy). Mesophilic conditions (37 ± 0.1 ◦C) were
maintained during the tests with warm water which was heated with a thermostatic bath
(FA90, Falc Instruments s.r.l., Treviglio, Italy) and passed through each reactor cladding.
pH probes (InPro4260i, Mettler Toledo S.p.A., Milano, Italy) measured the pH in the
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fermentative and methanogenic reactor. Volumetric counters measured gas production
from the reactors, and a 10 L multilayer foil bag (SupelTM, Merck KGaA, Darmstadt,
Germany) collected the gas. To convert the gas volume data at normal conditions, a
pressure transducer (HD 9908T Baro, Delta Ohm S.r.l., Selvazzano Dentro, Italy) and a
T-type thermocouple (PT100, Delta Ohm S.r.l., Selvazzano Dentro, Italy) measured the
ambient pressure and temperature, respectively. After filling, the reactors were flushed
with nitrogen for a few minutes to ensure anaerobic conditions.
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A mixture of food waste (FW) and aerobic sludge (AS) were used as feedstock. The
mixture was fed daily to the reactors by means of a syringe. The trials were characterized
by a reference scenario and two alternative scenarios (Table 1).

Table 1. Operating conditions of the reactors running during the experimental tests.

Parameter
Reference

Scenario (S1)
S1CH4

Scenario 2
(S2)

S2H2

Scenario 2
(S2)

S2CH4

Scenario 3
(S3)

S3H2

Scenario 3
(S3)

S3CH4

Hydraulic Retention Time
(HRT) (d) 17 3 12 1.5 12

Organic Loading
Rate (ORL)

(kgVS/(m3d))
2.5 14.6 2.5 27.6 2.5

In S1, the methanogenic reactor ran alone to evaluate the performance of the traditional
one-stage AD. At the same time, we started the feeding of the fermentative reactor to reach
the steady state conditions. In the first alternative scenario (S2), the two CSTRs were coupled
to evaluate the two-stage process. An organic loading rate (OLR) of 2.5 kgVS/(m3d) was set
at the methanogenic reactor since it is the optimum rate for wet and mesophilic conditions
for AD technologies [28]. Similarly to previous studies [29,30], the HRT was set to 17 days
for the reference scenario whereas it was set to 12 days for S2 and S3. The HRT of the
fermenter (S2) was set to 3.0 d based on previous studies [30,31], and then it was halved to
1.5 d. Each scenario was performed for three HRTs of the methanogenic reactor in order to
ensure a significant statistical sample of data [27,32].

2.2. Substrate and Inocula

The FW and AS were used as substrates. The FW was sorted from the OFMSW col-
lected in an Italian municipality by means of a kerbside collection system. The components
were mainly pasta, bread, vegetable residues, and citrus peels. The sample was shredded
in a food processor (Problend 6, Philips, Amsterdam, The Netherlands), diluted with tap
water, and stored in a freezer at −20 ◦C.

The AS was collected from the aerobic unit of an Italian urban WWTP. The sample
was stored in plastic tanks and kept under refrigeration at 4 ◦C. The AS and FW slurry
were removed daily from storage conditions and were mixed in the food processor.

The FW was approximately 20% by weight of the mixture. The final TS content was
5% by weight, suitable for wet digestion technology (Table 2).

Table 2. Characterization feedstocks and inoculum feed to the reactor.

Parameter Substrate Inoculum CH4 Inoculum H2

TS (%) 4.9 2.49 ± 0.02 2.49 ± 0.02
VS/TS (%) 79.99 61.33 ± 0.2 61.33 ± 0.2

pH (-) 4.9 8.36 ± 0.02 8.36 ± 0.02

The inoculum for the methanogenic reactor came from a wet anaerobic reactor treating
the OFMSW and cattle manure at mesophilic conditions whereas the AS was used as
inoculum for the fermentative reactor. According to previous studies [33,34], to harvest the
hydrogen-producing bacteria and inhibit hydrogenotrophic methanogens, AS was thermal
pretreated at 105 ◦C for 30 min before the experimental tests started. Further details were
previously described in [35].

2.3. Analytical Methods

In each scenario and for both of the reactors, digestate was characterized daily in terms
of the TS, VS, pH, alkalinity, and VFAs. The TS, TVS, and pH were determined according to
standard methods [36]. The alkalinity was measured according to Ripley et al. (1986) [37] by
applying a two-end-point titration methodology. The IA/PA ratio was calculated from the
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measurement of the total alkalinity (TA) and partial alkalinity (PA). The difference between
the TA and PA is defined as intermediate alkalinity (IA) and represents the organics acids
within the fermentation broth.

Hydrogen, methane, carbon dioxide, nitrogen, oxygen, and hydrogen sulfide contents
in biogas were analyzed using a gas chromatograph (3000 Micro GC, INFICON, Bad
Ragaz, Switzerland) equipped with a thermal conductivity detector. Carbon dioxide and
hydrogen sulfide passed through a PLOTQ column (10 µm/320 µm/8 m) using helium as
a gas carrier at a temperature of 55 ◦C. The other gas passed through a Molsieve column
(30 µm/320 µm/10 m) using argon as a gas carrier at a temperature of 50 ◦C.

VFAs, including acetic, propionic, butyric, isobutyric, valeric, isovaleric, and caproic
acids were measured using a gas chromatograph (7890B, Agilent Technology, Santa Clara,
CA, USA) with hydrogen as the gas carrier equipped with a CPFFAP column (0.25 mm/
0.5 µm/30 m) and with a flame ionization detector (250 ◦C). The temperature during the
analysis started from 60 ◦C and reached 250 ◦C with a rate of 20 ◦C/min. The samples were
centrifuged (30 min, 13,500 rpm) and filtrated on a 0.45 µm membrane. A total of 500 µL
of filtrate were mixed with isoamyl alcohol (1.00179, Merck KGaA, Darmstadt, Germany)
in a volumetric ratio of 1:1, while 200 µL of a phosphate buffer solution (pH 2.1), sodium
chloride, and 10 µL of a hexanoic-D11 acid solution (10.000 ppm) were used as an internal
standard. The blend was mixed with a Mortexer™ Multi-Head vortexer (Z755613-1 EA,
Merck KGaA, Darmstadt, Germany) for 10 min. The liquid suspension of the sample was
then inserted in the gas chromatograph by means of an autosampler [27].

2.4. Process Performance

The performances were monitored in terms of stability parameters, biogas productivity,
and volatile solids reduction efficiency (REVS).

The measured stability parameters were the pH, IA/PA ratio, total VFAs, and biogas
composition as CH4 and CO2 concentrations.

Biogas productivity includes the specific biogas production (SGP) as the daily biogas
production divided by the daily mass of biogas vs. that fed to the reactor, the specific
methane production (SMP) as the SGP multiplied by the daily average CH4 concentration,
and the biogas production rate (GPR) as the daily biogas production divided by the reactor
working volume.

ηVS (%) was calculated based on the vs. content of inlet feedstock and withdrawn
digestate by applying the following Equation (1):

ηVS = (VSin − VSout)/VSin (1)

where VSin was the volatile solid content of inlet feedstock and VSout was the total volatile
solid content of the outlet digestate.

2.5. Microbial Community Analysis
2.5.1. DNA Extraction

To obtain the total DNA form of the reactors at the described scenarios, 500 mg of
the sampled sludge were extracted using the FastPrep 24™ homogenizer and the FAST
DNA Spin Kit for soil (MP Biomedicals, Irvine, CA, USA) following the manufacturer’s
protocol. The extracted DNA quantification was performed with a Qubit 3.0 fluorometer
(ThermoFisher Scientific, Waltham, MA, USA). The purity and quality of the extracted DNA
were assessed spectrophotometrically (Biotek Powerwave Xs Microplate Spectrophotome-
ter, Agilent Technology, Santa Clara, CA, USA) by measuring absorbance at 260/280 and
260/230 nm. A total of 200 ng of DNA per sample were used to produce multiplexed paired-
end libraries with the NEBNext Ultra DNA Library Prep Kit, following the manufacturer’s
recommendations: the V4–V5 hypervariable regions of the bacterial 16S rRNA gene were
chosen as taxonomic markers by using the 515F forward primer (5′-GTGCCAGCMGCCG
CGGTAA-3′) and the 907R reverse primer (5′-CCGTCAATTCCTTTGAGTTT-3′). The li-
braries for Illumina sequencing were prepared. The prepared library was then sequenced
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by Novogene (Novogene Company Limited Rm.19C, Lockhart Ctr., 301–307, Lockhart
Rd. Wan Chai, Hong Kong, China) using Ilumina NGS technology, generating 250 bp
paired-end raw reads.

2.5.2. NGS Data Analysis

A standard pipeline for demultiplexing, trimming, and quality filtering the raw reads
was performed via Qiime2 v. 2021.8 Reads assembling and bimera filtering, and the as-
signment to the Amplicon Sequence Variants (ASV) was performed on the DADA2 plugin
(v. 1.20) for R software (V 4.1.1) as reported in the DADA2 SOP (https://benjjneb.github.
io/dada2/tutorial.html). The taxonomy assignment of the reference sequences obtained by
ASV construction was performed with a classifier trained on the Silva 138 99% database
and was previously formatted by RESCRIPt (v. 2021.11.0) in order to contain unique,
high-quality sequences of the specific V4-V5 region alone. The tool PICRUSt2 v. 2.4.1
allowed us to perform an inferential analysis of the microbial community: a functional
inference was performed via statistical analysis of stratified metagenome contributions,
both on EC numbers and whole MetaCyc pathways. The pathway inference was performed
considering the single genome contribution (i.e., considering only those microorganisms
that cover all the pathway by themselves), with a minimal coverage of 60%. The graphical
results and statistical analysis of both the taxonomic and inferential data were obtained
and performed with R v. 4.1.1 by using the tydiverse v. 1.3.1 and Phyloseq v. 1.40.0 pack-
ages. The graphical outputs were produced by using the R packages ggplot2 v. 3.3.5 and
ComplexHeatmap v. 2.9.3.

3. Results
3.1. Anaerobic Digestion Performance

Focusing on the stability of the methanogenic reactors, the pH values were on average
7.02 ± 0.03, 7.35 ± 0.03, and 7.39 ± 0.05 in S1, S2, and S3, respectively. These values are
optimal for the AD process and showed a positive trend when the HRT decreased in the
fermentative reactor. The fermentative reactors, in S2 and S3, were supplied with NaOH to
maintain a pH around 5.5, which is optimal for biohydrogen production.

Figure 2 reports the daily concentration of acetic, propionic, and butyric acid and the
trend of the IA/PA ratio in the methanogenic reactors. This parameter was on average
0.16 ± 0.04, 0.16 ± 0.06, and 0.07 ± 0.02 for S1, S2, and S3, respectively, and resulted in the
value of 0.3, which indicated a stable AD process [38].
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Figure 3 reports the daily concentration of acetic, propionic, and butyric acid in the
fermentative reactors. The results showed that the conversion of the organic substrate into
VFAs was in the order of butyric > proprionic > acetic acid. This order is typical of the
DF of organic wastes [39]. The maximum butyric acid concentration was approximately
5000 mg/L and was reached at the beginning of S2 (not steady state). The butyric acid
concentration decreased when the HRT in S3 was halved.
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Figure 4 reports the concentration of acetic, propionic, and butyric acid measured in
each scenario. On average, the concentration of acetic acid resulted in 166± 19, 1.580 ± 451,
220± 14, 2.263± 113, and 168± 39 for S1CH4, S2H2, S2CH4, S2H2, and S3CH4, respectively;
the concentration of propionic acid resulted in 67 ± 6, 1.557 ± 464, 87 ± 19, 2.416 ± 121,
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of butyric acid resulted in 0 ± 0, 3.683 ± 312, 35 ± 25, 3.362 ± 168, and 15 ± 6 for S1CH4,
S2H2, S2CH4, S2H2, and S3CH4, respectively.
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Figure 5 reports the composition of the biogas produced in each scenario. In the
methanogenic reactors, the CH4 content was on average 61.2 ± 2.2%, 70.1 ± 1.6%, and
73.1 ± 1.5% for S1, S2, and S3, respectively. CO2 was the main complementary gas in
the methanogenic reactor. The CH4 content increased by 14.5% when methanogenic and
fermenter reactors were coupled and by 4.3% when the HRT at the fermentative reactor
was halved. Analogously, the H2 content passed from 18.4 ± 6.3% to 20.2 ± 4.5% from S2
to S3 (+8.9%).
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Figure 7 shows the average production of biohydrogen, CH4, and SGP in each scenario.
CH4 production increased by 43.7% by coupling the methanogenic reactor to the fermenter
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(S2), which was further improved (+13.6%) when the HRT of the fermenter was set to 1.5 d.
At the same time, H2 production increased by 39.7% from S2 to S3.
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in the anaerobic digestion of FW and the suitability of the application of this technology 
to the codigestion of FW and AS. As for the codigestion trial, the enhancement in biogas 
production and biogas quality were even higher than the two-stage digestion of the sole 
FW. As for the specific biogas production, we observed an overall increase of 50%. Con-
cerning gas quality, the two-stage system observed a hydrogen-rich biogas in the first fer-
mentative reactor (on average 20.2%) and an improvement in the methane content in the 
second methanogenic digester, which shifted from 61.2%, which was obtained for the one-

Figure 7. Biogas production for each sector and scenario, reported as H2, CH4, and total biogas
production. Values reported are the average of three replicates per sector and related scenarios, error
bars represent standard error of the mean.

Figure 8 shows the daily trend of the volatile solids removal efficiency. The removal
efficiency at the methanogenic reactor was 61.0 ± 1.2%, 54.5 ± 4.1%, and 59.8 ± 4.9 for
S1, S2, and S3, respectively. The fermenter showed a volatile solid removal efficiency of
32.3 ± 4.4% and 32.4 ± 4.8% for S2 and S3, respectively.
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Figure 8. Daily reduction efficiency (ηVS) in the methanogenic and fermentative reactors.

The two-stage semicontinuous trials obtained two important results in terms of anaer-
obic performance: in analogy with literature studies, they confirmed the improvement
in the anaerobic digestion of FW and the suitability of the application of this technology
to the codigestion of FW and AS. As for the codigestion trial, the enhancement in biogas
production and biogas quality were even higher than the two-stage digestion of the sole FW.
As for the specific biogas production, we observed an overall increase of 50%. Concerning
gas quality, the two-stage system observed a hydrogen-rich biogas in the first fermentative
reactor (on average 20.2%) and an improvement in the methane content in the second
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methanogenic digester, which shifted from 61.2%, which was obtained for the one-stage
experiment, to 73.5%. Such increases were due to the improvement in substrate hydrol-
ysis. Indeed, besides the production of hydrogen, the first fermentative stage acted as a
pretreatment degrading the complex organic matter and releasing significant amounts of
VFAs that were readily available in the second stage.

3.2. Microbial Community Analysis
3.2.1. Differences between Hydrogen-Producing Reactors

Figure 9 reports the pathway of propionyl-CoA metabolization to succinate, extracted
from the map m00640 of KEGG propionate metabolism.
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error bars represent standard error of the mean.

In the hydrogen-producing sector of scenario 3, the major contribution of succinate,
CoA ligase (ADP forming) (EC: 6.2.1.5), suggests that succinate, which is furtherly fer-
mented to acetate and lactate to a major extent than at a higher HRT (scenario 2), is
responsible for the higher acetate production observed in Figure 4, which reports the
concentration of VFAs to the stationary phase in each sector and reactors.

At a lower HRT (scenario 3), a decrease in the contribution of the propanoate produc-
tion pathway was observed (Figure 10a) that was parallel to the increase in the contribution
of the propanoate ligation to CoA (Figure 9), leading to an accumulation of propanoate in
this sector (Figure 4).

The inference of the hydrogen processing enzymes (Figure 10b) was similar in the
two scenarios, with the exception of Nitrogenase, which was slightly overexpressed at a
lower HRT, which evidenced a slightly higher hydrogen production (Table 3).

The methane-producing pathways were poorly expressed at both HRTs tested
(Figure 11), showing that in these sectors, all methanogens are inhibited as expected by
maintaining the pH at 5.5.
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Table 3. Archaeal representation in different scenarios together with biogas volume and composition.

Scenario Archaea (%) SEM
Archaea (%)

V Biogas
(NL/Kgtvs)

SEM
V Biogas

(NL/Kgtvs)
H2 (%) SEM H2 (%) CH4(%) SEM CH4

(%)

S1CH4 3.25 0.23 519.74 19.99 0.007 0.001 59.58 0.04
S2H2 1.62 0.13 54.30 8.96 14.667 0.017 2.37 0.02

S2CH4 4.87 0.61 646.76 58.50 0.008 0.000 72.75 0.11
S3H2 0.80 0.04 41.49 8.76 16.545 0.066 2.39 0.01

S3CH4 5.45 0.17 691.32 24.23 0.010 0.001 71.09 0.08
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The reported functional analysis was sustained by a taxonomic analysis of the domi-
nant genera. The dominant genera retrieved in these sectors were Prevotella sp., described
as a hydrogen producer and a pectinolytic, proteolytic, and hemicellulolytic organism. It
has been reported that it is capable of producing hydrogen from VFAs [40]; Prevotella sp. is
mainly represented in scenario 3.

The cocontribution of these two genera is described in [41], where they are dominant
in a mixed acid fermentation at pH 6.0. At a more acidic pH (range 4.7–5.0), Olsenella,
Lactobacillus, and Bifidobacterium sps. are described as dominant [41]. In both the scenarios
analyzed here, when the pH was at the intermediate value of 5.5, the same genera were
significantly represented. In this context, it is reasonable to assess that these latter species
and the Prevotella sp. are responsible for lactic acid production, rapidly fermented to
butanoate by Megasphaera sp.

Scenario 3 shows that the relative abundance of Prevotella, Dialister, and Mitsuokella sps.
negatively correlated with the HRT. These genera were effectively implied to be involved
in the hydrolysis of complex carbohydrates. Some strains of Dialister sp. [42] were shown
to be saccharolytic and stimulated by the presence of succinate, which was converted
to propionate.

Mitsuokella sp. is described as a fermenter of simple carbohydrates to lactate and
succinate [43].

3.2.2. Differences in Methanogenic Rectors

All the inferred VFA-forming pathways (Figure 10a) were more relevant in the
methane-producing sectors, with the exception of the ”Acyl fermentation to butanoate II”
pathway, which was limited to the hydrogen-producing sectors.

The sole butanoate-forming pathway inferred in the methane-producing sectors
was related to the fermentation of proteins (“L-lysine fermentation to acetate and bu-
tanoate” specifically).

All the VFA-processing enzymes were preponderant in the methane-producing sectors.
This result is in accordance with the stationary and low concentration of VFAs recorded
(Figure 4), far below the inhibition limit reported by [44].

The butanoate-degrading enzymes were slightly overrepresented in the methane
reactors following the DF (Figure 12), in accordance with a slightly higher concentration of
acetate retrieved in the same sections, when compared to scenario 1 (Figure 4).

Propionate and butanoate concentrations were both slightly higher in the methane
sectors that followed DF when compared to scenario 1 (Figure 10a). This effect seemed
to be due to a carryover from the DF sectors instead of to the diverse metabolic capac-
ities of scenario 1. On the other hand, the methane sector following the D showed an
increment in the contribution of the hydrogen-processing enzymes (Figure 10b) such as
Nitrogenase, Formate Dehydrogenase (NADP+ dependent), Hydrogen Dehydrogenase
(NADP+ dependent), and, to a lower extent, Ferredoxin Hydrogenase.

Figure 10a shows that these hydrogen-processing enzymes were implied in irreversible
hydrogen production during nitrogen reduction to ammonia, especially by lactic bacte-
ria [45]. Hydrogen partial pressure regulation was conducted by the mediator compound
formate [46] and ferredoxin oxidation/reduction during pyruvate fermentation to acetyl-
CoA, lactate, and hydrogen [47]. Actually, a shift in favor of hydrogenoclastic methanogens,
consuming the hydrogen formed from lactate and formate, which are both products of
pyruvate metabolism, was observed. A carryover of ammonia produced in DF sectors by
Megasphaera sp. was the most probable cause of inhibition of acetoclastic methanogens in
scenario 2 and 3.
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Archaea are enriched in methane-producing sectors after DF; the lower HRT, the higher
their contribution (Table 3). Biodiversity in the methane-producing sectors was higher when
compared to the hydrogen-producing sectors. In scenario 3, biodiversity was associated
with the highest production of methane (Figure 7).

All the retrieved methanogens were mostly present in the scenario 3 methane-producing
sector, and we provide a focus on the other microorganisms that were prevalent in this
sector (Figures 13 and 14).

Among the most abundant microorganisms, Syntrophomonas sp. has an important role
in butyrate oxidation to hydrogen and acetate [48], favoring hydrogenotrophic methanogens.

In a study on the anaerobic digestion of WWTP, the W27 family (Cloacimonadales order),
whose relative abundance was more significant in the scenario 3 methane-producing sector,
together with Syntrophomonas sp. were stimulated in the presence of long-chain fatty
acids, specifically oleic acid [49], suggesting that a lower HRT limits the transformation
of this substrate into shorter chain compounds. The genes involved in the syntrophic
propionate oxidation process were identified in members of the order Cloacimonadales [50],
who performed the same function as Synthrophomonas sp. with propionate as the substrate.

A particular mention goes to Pelotomaculum sp. (Figure 1), one of the five principal
genera of syntrophic propionate-oxidizing bacteria described in the literature [51].

Together with syntrophic bacteria, other hydrolytic fermenters are stimulated by a
lower HTR:

Members of the Dysgonomonadaceae family are alkalitolerant hydrolytic fermenters,
who are able to degrade recalcitrant polysaccharides to liberate oligosaccharides and are
capable of fermenting them to VFAs [24].
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Figure 13. Taxonomic heatmaps of 40 most abundant taxa at the genus level. Taxonomic heatmaps
showing the first 40 most abundant ASVs per section: (a) absolute counts and (b) autoscaled counts,
aggregated at the genus level. Percentages reported near the ASV names represent the relative
abundance of the sum of ASV counts per sample against the total sum: a cut-off value of 0.005%
was chosen. Hierarchical clustering was performed on columns with Pearson correlation based on
Euclidean distance. In order to evidence variation, the color scheme of panel b, representing row-wise
Z scores of ASV counts per sample, was chosen. For this color scheme, a Z value of 0 matches the
reported percentage near the ASV names.

The Sphaerochaeta sp. contains multiple genes related to carbohydrate fermentation,
mostly obtained by horizontal transfer from clostridia [52].

The genus Acetovibrio sp. is an efficient cellulolytic and acidogenic microorganism
implied in the hydrolysis of lignocellulosic material [53].
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Z scores of ASV counts per sample, was chosen. For this color scheme, a Z value of 0 matches the
reported percentage near the ASV names.

3.2.3. Process Stability and Overall Yield

In Table 4, the performance of a two-stage reactor in the tested scenarios is compared
to the AD standard process (scenario 1).

Table 4. Process yield in different scenarios.

Scenario ∆CH4 to S1
(%) H2 from DF (%) H2 from DF

(NL/KgTVS)
∆ηVS

(%)

S1 0 - - 0
S2 +52.4 14.8 7.96 +16.8
S3 +59.0 16.6 6.86 +20.1

The overall yield of the two-stage DF-AD reactor, in terms of methane production, led
to a +52.4% v/v in comparison to the single AD stage. Decreasing the HRT in the DF stage
from 3 (scenario 2) to 1.5 days (scenario 3) increased the methane yield by another 6.6%

Two-stage fermentation only produced hydrogen in the DF sector, and a lower HRT
increased H2 furtherly by 1.8%.
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The overall conversion of the total volatile solids in the biogas was also enhanced in
the two-stage process by 16.8% and rose up to 20.1% when the DF HRT was halved.

4. Discussion
Microbial Analysis

Dark fermentation produces hydrogen at a relatively low yield with the accumulation
of metabolites such as VFAs. Typical H2 yields range from 1 to 2 mol of H2/mol of glu-
cose [54]. The DF process is still attractive because it requires a simple reactor design and
ease in the selection of competent microbial communities from anaerobic sludges produced
during methanogenic fermentation processes. Cow manure, municipal solid waste, com-
post, and even soil can be used as sources of mixed cultures if correctly pretreated (e.g., by
thermal shock during the startup [55], acidic pH maintenance [56], or use of methanogen
inhibitors [57]). The hard part to master is the optimization of the H2 yield, requiring a fine
regulation of the complex microbial community toward the desired end product. VFAs,
anyway, consist of a significative end product of the dark fermentation process.

Short-chain VFAs are value-added products: their cost value is proportional to the
carbon chain length, e.g., butyric acid (2163 $/ton), propionic acid (2000 $/ton), and acetic
acid (600 $/ton) [58], and they can be involved in interesting raw material biorefinery
processes [44]. Ordinarily, the production of VFAs requires pure cultures [59] and simple
substrates such as pentose or hexose sugars to be fermented [60]. The massive anaerobic
production of VFAs in nonsterile conditions and in the presence of complex substrates such
as an OFMSW is still at an upscaling phase [61].

Anyway, acidogenic processes can be exploited to enhance biogas production and
increase the yield of the process. One possible process to produce additional H2 is consistent
with light fermentation, a photofermentative process that involves specific phototrophic
bacteria such as Rhodobacter sp. [62] or cyanobacteria [63]. These processes are associated
with materials for construction that allow light to pass through, such as glass, and are
associated consequently with limited dimensions of the reactors [64], a strict control of
temperature, and in some cases, complex managing procedures, such as continuous growth
medium exchange in anaerobic conditions [65].

Another feasible path is the use of microbial electrolytic cells (MEC) [66]; there are,
however some practical limits to the scale up of this new technology, such as high manufac-
turing costs of the cells, high internal resistance, and issues due to biofouling [67], that are
yet to be overcome.

Methane production in dedicated sectors can effectively and easily integrate acidogenic
processes to a final methanogenic fermentation of VFA byproducts of dark fermentation [68].
However, high total concentrations of VFAs inhibit methanogenesis [69], and thus the
intervention of microbial consortia must be able to transform the excess VFAs in suitable
substrates for methanogens. The anaerobic oxidation of propionate and butyrate to acetate
and/or hydrogen might occur anaerobically, but it is a high endergonic process (∆G◦

Propionate = +76.1 and ∆G◦ Butyrate = +48.1 kJ/mol at 25 ◦C). On the other hand, these
reactions might be performed by the syntrophic cooperation of propionate and butyrate-
oxidizing bacteria and H2/formate-scavenging partners [70].

Propanoate oxidation, moreover, has the lowest energetic yield [71], and thus is likely
to accumulate the most VFAs. Propanoate, thus, has a critical role in destabilizing anaerobic
fermentation processes that are carried over by acetogenic methanogens; it has a reported
limit concentration that is able to cease methane production in 3000 ppm [72].

Nevertheless, only acetoclastic Archaea are inhibited by a high total VFA content and
low pH [73] and high ammonia content [74]. In these cases, however, a shift in methanogens
can occur, leading to hydrogenoclastic methanogens overcoming acetoclastic bacteria and
a cooperation with syntrophic propionate-oxidizing bacteria (SPOB) [75] and Butyrate-
oxidizing syntrophs [76].

In the scenarios studied here and the sectors of the two-stage configuration, a shift
in methanogens was observed, accompanied by an increment in the abundance of
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Megasphaera sp., which were putatively responsible for the increase in ammonia production.
An increment in the contribution of Nitrogenase activity was also observed, which was
responsible for the hydrogen production.

The observed higher contribution of other enzymes that could produce or consume
hydrogen reversibly in methane-producing sectors suggests that a fine regulation of hy-
drogen partial pressure is adopted by the microbial community [77], which is crucial for
the syntrophic oxidation of VFAs [70], and an inhibitor of methanogenic processes [78].
Megasphaera sp. itself is likely to be the most significant contributor to butanoate production,
in accordance with the higher presence of the “acetyl CoA fermentation to butanoate II”
pathway in the DF sector.

The two-stage reactor configuration strongly impacts the syntrophic community in
methanogenic reactors: while Syntrophomonas sp. becomes dominant in scenario 2 and 3,
the most preponderant genus retrieved in scenario 1 is DMER 64, a syntroph that exploits
direct electron transfer (DIET) mediated by magnetite, especially in ammonia-stressed
conditions [79], instead of producing hydrogen.

The decrease in the HRT in the DF sector led to a significantly higher production of
biogases and a higher percentage of methane content in comparison to a single-stage AF in
scenario 1, which correlated with an enrichment in the Archaeal community, together with
the stimulation of Syntrophomonas sp. and other efficient hydrolytic fermenters of cellulose
and long-chain fatty acids.

The selection of more efficient hydrolytic bacteria is also reflected in the enhancement
in the removal efficiency of the total volatile solids.

A lower HRT in the DF sector had the highest impact on Prevotella sp. This genus is
related to formate production in the DF process [80].

Formate works as a hydrogen transporter [46] when inside cells, as it is reverted to
hydrogen and CO2 in the methane-producing sector and exploited by hydrogenotrophic
methanogens to produce methane [81].

Formate as an interspecies shuttle of hydrogen can enhance methane production via
hydrogenotrophs [82] while inhibiting acetoclastic methanogens as well [83].

5. Conclusions

This study developed a two-stage DF-AD pilot-scale process of the codigestion of the
OFWMS and aerobic sludge by considering a simple reactor design, start-up method, and
operating conditions, with the aim to valorize widely produced waste as source of energy
to maintain simplicity for the scale-up step.

The long-term stability of the process, biogas yield, and removal of volatile solids were
evaluated in comparison with a single-stage AD reactor. A key and practically tunable
parameter for process management, the HRT in the DF stage, was found to improve the
biogas yield by modifying the HRT in the DF stage, and it was successfully individuated
and exploited to increase the biogas yield and TVS removal efficiency. Furthermore, the
codigestion configuration showed improved process stability compared to FW digestion,
as we observed a lower consumption of alkaline solution for the pH control due to the
intrinsic buffer capacity of the AS. Other additional advantages of the two-stage process
were associated with the overall reduction in the HRT (shifting from 17 d of the one-stage
process to 1.5 d + 12 d of the two-stage system) and the higher removal of volatile solids
(+14%). As such, the reduction in the HRT implies a reduction in the digester volume
and investment costs while the increase in volatile solids removal was associated with
a higher degree of digestate stabilization, which is a relevant issue when considering its
final disposal.

Future work could be directed at studying the energy performance of processes on the
preindustrial scale so as to make an energy balance that can legitimize the scale up of dark
fermentation processes.

This study used the metabarcoding technique NGS and functional inference to shed
light on microbial community rearrangement and metabolic shifts during the combined
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DF-AD fermentation processes. New probes (ammonium and formate) and microbiological
markers (Prevotella, Megasphaera, Sintrophomonas sps.) were identified to have more control
on DF-AD bioreactor performance.
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