Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (162)

Search Parameters:
Keywords = shallow water acoustics

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 1815 KiB  
Review
Recent Progress on Underwater Wireless Communication Methods and Applications
by Zhe Li, Weikun Li, Kai Sun, Dixia Fan and Weicheng Cui
J. Mar. Sci. Eng. 2025, 13(8), 1505; https://doi.org/10.3390/jmse13081505 - 5 Aug 2025
Abstract
The rapid advancement of underwater wireless communication technologies is critical to unlocking the full potential of marine resource exploration and environmental monitoring. This paper reviews recent progress in three primary modalities: underwater acoustic communication, radio frequency (RF) communication, and underwater optical wireless communication [...] Read more.
The rapid advancement of underwater wireless communication technologies is critical to unlocking the full potential of marine resource exploration and environmental monitoring. This paper reviews recent progress in three primary modalities: underwater acoustic communication, radio frequency (RF) communication, and underwater optical wireless communication (UWOC), each designed to address specific challenges posed by complex underwater environments. Acoustic communication, while effective for long-range transmission, is constrained by ambient noise and high latency; recent innovations in noise reduction and data rate enhancement have notably improved its reliability. RF communication offers high-speed, short-range capabilities in shallow waters, but still faces challenges in hardware miniaturization and accurate channel modeling. UWOC has emerged as a promising solution, enabling multi-gigabit data rates over medium distances through advanced modulation techniques and turbulence mitigation. Additionally, bio-inspired approaches such as electric field communication provide energy-efficient and robust alternatives under turbid conditions. This paper further examines the practical integration of these technologies in underwater platforms, including autonomous underwater vehicles (AUVs), highlighting trade-offs between energy efficiency, system complexity, and communication performance. By synthesizing recent advancements, this review outlines the advantages and limitations of current underwater communication methods and their real-world applications, offering insights to guide the future development of underwater communication systems for robotic and vehicular platforms. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

18 pages, 10032 KiB  
Article
Design and Efficiency Analysis of High Maneuvering Underwater Gliders for Kuroshio Observation
by Zhihao Tian, Bing He, Heng Zhang, Cunzhe Zhang, Tongrui Zhang and Runfeng Zhang
Oceans 2025, 6(3), 48; https://doi.org/10.3390/oceans6030048 - 1 Aug 2025
Viewed by 213
Abstract
The Kuroshio Current’s flow velocity imposes exacting requirements on underwater vehicle propulsive systems. Ecological preservation necessitates low-noise propeller designs to mitigate operational disturbances. As technological evolution advances toward greater intelligence and system integration, intelligent unmanned systems are positioning themselves as a critical frontier [...] Read more.
The Kuroshio Current’s flow velocity imposes exacting requirements on underwater vehicle propulsive systems. Ecological preservation necessitates low-noise propeller designs to mitigate operational disturbances. As technological evolution advances toward greater intelligence and system integration, intelligent unmanned systems are positioning themselves as a critical frontier in marine innovation. In recent years, the global research community has increased its efforts towards the development of high-maneuverability underwater vehicles. However, propeller design optimization ignores the key balance between acoustic performance and hydrodynamic efficiency, as well as the appropriate speed threshold for blade rotation. In order to solve this problem, the propeller design of the NACA 65A010 airfoil is optimized by using OpenProp v3.3.4 and XFlow 2022 software, aiming at innovating the propulsion system of shallow water agile submersibles. The study presents an integrated design framework combining lattice Boltzmann method (LBM) simulations synergized with fully Lagrangian-LES modeling, implementing rotational speed thresholds to detect cavitation inception, followed by advanced acoustic propagation analysis. Through rigorous comparative assessment of hydrodynamic metrics, we establish an optimization protocol for propeller selection tailored to littoral zone operational demands. Studies have shown that increasing the number of propeller blades can reduce the single-blade load and delay cavitation, but too many blades will aggravate the complexity of the flow field, resulting in reduced efficiency and noise rebound. It is concluded that the propeller with five blades, a diameter of 234 mm, and a speed of 500 RPM exhibits the best performance. Under these conditions, the water efficiency is 69.01%, and the noise is the lowest, which basically realizes the balance between hydrodynamic efficiency and acoustic performance. This paradigm-shifting research carries substantial implications for next-generation marine vehicles, particularly in optimizing operational stealth and energy efficiency through intelligent propulsion architecture. Full article
Show Figures

Figure 1

17 pages, 438 KiB  
Article
Analytic Solutions and Conservation Laws of a 2D Generalized Fifth-Order KdV Equation with Power Law Nonlinearity Describing Motions in Shallow Water Under a Gravity Field of Long Waves
by Chaudry Masood Khalique and Boikanyo Pretty Sebogodi
AppliedMath 2025, 5(3), 96; https://doi.org/10.3390/appliedmath5030096 (registering DOI) - 31 Jul 2025
Viewed by 110
Abstract
The Korteweg–de Vries (KdV) equation is a nonlinear evolution equation that reflects a wide variety of dispersive wave occurrences with limited amplitude. It has also been used to describe a range of major physical phenomena, such as shallow water waves that interact weakly [...] Read more.
The Korteweg–de Vries (KdV) equation is a nonlinear evolution equation that reflects a wide variety of dispersive wave occurrences with limited amplitude. It has also been used to describe a range of major physical phenomena, such as shallow water waves that interact weakly and nonlinearly, acoustic waves on a crystal lattice, lengthy internal waves in density-graded oceans, and ion acoustic waves in plasma. The KdV equation is one of the most well-known soliton models, and it provides a good platform for further research into other equations. The KdV equation has several forms. The aim of this study is to introduce and investigate a (2+1)-dimensional generalized fifth-order KdV equation with power law nonlinearity (gFKdVp). The research methodology employed is the Lie group analysis. Using the point symmetries of the gFKdVp equation, we transform this equation into several nonlinear ordinary differential equations (ODEs), which we solve by employing different strategies that include Kudryashov’s method, the (G/G) expansion method, and the power series expansion method. To demonstrate the physical behavior of the equation, 3D, density, and 2D graphs of the obtained solutions are presented. Finally, utilizing the multiplier technique and Ibragimov’s method, we derive conserved vectors of the gFKdVp equation. These include the conservation of energy and momentum. Thus, the major conclusion of the study is that analytic solutions and conservation laws of the gFKdVp equation are determined. Full article
Show Figures

Figure 1

25 pages, 2486 KiB  
Article
Influence of Intense Internal Waves Traveling Along an Acoustic Path on Source Holographic Reconstruction in Shallow Water
by Sergey Pereselkov, Venedikt Kuz’kin, Matthias Ehrhardt, Sergey Tkachenko, Alexey Pereselkov and Nikolay Ladykin
J. Mar. Sci. Eng. 2025, 13(8), 1409; https://doi.org/10.3390/jmse13081409 - 24 Jul 2025
Viewed by 316
Abstract
This paper studies how intense internal waves (IIWs) affect the holographic reconstruction of the sound field generated by a moving source in a shallow-water environment. It is assumed that the IIWs propagate along the acoustic path between the source and the receiver. The [...] Read more.
This paper studies how intense internal waves (IIWs) affect the holographic reconstruction of the sound field generated by a moving source in a shallow-water environment. It is assumed that the IIWs propagate along the acoustic path between the source and the receiver. The presence of IIWs introduces inhomogeneities into the waveguide and causes significant mode coupling, which perturbs the received sound field. This paper proposes the use of holographic signal processing (HSP) to eliminate perturbations in the received signal caused by mode coupling due to IIWs. Within the HSP framework, we examine the interferogram (the received sound intensity distribution in the frequency–time domain) and the hologram (the two-dimensional Fourier transform of the interferogram) of a moving source in the presence of space–time inhomogeneities caused by IIWs. A key finding is that under the influence of IIWs, the hologram is divided into two regions that correspond to the unperturbed and perturbed components of the sound field. This hologram structure enables the extraction and reconstruction of the interferogram corresponding to the unperturbed field as it would appear in a shallow-water waveguide without IIWs. Numerical simulations of HSP application under the realistic conditions of the SWARM’95 experiment were carried out for stationary and moving sources. The results demonstrate the high efficiency of holographic reconstruction of the unperturbed sound field. Unlike matched field processing (MFP), HSP does not require prior knowledge of the propagation environment. These research results advance signal processing methods in underwater acoustics by introducing efficient HSP methods for environments with spatiotemporal inhomogeneities. Full article
(This article belongs to the Section Physical Oceanography)
Show Figures

Figure 1

23 pages, 8011 KiB  
Article
Efficient Prediction of Shallow-Water Acoustic Transmission Loss Using a Hybrid Variational Autoencoder–Flow Framework
by Bolin Su, Haozhong Wang, Xingyu Zhu, Penghua Song and Xiaolei Li
J. Mar. Sci. Eng. 2025, 13(7), 1325; https://doi.org/10.3390/jmse13071325 - 10 Jul 2025
Viewed by 241
Abstract
Efficient prediction of shallow-water acoustic transmission loss (TL) is crucial for underwater detection, recognition, and communication systems. Traditional physical modeling methods require repeated calculations for each new scenario in practical waveguide environments, leading to low computational efficiency. Deep learning approaches, based on data-driven [...] Read more.
Efficient prediction of shallow-water acoustic transmission loss (TL) is crucial for underwater detection, recognition, and communication systems. Traditional physical modeling methods require repeated calculations for each new scenario in practical waveguide environments, leading to low computational efficiency. Deep learning approaches, based on data-driven principles, enable accurate input–output approximation and batch processing of large-scale datasets, significantly reducing computation time and cost. To establish a rapid prediction model mapping sound speed profiles (SSPs) to acoustic TL through controllable generation, this study proposes a hybrid framework that integrates a variational autoencoder (VAE) and a normalizing flow (Flow) through a two-stage training strategy. The VAE network is employed to learn latent representations of TL data on a low-dimensional manifold, while the Flow network is additionally used to establish a bijective mapping between the latent variables and underwater physical parameters, thereby enhancing the controllability of the generation process. Combining the trained normalizing flow with the VAE decoder could establish an end-to-end mapping from SSPs to TL. The results demonstrated that the VAE–Flow network achieved higher computational efficiency, with a computation time of 4 s for generating 1000 acoustic TL samples, versus the over 500 s required by the KRAKEN model, while preserving accuracy, with median structural similarity index measure (SSIM) values over 0.90. Full article
(This article belongs to the Special Issue Data-Driven Methods for Marine Structures)
Show Figures

Figure 1

16 pages, 7078 KiB  
Article
Prediction of Target-Induced Multipath Interference Acoustic Fields in Shallow-Sea Ideal Waveguides and Statistical Characteristics of Waveguide Invariants
by Yuanhang Zhang, Peizhen Zhang and Jincan Li
J. Mar. Sci. Eng. 2025, 13(6), 1100; https://doi.org/10.3390/jmse13061100 - 30 May 2025
Viewed by 294
Abstract
The acoustic scattering of targets in shallow-sea waveguides exhibits complex features such as multipath propagation and intricate echo components, with its acoustic field properties remaining incompletely understood. This study employs a hybrid method combining normal modes and scattering functions to numerically model the [...] Read more.
The acoustic scattering of targets in shallow-sea waveguides exhibits complex features such as multipath propagation and intricate echo components, with its acoustic field properties remaining incompletely understood. This study employs a hybrid method combining normal modes and scattering functions to numerically model the acoustic scattering of targets in waveguide channels. We analyze the coupling mechanisms of multipath acoustic waves and derive precise predictive formulas for the bright–dark interference fringe patterns in range–frequency spectra based on the physical mechanisms governing acoustic field interference. By tracking the peak trajectories of these interference fringes in range–frequency spectra, we investigate the variations of the waveguide invariant with frequency, range, and depth, revealing statistical patterns of the waveguide invariant in target–waveguide coupled scattering fields under different water depths. The results demonstrate that, under constant channel conditions, waveguide properties exhibit a weak correlation with target material characteristics. In shallow water environments, waveguide invariant values display broader distributions with higher probability density peaks, whereas increasing water depth progressively narrows the distribution range and monotonically reduces the peak magnitudes of the probability density function. Experimental validation via scaled elastic target echo testing confirms the observed trends of waveguide invariant variation with water depth. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

16 pages, 5797 KiB  
Article
Basis of Identification, Type of Syngenetic Assemblage, and Pattern of Development of Coal and Oil Shale in the Tanshan Area of the Eastern Liupanshan Basin, China
by Caixia Mu, Rui Yang, Lianfu Hai, Qinghai Xu, Jun Yang and Chao Mei
Energies 2025, 18(10), 2560; https://doi.org/10.3390/en18102560 - 15 May 2025
Viewed by 302
Abstract
The Yan’an Formation in the Liupanshan Basin hosts substantial coal and oil shale resources. However, coal and oil shale often exhibit different types of associated or syngenetic combinations, which makes it difficult to recognize coal and oil shales, and research on the patterns [...] Read more.
The Yan’an Formation in the Liupanshan Basin hosts substantial coal and oil shale resources. However, coal and oil shale often exhibit different types of associated or syngenetic combinations, which makes it difficult to recognize coal and oil shales, and research on the patterns of development of coal and oil shales is lacking. In this study, field outcrop, core, logging, and analytical data are comprehensively utilized to describe the characteristics of coal and oil shale, classify their syngenetic combinations, and establish a developmental model. Analytical results from the Tanshan area reveal that coal exhibits a lower density and higher oil content than oil shale. Specifically, coal shows oil contents ranging from 7.22% to 13.10% and ash contents of 8.25–35.66%, whereas oil shale displays lower oil contents (3.88–6.98%) and significantly higher ash contents (42.28–80.79%). The oil and ash contents of both coal and oil shale in the Tanshan area show a negative correlation, though this correlation is significantly stronger in coal than in oil shale. In long-range gamma-ray and resistivity logs, coal exhibits substantially higher values compared to oil shale, whereas in density logs, oil shale shows greater values than coal. Acoustic time difference logging reveals marginally higher values for coal than for oil shale, though the difference is minimal. There are five combination types between coal and oil shale in this area. The oil shale formed in a warm, humid, highly reducing lacustrine environment within relatively deep-water bodies, while coal developed in swampy shallow-water environments; both derive organic matter from higher plants. Variations in depositional settings and environmental conditions resulted in five distinct combination types of coal and oil shale. Full article
(This article belongs to the Special Issue Development of Unconventional Oil and Gas Fields: 2nd Edition)
Show Figures

Figure 1

16 pages, 3560 KiB  
Article
Year-Round Acoustic Presence of Beaked Whales (Ziphiidae) Far Offshore off Australia’s Northwest Shelf
by Evgenii Sidenko, Iain Parnum, Alexander Gavrilov, Robert McCauley and Christine Erbe
J. Mar. Sci. Eng. 2025, 13(5), 927; https://doi.org/10.3390/jmse13050927 - 8 May 2025
Viewed by 1174
Abstract
Beaked whales are a cryptic pelagic species, rarely sighted at sea. In a ~2.5-year passive acoustic monitoring program on Australia’s Northwest Shelf, a variety of marine mammal sounds were detected, including beaked whale (Ziphiidae) clicks. An automatic detection routine for beaked whale clicks [...] Read more.
Beaked whales are a cryptic pelagic species, rarely sighted at sea. In a ~2.5-year passive acoustic monitoring program on Australia’s Northwest Shelf, a variety of marine mammal sounds were detected, including beaked whale (Ziphiidae) clicks. An automatic detection routine for beaked whale clicks was developed, tested, and run on these recordings. The detection workflow included: (1) the extraction of impulsive signals from passive acoustic recordings based on an auto-regression model, (2) the calculation of a set of features of extracted signals, and (3) binary signal classification based on these features. Detector performance (Precision, Recall, and F1-score) was assessed using a manually annotated dataset of extracted clicks. This automated routine allows for quick analysis of animal (acoustic) presence and distribution spatially and temporally. In our study, beaked whales were present all year round at six deep-water (>1000 m) sites, but no clicks were detected at the shallow-water (~70 m) site. No seasonal or diurnal patterns of beaked whale clicks were identified. Full article
Show Figures

Figure 1

15 pages, 6419 KiB  
Article
Sediment Resuspension in the Yellow River Subaqueous Delta During Gale Events
by Jingjing Qi, Siyu Liu, Lulu Qiao, Xingyu Xu, Jianing Li, Haonan Li and Guangxue Li
J. Mar. Sci. Eng. 2025, 13(5), 914; https://doi.org/10.3390/jmse13050914 - 6 May 2025
Viewed by 370
Abstract
During winter, strong winds and waves significantly enhance sediment resuspension in the Yellow River Delta. Based on the continuous and high-resolution data on water levels, wave heights, current velocities, and echo intensities collected by the Acoustic Doppler Current Profiler at different depths (5 [...] Read more.
During winter, strong winds and waves significantly enhance sediment resuspension in the Yellow River Delta. Based on the continuous and high-resolution data on water levels, wave heights, current velocities, and echo intensities collected by the Acoustic Doppler Current Profiler at different depths (5 m and 12 m) in the northern Yellow River Delta simultaneously, this study investigated the sediment resuspension during gale events and tranquil conditions. In deeper waters (12 m), the suspended sediment volume concentration (SSVC) showed a strong correlation with current speed (r = 0.74), while in shallower waters (5 m), the SSVC correlated more closely with wave height (r = 0.72). The thorough analysis of gale events revealed that the maximum wave heights during northwest gales were 23.80% and 34.59% lower than that during northeast gales at deep and shallow stations, respectively, primarily due to the longer wind fetch associated with northeast gales. Conversely, the maximum current velocities during northwest gales were 10.34% and 37.31% higher than that during northeast gales at deep and shallow stations. In deeper waters, the maximum wave–current induced shear stress (τcw) and SSVC during northwest gales were 30.38% and 3.70% higher than those during northeast gales, highlighting current-driven resuspension. In contrast, in shallower waters, the maximum τcw and SSVC during northeast gales were 47.35% and 4.94% higher than those during northwest gales, underscoring the dominance of wave-induced resuspension. Full article
(This article belongs to the Section Coastal Engineering)
Show Figures

Figure 1

18 pages, 3633 KiB  
Article
Flying Robots Teach Floating Robots—A Machine Learning Approach for Marine Habitat Mapping Based on Combined Datasets
by Zacharias Kapelonis, Georgios Chatzigeorgiou, Manolis Ntoumas, Panos Grigoriou, Manos Pettas, Spyros Michelinakis, Ricardo Correia, Catarina Rasquilha Lemos, Luis Menezes Pinheiro, Caio Lomba, João Fortuna, Rui Loureiro, André Santos and Eva Chatzinikolaou
J. Mar. Sci. Eng. 2025, 13(3), 611; https://doi.org/10.3390/jmse13030611 - 19 Mar 2025
Viewed by 870
Abstract
Unmanned aerial and autonomous surface vehicles (UAVs and ASVs, respectively) are two emerging technologies for the mapping of coastal and marine environments. Using UAV photogrammetry, the sea-bottom composition can be resolved with very high fidelity in shallow waters. At greater depths, acoustic methodologies [...] Read more.
Unmanned aerial and autonomous surface vehicles (UAVs and ASVs, respectively) are two emerging technologies for the mapping of coastal and marine environments. Using UAV photogrammetry, the sea-bottom composition can be resolved with very high fidelity in shallow waters. At greater depths, acoustic methodologies have far better propagation properties compared to optics; therefore, ASVs equipped with multibeam echosounders (MBES) are better-suited for mapping applications in deeper waters. In this work, a sea-bottom classification methodology is presented for mapping the protected habitat of Mediterranean seagrass Posidonia oceanica (habitat code 1120) in a coastal subregion of Heraklion (Crete, Greece). The methodology implements a machine learning scheme, where knowledge obtained from UAV imagery is embedded (through training) into a classifier that utilizes acoustic backscatter intensity and features derived from the MBES data provided by an ASV. Accuracy and precision scores of greater than 85% compared with visual census ground-truth data for both optical and acoustic classifiers indicate that this hybrid mapping approach is promising to mitigate the depth-induced bias in UAV-only models. The latter is especially interesting in cases where the studied habitat boundaries extend beyond depths that can be studied via aerial devices’ optics, as is the case with P. oceanica meadows. Full article
Show Figures

Figure 1

17 pages, 8546 KiB  
Article
Streamflow Measurements Using an Underwater Acoustic-Based Approach: A Case Study in a Shallow Narrow Silt-Bed River
by Mohamad Basel Al Sawaf, Akiyoshi Sasaki and Kazuya Inoue
Water 2025, 17(6), 831; https://doi.org/10.3390/w17060831 - 13 Mar 2025
Viewed by 470
Abstract
The recent improvements in streamflow measurement approaches have boosted the reliability and accuracy of river flow measurement. In this study, long-term measurements of river discharge in the Tokoro River, Japan, were conducted. The key objective of this work is to investigate the extent [...] Read more.
The recent improvements in streamflow measurement approaches have boosted the reliability and accuracy of river flow measurement. In this study, long-term measurements of river discharge in the Tokoro River, Japan, were conducted. The key objective of this work is to investigate the extent of river flow measurement in a very shallow and narrow silt stream using the fluvial acoustic tomography system (FAT). Despite the preliminary nature of the measurement results, the recorded data were subject to analysis from three different outlooks. First, examinations were performed under very shallow and high-water conditions. Second, examinations were performed using double acoustic frequency. Third, examinations were performed using multiple independent flow datasets. As a new achievement in terms of advanced monitoring capabilities, it was documented that the measurement by the FAT was possible even in extremely shallow conditions. However, the minimum water depth along the measured cross-section must be ≥9 cm. Moreover, the FAT system demonstrated its capability to monitor streamflow in high water levels. In addition, it was found that using high transmission frequency can provide shorter wavelengths, permitting better spatial resolution and higher velocity resolutions and hence desirable measurement accuracy. Nevertheless, measurements in the presence of high suspended sediment particles were lacking. Alternatively, a lower transmission frequency offers a longer wavelength, which might be less sensitive to small-scale variations and results in an imprecise degree of measurements. Nonetheless, measurements can be accomplished even during the mobilization of a high concentration of suspended sediment matters. Finally, using multiple independent streamflow measurement records, the results proved that the flow measured by the FAT system was in very good agreement with the records acquired using sophisticated measurement approaches such as HADCP and STIV with a very low range of uncertainty. Full article
Show Figures

Figure 1

21 pages, 6166 KiB  
Article
Evaluating the Effectiveness of an Acoustic Camera for Monitoring Three Large Jellyfish Species in the Coastal Waters of Liaodong Bay, China
by Bin Wang, Xiuze Liu, Jing Dong, Aiyong Wang, Chao Feng, Yanzhao Xu, Depu Zhang and Zhongfang Zhao
Fishes 2025, 10(3), 105; https://doi.org/10.3390/fishes10030105 - 28 Feb 2025
Viewed by 543
Abstract
A survey was conducted to evaluate the effectiveness of adaptive resolution imaging sonar (ARIS), also known as an acoustic camera, for monitoring large jellyfish in the Liaodong Bay area, China. The abundance and vertical distribution of large jellyfish species, such as Nemopilema nomurai [...] Read more.
A survey was conducted to evaluate the effectiveness of adaptive resolution imaging sonar (ARIS), also known as an acoustic camera, for monitoring large jellyfish in the Liaodong Bay area, China. The abundance and vertical distribution of large jellyfish species, such as Nemopilema nomurai, Aurelia coerulea, and Cyanea nozakii, were obtained from acoustic camera observation images, and the effectiveness of the acoustic camera method was determined. The acoustic camera method provided visual information on the number of large jellyfish and their positions in the water column and demonstrated that they were more frequently located in the mid-upper water column of the surveyed area. The results show that it is possible to identify three different types of large jellyfish using acoustic camera sonar images, based on their size, shape, outline, and movement trajectory. The acoustic camera method enables the effective monitoring of jellyfish abundance and enables the observation of their vertical distribution, demonstrating its suitability for monitoring large jellyfish in shallow waters. The results show that observations through an acoustic camera can be used to study the horizontal and vertical spatial distribution characteristics of large jellyfish and to observe their behavior. Full article
(This article belongs to the Special Issue Underwater Acoustic Technologies for Sustainable Fisheries)
Show Figures

Figure 1

4 pages, 8964 KiB  
Correction
Correction: Shaikh et al. Acoustic Propagation and Transmission Loss Analysis in Shallow Water of Northern Arabian Sea. J. Mar. Sci. Eng. 2024, 12, 2256
by Shahabuddin Shaikh, Yiwang Huang, Ayman Alharbi, Muhammad Bilal, Abdul Sami Shaikh, Habib Hussain Zuberi and Muhammad Ayoob Dars
J. Mar. Sci. Eng. 2025, 13(2), 369; https://doi.org/10.3390/jmse13020369 - 17 Feb 2025
Viewed by 420
Abstract
Errors in Figures [...] Full article
Show Figures

Figure 9

14 pages, 19711 KiB  
Article
Shallow Gas Distribution Influenced by the Interface of Sedimentary Facies in the Southwest of the Qiongdongnan Basin
by Taotao Yang, Xiaohan Li, Jiapeng Jin, Jianwei Chen, Zhi Gong, Li Zhao, Wenlong Wang, Bo Liu, Jinzi Hu, Wenlu Wang and Xiujuan Wang
J. Mar. Sci. Eng. 2025, 13(2), 301; https://doi.org/10.3390/jmse13020301 - 6 Feb 2025
Viewed by 938
Abstract
Shallow gas, with huge resources, has been confirmed using three dimensional (3D) seismic data and more than 20 drilling sites in the deep water of the LS36 gas field, the Qiongdongnan Basin, the South China Sea. The interface of sedimentary facies in the [...] Read more.
Shallow gas, with huge resources, has been confirmed using three dimensional (3D) seismic data and more than 20 drilling sites in the deep water of the LS36 gas field, the Qiongdongnan Basin, the South China Sea. The interface of sedimentary facies in the southern boundary of the basin controls the distribution within the basin of clastic sediments coming from the north and west of the land uplifted. In this study, seismic data and geophysical attributes were used to investigate the controlling effect of the interface of sedimentary facies on the distribution of shallow gas within the basin. Our study shows that the shallow gas is mainly distributed in the Quaternary Ledong Formation in the southwest of the Qiongdongnan Basin, which was observed from acoustic impedance, amplitude versus offset (AVO), and seismic interpretations. The channelized submarine fans that onlap the interface of the sedimentary facies are distributed in a vertically stacked manner and are the main reservoirs for the shallow gas. Therefore, these sedimentary studies show that the sand-rich sediments are distributed along the interface of the sedimentary facies from the southwest to the northeast and are limited to the shallow gas within the basin. The Central Canyon provides an important deep gas source, while the flank of the canyon, gas chimney, and normal faults related to basement uplift provide pathways for vertical and lateral gas migration to form the shallow gas. This study shows that shallow gas may be widely distributed in other marginal sea basins, and sedimentary systems should be further studied in the future. Full article
(This article belongs to the Special Issue Advances in Marine Gas Hydrate Exploration and Discovery)
Show Figures

Figure 1

26 pages, 6721 KiB  
Article
Advanced Detection and Classification of Kelp Habitats Using Multibeam Echosounder Water Column Point Cloud Data
by Amy W. Nau, Vanessa Lucieer, Alexandre C. G. Schimel, Haris Kunnath, Yoann Ladroit and Tara Martin
Remote Sens. 2025, 17(3), 449; https://doi.org/10.3390/rs17030449 - 28 Jan 2025
Viewed by 1526
Abstract
Kelps are important habitat-forming species in shallow marine environments, providing critical habitat, structure, and productivity for temperate reef ecosystems worldwide. Many kelp species are currently endangered by myriad pressures, including changing water temperatures, invasive species, and anthropogenic threats. This situation necessitates advanced methods [...] Read more.
Kelps are important habitat-forming species in shallow marine environments, providing critical habitat, structure, and productivity for temperate reef ecosystems worldwide. Many kelp species are currently endangered by myriad pressures, including changing water temperatures, invasive species, and anthropogenic threats. This situation necessitates advanced methods to detect kelp density, which would allow tracking density changes, understanding ecosystem dynamics, and informing evidence-based management strategies. This study introduces an innovative approach to detect kelp density with multibeam echosounder water column data. First, these data are filtered into a point cloud. Then, a range of variables are derived from these point cloud data, including average acoustic energy, volume, and point density. Finally, these variables are used as input to a Random Forest model in combination with bathymetric variables to classify sand, bare rock, sparse kelp, and dense kelp habitats. At 5 m resolution, we achieved an overall accuracy of 72.5% with an overall Area Under the Curve of 0.874. Notably, our method achieved high accuracy across the entire multibeam swath, with only a 1 percent point decrease in model accuracy for data falling within the part of the multibeam water column data impacted by sidelobe artefact noise, which significantly expands the potential of this data type for wide-scale monitoring of threatened kelp ecosystems. Full article
(This article belongs to the Section Ocean Remote Sensing)
Show Figures

Figure 1

Back to TopTop