Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (107)

Search Parameters:
Keywords = shade houses

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
34 pages, 7297 KiB  
Article
Passive Design for Residential Buildings in Arid Desert Climates: Insights from the Solar Decathlon Middle East
by Esra Trepci and Edwin Rodriguez-Ubinas
Buildings 2025, 15(15), 2731; https://doi.org/10.3390/buildings15152731 - 2 Aug 2025
Viewed by 279
Abstract
This study investigates the effectiveness of passive design in low-rise residential buildings located in arid desert climates, using the Dubai Solar Decathlon Middle East (SDME) competition as a case study. This full-scale experiment offers a unique opportunity to evaluate design solutions under controlled, [...] Read more.
This study investigates the effectiveness of passive design in low-rise residential buildings located in arid desert climates, using the Dubai Solar Decathlon Middle East (SDME) competition as a case study. This full-scale experiment offers a unique opportunity to evaluate design solutions under controlled, realistic conditions; prescriptive, modeled performance; and monitored performance assessments. The prescriptive assessment reviews geometry, orientation, envelope thermal properties, and shading. Most houses adopt compact forms, with envelope-to-volume and envelope-to-floor area ratios averaging 1 and 3.7, respectively, and window-to-wall ratios of approximately 17%, favoring north-facing openings to optimize daylight while reducing heat gain. Shading is strategically applied, horizontal on south façades and vertical on east and west. The thermal properties significantly exceed the local code requirements, with wall performance up to 80% better than that mandated. The modeled assessment uses Building Energy Models (BEMs) to simulate the impact of prescriptive measures on energy performance. Three variations are applied: assigning minimum local code requirements to all the houses to isolate the geometry (baseline); removing shading; and applying actual envelope properties. Geometry alone accounts for up to 60% of the variation in cooling intensity; shading reduces loads by 6.5%, and enhanced envelopes lower demand by 14%. The monitored assessment uses contest-period data. Indoor temperatures remain stable (22–25 °C) despite outdoor fluctuations. Energy use confirms that houses with good designs and airtightness have lower cooling loads. Airtightness varies widely (avg. 14.5 m3/h/m2), with some well-designed houses underperforming due to construction flaws. These findings highlight the critical role of passive design as the first layer for improving the energy performance of the built environment and advancing toward net-zero targets, specifically in arid desert climates. Full article
(This article belongs to the Special Issue Climate-Responsive Architectural and Urban Design)
Show Figures

Figure 1

34 pages, 9378 KiB  
Article
Contribution of Glazed Additions as Passive Elements of the Reduction in Energy Consumption in Detached Houses
by Hristina Krstić, Dušan Ranđelović, Vladan Jovanović, Marko Mančić and Branislava Stoiljković
Buildings 2025, 15(15), 2715; https://doi.org/10.3390/buildings15152715 - 1 Aug 2025
Viewed by 125
Abstract
If implemented properly in architectural design, passive measures can contribute to achieving the desired comfort in a building while reducing its energy consumption. Glazed additions in the form of sunspaces or greenhouses can influence the improvement of building energy efficiency and, at the [...] Read more.
If implemented properly in architectural design, passive measures can contribute to achieving the desired comfort in a building while reducing its energy consumption. Glazed additions in the form of sunspaces or greenhouses can influence the improvement of building energy efficiency and, at the same time, create appealing and pleasant building extensions. Through energy simulations performed using EnergyPlus software, this study aims to analyze the potential contribution of glazed additions to a detached house to reducing energy consumption and creating additional space for living. Research was performed as a case study at the following locations: Niš (Serbia), Berlin (Germany), and Tromsø (Norway). For the purposes of this study, five models (M0–M4) were developed and subjected to analysis across two different scenarios. The results of the conducted research showed that the integration of glazed elements can significantly contribute to energy savings: maximum total annual savings regarding heating and cooling go from 21% for Tromsø, up to 32% for Berlin and 40% for Niš, depending on whether the building to which the glazed element(s) is/are attached is insulated or not and the number and the position of glazed elements. Although glazed additions can create a pleasant microclimate around the house, the overheating observed in the study indicates that proper ventilation and shading are mandatory, especially in more southern locations. Full article
(This article belongs to the Section Architectural Design, Urban Science, and Real Estate)
Show Figures

Figure 1

24 pages, 3345 KiB  
Article
Enhancing Energy Efficiency in Egyptian Middle-Income Housing: A Study of PV System Integration and Building Envelope Optimization in Sakan Masr
by Ehsan Raslan, Samah Elkhateeb and Ramy Ahmed
Buildings 2025, 15(13), 2326; https://doi.org/10.3390/buildings15132326 - 2 Jul 2025
Viewed by 497
Abstract
Facing rapid urbanization, rising temperatures, and a residential sector that accounted for 38% of Egypt’s electricity use in 2022, middle-income housing presents a critical yet underexplored opportunity for energy efficiency improvements. This study investigates how the integration of passive design strategies and rooftop [...] Read more.
Facing rapid urbanization, rising temperatures, and a residential sector that accounted for 38% of Egypt’s electricity use in 2022, middle-income housing presents a critical yet underexplored opportunity for energy efficiency improvements. This study investigates how the integration of passive design strategies and rooftop photovoltaic (PV) systems can enhance energy performance in this segment, using the Sakan Masr housing project in New Cairo as a case study. Addressing a research gap—namely the limited analysis of combined strategies in Egypt’s middle-income housing—the study follows a four-phase methodology: identifying dominant building orientations; simulating electricity demand and thermal comfort using DesignBuilder; optimizing the building envelope with passive measures; and evaluating PV system performance across south-facing and east–west configurations using PV-SOL. Results reveal that passive strategies such as improved glazing and shading can enhance thermal comfort by up to 10% and reduce cooling loads. Also, east–west PV arrays outperform south-facing ones, producing over 14% more electricity, reducing costs by up to 50%, and avoiding up to 168 tons of CO2 emissions annually. The findings highlight that passive improvements with smart PV integration—offer a cost-effective pathway toward Net Zero Energy goals, with significant implications for national housing policy and Egypt’s renewable energy transition. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

13 pages, 3291 KiB  
Article
Experimental Work to Investigate the Effect of Rooftop PV Panel Shading on Building Thermal Performance
by Saad Odeh and Luke Pearling
Energies 2025, 18(13), 3429; https://doi.org/10.3390/en18133429 - 30 Jun 2025
Viewed by 361
Abstract
Rooftop photovoltaic (PV) panel systems have become a key component in green building design, driven by new building sustainability measures advocated worldwide. The shading generated by the rooftop PV panel arrays can impact their annual heating and cooling load, as well as their [...] Read more.
Rooftop photovoltaic (PV) panel systems have become a key component in green building design, driven by new building sustainability measures advocated worldwide. The shading generated by the rooftop PV panel arrays can impact their annual heating and cooling load, as well as their overall thermal performance. This paper presents a long-term experimental investigation into the changes in roof temperature caused by PV panels. The experiment was conducted over the course of a year, with measurements taken on four sample days each month. The study is based on measurements of the covered roof temperature, the uncovered roof temperature, PV surface temperature, ambient air temperature, as well as solar irradiation, wind speed, and rainfall. The results reveal that the annual energy savings (MJ/m2) in the cooling load due to the covered roof are about 26% higher than the energy loss from the heating load due to shading. The study shows that the effect of the rooftop PV panels on the house’s total heating and cooling load savings is between 5.3 to 6.1%. This difference is significant in thermal performance analyses, especially if most of the roof is covered by PV panels. Full article
(This article belongs to the Section G: Energy and Buildings)
Show Figures

Figure 1

31 pages, 3470 KiB  
Article
Reducing Cooling Energy Demand in Saudi Arabian Residential Buildings Using Passive Design Approaches
by Lucelia Rodrigues, Benjamin Abraham Cherian and Serik Tokbolat
Buildings 2025, 15(11), 1895; https://doi.org/10.3390/buildings15111895 - 30 May 2025
Viewed by 1044
Abstract
In Saudi Arabia’s hot and arid climate, residential buildings account for over half of national electricity consumption, with cooling demands alone responsible for more than 70% of this use. This paper explores the hypothesis that contemporary villa designs are inherently inefficient and that [...] Read more.
In Saudi Arabia’s hot and arid climate, residential buildings account for over half of national electricity consumption, with cooling demands alone responsible for more than 70% of this use. This paper explores the hypothesis that contemporary villa designs are inherently inefficient and that current building regulations fall short of enabling adequate thermal performance. This issue is expected to become increasingly significant in the near future as external temperatures continue to rise. The study aims to assess whether passive design strategies rooted in both engineering and architectural principles can offer substantial reductions in cooling energy demand under current and future climatic conditions. A typical detached villa was simulated using IES-VE to test a range of passive measures, including optimized window-to-wall ratios, enhanced glazing configurations, varied envelope constructions, solar shading devices, and wind-tower-based natural ventilation. Parametric simulations were conducted under current climate data and extended to future weather scenarios. Unlike many prior studies, this work integrates these strategies holistically and evaluates their combined impact, rather than in isolation while assessing the impact of future weather in the region. The findings revealed that individual measures such as insulated ceilings and reduced window-to-wall ratios significantly lowered cooling loads. When applied in combination, these strategies achieved a 68% reduction in cooling energy use compared to the base-case villa. While full passive performance year-round remains unfeasible in such extreme conditions, the study demonstrates a clear pathway toward energy-efficient housing in the Gulf region. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

36 pages, 20598 KiB  
Article
Examining the Impact of Multilevel Courtyards in Hot-Dry and Humid Climates
by Eleazar Chidiadi and Ahmad Taki
Energies 2025, 18(10), 2425; https://doi.org/10.3390/en18102425 - 8 May 2025
Cited by 1 | Viewed by 798
Abstract
Urbanisation has significantly transformed human settlements, presenting sustainability challenges, particularly in hot-dry and humid climates. The urban heat island effect and increased energy consumption exacerbate reliance on mechanical cooling and fossil fuels. As climate change escalates, developing sustainable architectural solutions that improve thermal [...] Read more.
Urbanisation has significantly transformed human settlements, presenting sustainability challenges, particularly in hot-dry and humid climates. The urban heat island effect and increased energy consumption exacerbate reliance on mechanical cooling and fossil fuels. As climate change escalates, developing sustainable architectural solutions that improve thermal performance and energy efficiency becomes crucial. This study examines the effects of various multilevel courtyard designs on building performance in Abuja, Nigeria, highlighting gaps in applying traditional principles to these models. A mixed-method approach, combining quantitative and qualitative techniques, assesses user perceptions, thermal performance, energy efficiency, and daylighting in multilevel courtyards. Findings indicate that optimised multilevel courtyard configurations yield a 2.15 °C reduction in temperature, enhancing indoor thermal comfort and improving natural ventilation. Users favour multilevel courtyard housing; however, challenges include inadequate daylighting on lower levels and the need for shading solutions. Compressed earth blocks exhibit better thermal performance, reducing peak temperatures by 1.19 °C compared to hollow concrete blocks. Guidelines for architects and urban planners are provided, as well as recommendations for future research on policy incentives to promote multilevel courtyard models. Full article
Show Figures

Figure 1

29 pages, 6510 KiB  
Article
Energy-Efficient Design of Immigrant Resettlement Housing in Qinghai: Solar Energy Utilization, Sunspace Temperature Control, and Envelope Optimization
by Bo Liu, Yu Liu, Qianlong Xin, Xiaomei Kou and Jie Song
Buildings 2025, 15(9), 1434; https://doi.org/10.3390/buildings15091434 - 24 Apr 2025
Cited by 1 | Viewed by 459
Abstract
Qinghai Province urgently requires the development of adaptive energy-efficient rural housing construction to address resettlement needs arising from hydropower projects, given the region’s characteristic combination of high solar irradiance resources and severe cold climate conditions. This research establishes localized retrofit strategies through systematic [...] Read more.
Qinghai Province urgently requires the development of adaptive energy-efficient rural housing construction to address resettlement needs arising from hydropower projects, given the region’s characteristic combination of high solar irradiance resources and severe cold climate conditions. This research establishes localized retrofit strategies through systematic field investigations and Rhinoceros modeling simulations of five representative rural residences across four villages. The key findings reveal that comprehensive building envelope retrofits achieve an 80% reduction in energy consumption. South-facing sunspaces demonstrate effective thermal buffering capacity, though their spatial depth exhibits negligible correlation with heating energy requirements. An optimized hybrid shading system combining roof overhangs and vertical louvers demonstrates critical efficacy in summer overheating mitigation, with vertical louvers demonstrating superior thermal and luminous regulation precision. Architectural orientation analysis identifies an optimal alignment within ±10° of true south, emphasizing the functional zoning principle of positioning primary living spaces in south-oriented ground floor areas while locating auxiliary functions in northeastern/northwestern zones. The integrated design framework synergizes three core components: passive solar optimization, climate-responsive shading mechanisms, and performance-enhanced envelope systems, achieving simultaneous improvements in energy efficiency and thermal comfort within resettlement housing constraints. This methodology establishes a replicable paradigm for climate-resilient rural architecture in high-altitude, solar-intensive cold regions, effectively reconciling community reconstruction needs with low-carbon development imperatives through context-specific technical solutions. Full article
Show Figures

Figure 1

25 pages, 8348 KiB  
Article
Post-Occupancy Evaluation of a Passive Multi-Unit Residential Building and a Single-Family Passive House
by Anthony Mach, Maria Parra and Hebatallah Teamah
Sustainability 2025, 17(9), 3799; https://doi.org/10.3390/su17093799 - 23 Apr 2025
Cited by 1 | Viewed by 484
Abstract
Passive buildings are increasing in popularity in Canada. This paper examines two passive buildings initially constructed in the past decade: the Peterborough passive multi-unit residential building (MURB) and the Wolfe Island single-family dwelling. A post-occupancy evaluation was performed on the buildings. The buildings [...] Read more.
Passive buildings are increasing in popularity in Canada. This paper examines two passive buildings initially constructed in the past decade: the Peterborough passive multi-unit residential building (MURB) and the Wolfe Island single-family dwelling. A post-occupancy evaluation was performed on the buildings. The buildings were modelled in HOT2000 and the Passive House Planning Package (PHPP) to ensure the validity of the results. The energy bills were collected from the building owners to acquire the real-time consumption of the buildings. The models have shown a good agreement with the collected data. Furthermore, data loggers were installed in both buildings for indoor temperature monitoring to ensure that they adhere to the passive house explicit criteria. Internal gains, shading, and orientation were analyzed to assess their effect on heating and cooling loads. Peterborough MURB has shown more energy-saving potential compared to the Wolfe Island passive house. Heating load reduction has been compared, more than five times, to the cooling load reduction potential. The reduction in GHG emissions can be up to 39% when passive house parameters are applied to the Wolfe Island house. This paper has shown the potential of the passive house in relation to sustainable buildings in Northern climates. Full article
Show Figures

Figure 1

17 pages, 11084 KiB  
Article
Microclimate of the Natural History Museum, Vienna
by Peter Brimblecombe, Alexander Bibl, Christian Fischer, Helmut Pristacz and Pascal Querner
Heritage 2025, 8(4), 124; https://doi.org/10.3390/heritage8040124 - 31 Mar 2025
Viewed by 641
Abstract
Climate change increases the importance of maintaining environmental conditions suitable for preventive conservation within museums. The microclimates at the Natural History Museum of Vienna, a large national collection housed within a classical building, were studied using >200 data loggers placed from mid 2021 [...] Read more.
Climate change increases the importance of maintaining environmental conditions suitable for preventive conservation within museums. The microclimates at the Natural History Museum of Vienna, a large national collection housed within a classical building, were studied using >200 data loggers placed from mid 2021 to provide thermo-hygrometric measurements at 15 min intervals. Daily mean temperatures showed exhibition halls typically had the warmest rooms. This was due to the heating in winter and open windows on summer days. The halls can become even hotter than the outside temperature. In winter, most areas of the museum were very dry, as heating lowered the relative humidity, typically to 25–35% for the coldest season. Opening hours imposed daily and weekly cycles on the internal climate. There was little difference between sunny and shaded parts of the building or adjacent offices, corridors and depots. Similarly, the microclimate at the floor resembled that of the room air some ~2 m above. Mechanically controlled microclimates in cold storage areas maintained 10 °C and relative humidity ~50%, but this had become increasingly difficult in hot summers. While there was little apparent damage to the collection, at times, the museum had an extreme indoor climate: very hot in the summer and dry in the winter. Full article
(This article belongs to the Special Issue Microclimate in Heritage)
Show Figures

Figure 1

27 pages, 13324 KiB  
Article
ShadeNet: Innovating Shade House Detection via High-Resolution Remote Sensing and Semantic Segmentation
by Yinyu Liang, Minduan Xu, Wuzhou Dong and Qingling Zhang
Appl. Sci. 2025, 15(7), 3735; https://doi.org/10.3390/app15073735 - 28 Mar 2025
Viewed by 506
Abstract
Shade houses are critical for modern agriculture, providing optimal growing conditions for shade-sensitive crops. However, their rapid expansion poses ecological challenges, making the accurate extraction of their spatial distribution crucial for sustainable development. The unique dark appearance of shade houses leads to low [...] Read more.
Shade houses are critical for modern agriculture, providing optimal growing conditions for shade-sensitive crops. However, their rapid expansion poses ecological challenges, making the accurate extraction of their spatial distribution crucial for sustainable development. The unique dark appearance of shade houses leads to low accuracy and high misclassification rates in traditional spectral index-based extraction methods, while deep learning approaches face challenges such as insufficient datasets, limited receptive fields, and poor generalization capabilities. To address these challenges, we propose ShadeNet, a novel method for shade house detection using high-resolution remote sensing imagery and semantic segmentation. ShadeNet integrates the Swin Transformer and Mask2Former frameworks, enhanced by a Global-Channel and Local-Spatial Attention (GCLSA) module. This architecture significantly improves multi-scale feature extraction and global feature capture, thereby enhancing extraction accuracy. Tested on a self-labeled dataset, ShadeNet achieved a mean Intersection over Union (mIOU) improvement of 2.75% to 7.37% compared to existing methods, significantly reducing misclassification. The integration of the GCLSA module within the Swin Transformer framework enhances the model’s ability to capture both global and local features, addressing the limitations of traditional CNNs. This innovation provides a robust solution for shade houses detection, supporting sustainable agricultural development and environmental protection. Full article
(This article belongs to the Special Issue Remote Sensing Image Processing and Application, 2nd Edition)
Show Figures

Figure 1

23 pages, 5312 KiB  
Article
The Effect of Climate on Thermal Loads in Living Walls
by Rosmina A. Bustami, Simon Beecham, James Hopeward, Martin Belusko and Ahmad A. M. Khairulzaim
Environments 2025, 12(3), 78; https://doi.org/10.3390/environments12030078 - 2 Mar 2025
Viewed by 1333
Abstract
This study analysed the impact of living walls on energy-efficient residential buildings in major Australian cities with varying climates. The aim was to identify and quantify the shading and evapotranspiration benefits of living walls using calibrated thermal simulation software. Empirical correlations were applied [...] Read more.
This study analysed the impact of living walls on energy-efficient residential buildings in major Australian cities with varying climates. The aim was to identify and quantify the shading and evapotranspiration benefits of living walls using calibrated thermal simulation software. Empirical correlations were applied to replicate the evapotranspiration effect in the simulation. Building dynamic thermal modelling was undertaken with the widely-used AccuRate Sustainability energy rating software. Two house designs were used in the simulation, applying various scenarios to assess the benefits of living walls in various Australian cities. The results showed that living walls provided the most cooling in warm and dry climates such as Perth and Adelaide, with minimal benefits in tropical regions such as Darwin. In temperate climates, living walls had little impact on heating, but in colder climates, they increased heating demand. Homes with insulated walls are common in modern residential construction. For such homes, the evapotranspiration effect rather than the shading or insulation characteristics of the living wall became the primary mechanism for reducing cooling loads, particularly in drier climates. When applying a single living wall for idealized models a potential cooling savings in cooling energy of 10–16% was determined, whereas for typical home designs this saving reduced to below 1%. It was found that the benefits of living walls are comparable to or lower than simpler, more cost-effective passive strategies such as adjusting building orientation or using light-coloured walls. Full article
Show Figures

Figure 1

23 pages, 8481 KiB  
Article
Energy Benefits of PV-Integrated Dynamic Overhangs for Residential Buildings in Qatar
by Moncef Krarti, Mohamed A. Ayari, Farid Touati and Mohammad R. Paurobally
Energies 2025, 18(5), 1156; https://doi.org/10.3390/en18051156 - 26 Feb 2025
Viewed by 814
Abstract
This paper summarizes the potential energy efficiency benefits of PV-integrated dynamic overhangs for housing units in Qatar. Specifically, the technology combines two energy benefits of shading effects of reducing air conditioning loads and generating on-site electricity generation. The analysis is performed for a [...] Read more.
This paper summarizes the potential energy efficiency benefits of PV-integrated dynamic overhangs for housing units in Qatar. Specifically, the technology combines two energy benefits of shading effects of reducing air conditioning loads and generating on-site electricity generation. The analysis is performed for a prototypical dwelling unit in Doha, Qatar. Three adjustment frequencies for the positions of the PV-integrated dynamic overhangs are evaluated, including hourly, daily, and monthly. It is found that optimally operated PV-integrated overhangs can substantially reduce the annual electricity needs of the dwelling unit. For instance, southern-oriented PV-integrated dynamic overhangs can lower the annual net energy requirements for the dwelling unit by 69.7% relative to the case with no shading and by 32.2% relative to the case of deploying PV-integrated static overhangs. Higher energy use reductions can be achieved when the overhang depth and window size are increased and when more energy-efficient glazing types are installed. Full article
(This article belongs to the Section G: Energy and Buildings)
Show Figures

Figure 1

24 pages, 6680 KiB  
Article
Bioclimatic Design Guidelines for Design Decision Support to Enhance Residential Building Thermal Performance in Tropical Regions
by Kimnenh Taing, Sigrid Reiter, Virak Han and Pierre Leclercq
Sustainability 2025, 17(4), 1591; https://doi.org/10.3390/su17041591 - 14 Feb 2025
Viewed by 1975
Abstract
With the rise of building thermal comfort issues, the Bioclimatic Design Guideline for Cambodia (BDGC) has been developed to help architects make informed decisions during their design process to achieve maximum thermal comfort with minimum energy consumption. This paper aims to investigate the [...] Read more.
With the rise of building thermal comfort issues, the Bioclimatic Design Guideline for Cambodia (BDGC) has been developed to help architects make informed decisions during their design process to achieve maximum thermal comfort with minimum energy consumption. This paper aims to investigate the reliability of this guideline as decision support to enhance residential building thermal performance by using two research approaches: usability tests and calibrated thermal performance simulations based on real buildings monitoring and simulations using DesignBuilder. Five groups of architects and students in architectural engineering participated in the usability test to redesign two common typologies of single-family homes with weak thermal performance by using bioclimatic design guidelines, such as orientation, improved ventilation, shading, and green rood, to enhance their comfort level. The simulation shows that, by applying bioclimatic design strategies, the indoor temperature in the base case house can be lower from 2 to 4 °C. Various benefits are identified from the integration of the BDGC during the design process for improving residential building design. Moreover, the proposed methodology can be applied to develop and validate bioclimatic guidelines in other regions and various countries worldwide. Full article
(This article belongs to the Section Green Building)
Show Figures

Figure 1

23 pages, 7723 KiB  
Article
Environmental and Energy Performances of the Nearly Net-Zero Energy Solar Decathlon House with Dynamic Facades: A Comparison of Four Climate Regions
by Fangfang Gong, Yongchao Ma, Feng Shi, Chen Chen, Linlin Tian and Jingjing Huang
Buildings 2024, 14(12), 4053; https://doi.org/10.3390/buildings14124053 - 20 Dec 2024
Cited by 1 | Viewed by 1071
Abstract
Dynamic facades allow for effective climate adaptability, representing a new trend in future building envelope design. Present research on dynamic facades often focuses solely on certain aspects of the built environment or relies entirely on simulation outcomes. Meanwhile, the real-time changing nature of [...] Read more.
Dynamic facades allow for effective climate adaptability, representing a new trend in future building envelope design. Present research on dynamic facades often focuses solely on certain aspects of the built environment or relies entirely on simulation outcomes. Meanwhile, the real-time changing nature of dynamic facades poses challenges in accurately simulating these schemes. Therefore, it remains essential to quantify the energy consumption performances of different types of dynamic facades and their influence on the indoor environment comfort in response to ventilation, light, and thermal environment to improve energy savings. This study uses an energy management system to simulate the ability of five dynamic facades—an intelligent ventilated facade, a dynamic exterior shading, a dynamic interior shading, a buffer layer, and phase-change material (PCM) facades—to provide adequate comfort and reduce energy consumption in four climate zones in China. The simulation model of a nearly net-zero energy Solar Decathlon house “Nature Between” was validated with experimental data. Among the five dynamic facades, the energy-saving efficiency of intelligent ventilation was highest, followed by exterior shading. Compared with houses without dynamic facades, the use of the dynamic facades reduced energy consumption (and annual glare time) by 19.87% (90.65%), 22.37% (74.84%), 15.19% (72.09%), and 9.23% (75.53%) in Xiamen, Shanghai, Beijing, and Harbin, respectively. Findings regarding the dynamic facade-driven energy savings and favorable indoor environment comfort provide new and actionable insights into the design and application of dynamic facades in four climate regions in China. Full article
(This article belongs to the Special Issue Smart Technologies for Climate-Responsive Building Envelopes)
Show Figures

Figure 1

24 pages, 11028 KiB  
Article
Impact of Shading Effect from Nearby Buildings on Energy Demand and Load Calculations for Historic City Centres in Central Europe
by Agnieszka Sadłowska-Sałęga and Krzysztof Wąs
Energies 2024, 17(24), 6400; https://doi.org/10.3390/en17246400 - 19 Dec 2024
Viewed by 910
Abstract
EU legislation requires introducing a variety of measures to reduce energy consumption. Energy use decrease should be achieved through thermal retrofitting of the least energy-efficient buildings. In the case of cities like Kraków, this means the need to modernize (retrofitting as well as [...] Read more.
EU legislation requires introducing a variety of measures to reduce energy consumption. Energy use decrease should be achieved through thermal retrofitting of the least energy-efficient buildings. In the case of cities like Kraków, this means the need to modernize (retrofitting as well as the incorporation of modern HVAC systems) historical buildings. Furthermore, urban morphology is an influencing factor with regards to the energy performance of buildings and therefore of cities (since the influence of shading from nearby buildings cannot be ignored). The paper presents the results of a study on the impact of shading on energy demand for heating and cooling in the historic centre of Krakow. A comparative analysis of the simulation calculation results was performed using the statistical climate as a boundary condition. In the case of a typical five-floor residential tenement house from the turn of the 20th century, an 8% increase in energy demand for heating and a 50% reduction in energy demand for cooling were estimated. As the analysis of the results shows, taking into account the shading from nearby buildings may be crucial for optimizing the volume (power of devices, diameters of ducts and pipes) of the HVAC installation. Full article
(This article belongs to the Special Issue Building Energy Performance Modelling and Simulation)
Show Figures

Figure 1

Back to TopTop