Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (64)

Search Parameters:
Keywords = seven-level inverter

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
47 pages, 3190 KiB  
Article
THDv Reduction in Multilevel Three-Phase Inverters Using the SHE-PWM Technique with a Hybrid Optimization Algorithm
by Miguel Ayala, Luis Tipán, Manuel Jaramillo and Cristian Cuji
Energies 2025, 18(16), 4292; https://doi.org/10.3390/en18164292 - 12 Aug 2025
Viewed by 231
Abstract
The following article aims to implement a hybrid modulation methodology based on the Selective Harmonic Elimination Pulse Width Modulation (SHE-PWM) technique to work with the fundamental frequency of the system and find the optimal firing angles using the PSO optimization algorithm, capable of [...] Read more.
The following article aims to implement a hybrid modulation methodology based on the Selective Harmonic Elimination Pulse Width Modulation (SHE-PWM) technique to work with the fundamental frequency of the system and find the optimal firing angles using the PSO optimization algorithm, capable of reducing the voltage THDv present in the output signals of three-phase multilevel inverters. To develop this approach, three case studies are proposed, developed in MATLAB/Simulink software, which feature three-phase inverters with five, seven, and nine levels, respectively, of the CHB topology. The impact of adequate modulation is assessed, resulting in a voltage output signal with reduced distortion. The national regulation ARCERNNR 002/20 will be used as a reference point to evaluate the results before and after implementing the methodology. It was verified that the developed methodology can effectively eliminate the selected harmonics, especially those of lower order (3rd, 5th, 7th, 9th, 11th, 13th, and 15th), achieving an improvement of up to 17.93% in the voltage THDv concerning the standard S-PWM modulation present in the CHB-MLI. Full article
(This article belongs to the Section F3: Power Electronics)
Show Figures

Figure 1

22 pages, 3460 KiB  
Article
Investigating the Earliest Identifiable Timing of Sugarcane at Early Season Based on Optical and SAR Time-Series Data
by Yingpin Yang, Jiajun Zou, Yu Huang, Zhifeng Wu, Ting Fang, Jia Xue, Dakang Wang, Yibo Wang, Jinnian Wang, Xiankun Yang and Qiting Huang
Remote Sens. 2025, 17(16), 2773; https://doi.org/10.3390/rs17162773 - 10 Aug 2025
Viewed by 402
Abstract
Early-season sugarcane identification plays a pivotal role in precision agriculture, enabling timely yield forecasting and informed policy-making. Compared to post-season crop identification, early-season identification faces unique challenges, including incomplete temporal observations and spectral ambiguity among crop types in early seasons. Previous studies have [...] Read more.
Early-season sugarcane identification plays a pivotal role in precision agriculture, enabling timely yield forecasting and informed policy-making. Compared to post-season crop identification, early-season identification faces unique challenges, including incomplete temporal observations and spectral ambiguity among crop types in early seasons. Previous studies have not systematically investigated the capability of optical and synthetic aperture radar (SAR) data for early-season sugarcane identification, which may result in suboptimal accuracy and delayed identification timelines. Both the timing for reliable identification (≥90% accuracy) and the earliest achievable timepoint matching post-season level remain undetermined, and which features are effective in the early-season identification is still unknown. To address these questions, this study integrated Sentinel-1 and Sentinel-2 data, extracted 10 spectral indices and 8 SAR features, and employed a random forest classifier for early-season sugarcane identification by means of progressive temporal analysis. It was found that LSWI (Land Surface Water Index) performed best among 18 individual features. Through the feature set accumulation, the seven-dimensional feature set (LSWI, IRECI (Inverted Red-Edge Chlorophyll Index), EVI (Enhanced Vegetation Index), PSSRa (Pigment Specific Simple Ratio a), NDVI (Normalized Difference Vegetation Index), VH backscatter coefficient, and REIP (Red-Edge Inflection Point Index)) achieved the earliest attainment of 90% accuracy by 30 June (early-elongation stage), with peak accuracy (92.80% F1-score) comparable to post-season accuracy reached by 19 August (mid-elongation stage). The early-season sugarcane maps demonstrated high agreement with post-season maps. The 30 June map achieved 88.01% field-level and 90.22% area-level consistency, while the 19 August map reached 91.58% and 93.11%, respectively. The results demonstrate that sugarcane can be reliably identified with accuracy comparable to post-season mapping as early as six months prior to harvest through the integration of optical and SAR data. This study develops a robust approach for early-season sugarcane identification, which could fundamentally enhance precision agriculture operations through timely crop status assessment. Full article
(This article belongs to the Special Issue Advances in Remote Sensing for Crop Monitoring and Food Security)
Show Figures

Figure 1

18 pages, 7477 KiB  
Article
A Three-Layer Sequential Model Predictive Current Control for NNPC Four-Level Inverters with Low Common-Mode Voltage
by Liyu Dai, Wujie Chao, Chaoping Deng, Junwei Huang, Yihan Wang, Minxin Lin and Tao Jin
Electronics 2025, 14(14), 2910; https://doi.org/10.3390/electronics14142910 - 21 Jul 2025
Viewed by 331
Abstract
The four-level nested neutral point clamped (4L-NNPC) inverter has recently become a promising solution for renewable energy generation, e.g., wind and photovoltaic power. The NNPC inverter can stabilize the flying capacitor (FC) voltages of each bridge through redundant switch states (RSSs). This paper [...] Read more.
The four-level nested neutral point clamped (4L-NNPC) inverter has recently become a promising solution for renewable energy generation, e.g., wind and photovoltaic power. The NNPC inverter can stabilize the flying capacitor (FC) voltages of each bridge through redundant switch states (RSSs). This paper presents an improved three-layer sequential model predictive control (3LS-MPC) method for 4L-NNPCs. This method eliminates weighting factors and removes the switch states that generate high common-mode voltage (CMV). Before selecting the optimal vector, we disable certain switch states which affect the FC voltages, continuing to deviate from the desired value. Then, adopting a two-stage optimal vector selection method, we select the optimal sector based on six specific vectors and choose the optimal vector from the seven vectors in the optimal sector. The feasibility of this method was verified in Matlab/Simulink and the prototype. The experimental results show that compared with classical FCS-MPC, the proposed 3LS-MPC method reduces the common-mode voltage and has better harmonic quality and more stable FCs voltages. Full article
Show Figures

Figure 1

17 pages, 3888 KiB  
Article
An Improved Space Vector PWM Algorithm with a Seven-Stage Switching Sequence for Three-Level Neutral Point Clamped Voltage Source Inverters
by Aleksandr N. Shishkov, Maxim M. Dudkin, Aleksandr S. Maklakov, Van Kan Le, Andrey A. Radionov and Vlada S. Balabanova
Energies 2025, 18(10), 2452; https://doi.org/10.3390/en18102452 - 10 May 2025
Viewed by 532
Abstract
The main purpose of this research is to develop an improved space vector pulse-width modulation (SVPWM) algorithm for three-level (3L) neutral point clamped (NPC) voltage source inverters (VSIs). The results of experiments conducted on the three-level power converter laboratory setup showed that the [...] Read more.
The main purpose of this research is to develop an improved space vector pulse-width modulation (SVPWM) algorithm for three-level (3L) neutral point clamped (NPC) voltage source inverters (VSIs). The results of experiments conducted on the three-level power converter laboratory setup showed that the proposed SVPWM algorithm with a seven-stage switching sequence (SS) can reduce a VSI’s switching frequency by 43.48% compared to the SVPWM algorithm with the base SS. It also improves the neutral point (NP) voltage balance in the VSI DC link by 4.2% by controlling the duty factor of distributed base vectors in each SVPWM period based on phase load currents. It reduced the values of the 5th- and 7th-order harmonics of the VSI output voltage by 19% and 15.7%, respectively. The results show that the usage of the improved SVPWM algorithm helps increase the efficiency of a 3L NPC VSI by 0.6% and reduce the higher harmonics. The obtained results confirm the efficiency of the suggested algorithm and its great potential for power converters in industry. Full article
(This article belongs to the Section F3: Power Electronics)
Show Figures

Figure 1

61 pages, 30573 KiB  
Article
Anti-Butterfly Effect in Ribavirin Studied by Combined Experiment (PXRD/1H-14N NQR Cross-Relaxation Spectroscopy), Quantum Chemical Calculations, Molecular Docking, Molecular Dynamics Simulations, and Novel Structure-Binding Strength and Quadrupolar Indices
by Jolanta Natalia Latosińska, Magdalena Latosińska, Janez Seliger, Veselko Žagar and Tomaž Apih
Molecules 2025, 30(5), 1096; https://doi.org/10.3390/molecules30051096 - 27 Feb 2025
Viewed by 701
Abstract
Ribavirin, 1-(β-D-Ribofuranosyl)-1H-1,2,4-triazole-3-carboxamide, which is included in the list of drugs recommended in the guidelines for the diagnosis and treatment of SARS-CoV-2 infection, has been the subject of experimental and theoretical investigation. The most thermodynamically stable polymorphic form was studied using 1 [...] Read more.
Ribavirin, 1-(β-D-Ribofuranosyl)-1H-1,2,4-triazole-3-carboxamide, which is included in the list of drugs recommended in the guidelines for the diagnosis and treatment of SARS-CoV-2 infection, has been the subject of experimental and theoretical investigation. The most thermodynamically stable polymorphic form was studied using 1H-14N NQR cross-relaxation, periodic DFT/QTAIM/RDS/3D Hirshfeld surfaces, and molecular docking. For the first time, a 1H-14N cross-relaxation spectrum of ribavirin was recorded and interpreted. Twelve resonance frequencies were assigned to four inequivalent nitrogen positions in the molecule using combined experimental techniques and solid-state quantum chemical calculations. The influence of the structural alteration on the NQR parameters was modeled using GGA/RPBE. The differences in the binding pattern of ribavirin, acadesine, inosine, guanosine, and favipiravir-ribofuranosyl in the solid state and the protein-ligand complex were assessed to elucidate the differences in the binding mechanism at the molecular level due to aglycone modification. The replacement of the carbon adjacent to the ribose with nitrogen, in conjunction with the absence of oxygen at the 2-position of the ring, resulted in an increased flexibility of the RBV structure in comparison to the favipiravir-ribofuranosyl structure. The present study identified the intramolecular hydrogen bond NH···N in RBV as playing a crucial role in the formation of a quasi-five-membered ring. However, this bond was proven to be too weak to force positioning of the amide group in the ring plane. The ribofuranosyl in RBV inhibits tautomerism and freezes the conformation of the amide group. The results of the molecular dynamics simulations demonstrated that RBV and favipiravir-ribofuranosyl incorporated into the RNA primer exhibited comparable stability within the protein binding region. The titular anti-butterfly (inverted butterfly) effect is associated with the consequences of both the changes in aglycone moiety and the neighborhood alteration. Seven structure-binding strength indices and six novel quadrupolar indices defined in this study have been proven to facilitate the evaluation of the similarity of binding motifs in the solid state and protein-ligand complex. Full article
Show Figures

Graphical abstract

24 pages, 26295 KiB  
Article
Design and Implementation of Hybrid GA-PSO-Based Harmonic Mitigation Technique for Modified Packed U-Cell Inverters
by Hasan Iqbal and Arif Sarwat
Energies 2025, 18(1), 124; https://doi.org/10.3390/en18010124 - 31 Dec 2024
Cited by 2 | Viewed by 947
Abstract
Multilevel inverters have gained importance in modern power systems during the last few years because of their high power quality with lower THD. Various topologies developed include the packed U-cell inverter and its different modified versions that have emerged as a compact and [...] Read more.
Multilevel inverters have gained importance in modern power systems during the last few years because of their high power quality with lower THD. Various topologies developed include the packed U-cell inverter and its different modified versions that have emerged as a compact and efficient solution to distributed energy systems. Most of the available harmonic mitigation techniques, that is, passive filtering and individual optimization techniques, which include GA and PSO, are susceptible to a variety of shortcomings regarding their inherent complexity and inefficiency; hence, finding an appropriate convergence may be quite hard. This paper proposes a hybrid version of the GA-PSO algorithm that exploits the exploratory strengths of GA and the convergence efficiencies of PSO in determining the optimized switching angles for SHM techniques applied to modified five-level and seven-level PUC inverters. By utilizing the multi-objective optimization method, the approach minimizes THD while keeping voltage and efficiency constraints. Simulated in MATLAB/Simulink, the results were experimentally verified using hardware-in-the-loop testing on OP5700. A large THD reduction in both MPUC7 (11.68%) and MPUC5 (17.61%) was obtained. The proposed hybrid algorithm outperformed the standalone approaches of GA and PSO with respect to robustness and with precise harmonic suppression. Other appealing features are reduced computational complexity and improved waveform quality; hence, the method is highly suitable for both grid-tied and standalone renewable energy applications. This work lays a basis for efficient inverter designs that can adapt well under dynamic load conditions. Full article
(This article belongs to the Special Issue Voltage/Frequency/Power Quality Monitoring and Control in Smart Grids)
Show Figures

Figure 1

24 pages, 8504 KiB  
Article
ANFIS-PSO-Based Optimization for THD Reduction in Cascaded Multilevel Inverter UPS Systems
by Oscar Sánchez Vargas, Luis Gerardo Vela Valdés, Monica Borunda, Ricardo Eliú Lozoya-Ponce, Jesus Aguayo Alquicira and Susana Estefany De León Aldaco
Electronics 2024, 13(22), 4456; https://doi.org/10.3390/electronics13224456 - 13 Nov 2024
Viewed by 1678
Abstract
Uninterruptible Power Supplies (UPSs) protect electronic equipment by delivering consistent power. Among the core components of a UPS is the inverter, which converts stored DC energy from batteries into AC power. This work focuses on a cascaded multilevel inverter topology for its ability [...] Read more.
Uninterruptible Power Supplies (UPSs) protect electronic equipment by delivering consistent power. Among the core components of a UPS is the inverter, which converts stored DC energy from batteries into AC power. This work focuses on a cascaded multilevel inverter topology for its ability to reduce voltage Total Harmonic Distortion (THD), which is essential for maintaining UPS efficiency and power quality. Using an ANFIS (Adaptive Neuro-Fuzzy Inference System) model, enhanced with the Particle Swarm Optimization (PSO) algorithm, the switching angles were optimized to minimize THD. This work focused on an online UPS with a seven-level inverter structure powered by three LifePo4 S17 batteries, with critical load levels (100%, 95%, 50%, 15%, and 5%) represented in 35 experimental cases. The experimental design allowed the ANFIS-PSO model to adapt to varying voltages, achieving robust THD reduction. The results demonstrated that this combination of ANFIS and PSO provided effective angle optimization, with a low standard deviation of 0.06 between the training and simulated %THD, highlighting the process’s accuracy. The analysis showed that, in most cases, the simulated THD values closely aligned with, or even improved upon, the calculated values, with discrepancies not exceeding 0.2%. These findings support the ANFIS-PSO model’s potential in enhancing power electronics applications, particularly in critical sectors like renewable energy and power transmission, where THD minimization is crucial. Full article
(This article belongs to the Special Issue Advanced Control, Simulation and Optimization of Power Electronics)
Show Figures

Figure 1

15 pages, 6667 KiB  
Article
Impact of Polydeoxyribonucleotides on the Morphology, Viability, and Osteogenic Differentiation of Gingiva-Derived Stem Cell Spheroids
by Heera Lee, Somyeong Hwa, Sunga Cho, Ju-Hwan Kim, Hye-Jung Song, Youngkyung Ko and Jun-Beom Park
Medicina 2024, 60(10), 1610; https://doi.org/10.3390/medicina60101610 - 1 Oct 2024
Cited by 4 | Viewed by 2665
Abstract
Background and Objectives: Polydeoxyribonucleotides (PDRN), composed of DNA fragments derived from salmon DNA, is widely recognized for its regenerative properties. It has been extensively used in medical applications, such as dermatology and wound healing, due to its ability to enhance cellular metabolic [...] Read more.
Background and Objectives: Polydeoxyribonucleotides (PDRN), composed of DNA fragments derived from salmon DNA, is widely recognized for its regenerative properties. It has been extensively used in medical applications, such as dermatology and wound healing, due to its ability to enhance cellular metabolic activity, stimulate angiogenesis, and promote tissue regeneration. In the field of dentistry, PDRN has shown potential in promoting periodontal healing and bone regeneration. This study aims to investigate the effects of PDRN on the morphology, survival, and osteogenic differentiation of gingiva-derived stem cell spheroids, with a focus on its potential applications in tissue engineering and regenerative dentistry. Materials and Methods: Gingiva-derived mesenchymal stem cells were cultured and formed into spheroids using microwells. The cells were treated with varying concentrations of PDRN (0, 25, 50, 75, and 100 μg/mL) and cultivated in osteogenic media. Cell morphology was observed over seven days using an inverted microscope, and viability was assessed with Live/Dead Kit assays and Cell Counting Kit-8. Osteogenic differentiation was evaluated by measuring alkaline phosphatase activity and calcium deposition. The expression levels of osteogenic markers RUNX2 and COL1A1 were quantified using real-time polymerase chain reaction. RNA sequencing was performed to assess the gene expression profiles related to osteogenesis. Results: The results demonstrated that PDRN treatment had no significant effect on spheroid diameter or cellular viability during the observation period. However, a PDRN concentration of 75 μg/mL significantly enhanced calcium deposition by Day 14, suggesting increased mineralization. RUNX2 and COL1A1 mRNA expression levels varied with PDRN concentration, with the highest RUNX2 expression observed at 25 μg/mL and the highest COL1A1 expression at 75 μg/mL. RNA sequencing further confirmed the upregulation of genes involved in osteogenic differentiation, with enhanced expression of RUNX2 and COL1A1 in PDRN-treated gingiva-derived stem cell spheroids. Conclusions: In summary, PDRN did not significantly affect the viability or morphology of gingiva-derived stem cell spheroids but influenced their osteogenic differentiation and mineralization in a concentration-dependent manner. These findings suggest that PDRN may play a role in promoting osteogenic processes in tissue engineering and regenerative dentistry applications, with specific effects observed at different concentrations. Full article
(This article belongs to the Section Dentistry and Oral Health)
Show Figures

Figure 1

20 pages, 8220 KiB  
Article
Passive Islanding Detection of Inverter-Based Resources in a Noisy Environment
by Hossein Amini, Ali Mehrizi-Sani and Reza Noroozian
Energies 2024, 17(17), 4405; https://doi.org/10.3390/en17174405 - 3 Sep 2024
Cited by 3 | Viewed by 1317
Abstract
Islanding occurs when a load is energized solely by local generators and can result in frequency and voltage instability, changes in current, and poor power quality. Poor power quality can interrupt industrial operations, damage sensitive electrical equipment, and induce outages upon the resynchronization [...] Read more.
Islanding occurs when a load is energized solely by local generators and can result in frequency and voltage instability, changes in current, and poor power quality. Poor power quality can interrupt industrial operations, damage sensitive electrical equipment, and induce outages upon the resynchronization of the island with the grid. This study proposes an islanding detection method employing a Duffing oscillator to analyze voltage fluctuations at the point of common coupling (PCC) under a high-noise environment. Unlike existing methods, which overlook the noise effect, this paper mitigates noise impact on islanding detection. Power system noise in PCC measurements arises from switching transients, harmonics, grounding issues, voltage sags and swells, electromagnetic interference, and power quality issues that affect islanding detection. Transient events like lightning-induced traveling waves to the PCC can also introduce noise levels exceeding the voltage amplitude by more than seven times, thus disturbing conventional detection techniques. The noise interferes with measurements and increases the nondetection zone (NDZ), causing failed or delayed islanding detection. The Duffing oscillator nonlinear dynamics enable detection capabilities at a high noise level. The proposed method is designed to detect the PCC voltage fluctuations based on the IEEE standard 1547 through the Duffing oscillator. For the voltages beyond the threshold, the Duffing oscillator phase trajectory changes from periodic to chaotic mode and sends an islanded operation command to the inverter. The proposed islanding detection method distinguishes switching transients and faults from an islanded operation. Experimental validation of the method is conducted using a 3.6 kW PV setup. Full article
(This article belongs to the Section F3: Power Electronics)
Show Figures

Figure 1

19 pages, 758 KiB  
Article
How Part-Time Farming Affects Cultivated Land Use Sustainability: Survey-Based Assessment in China
by Xinwei Pei, Xinger Zheng and Cong Wu
Land 2024, 13(8), 1242; https://doi.org/10.3390/land13081242 - 8 Aug 2024
Cited by 4 | Viewed by 1420
Abstract
Part-time farming is a widespread phenomenon associated with the long-term global trend of urbanization, especially in China since its reform and opening-up in 1978. The shift of agricultural labor to non-agricultural sectors has significantly impacted cultivated land use activities, yet the connection between [...] Read more.
Part-time farming is a widespread phenomenon associated with the long-term global trend of urbanization, especially in China since its reform and opening-up in 1978. The shift of agricultural labor to non-agricultural sectors has significantly impacted cultivated land use activities, yet the connection between part-time farming and cultivated land use sustainability (CLS) remains understudied. Here, we construct an index system for assessing CLS that integrates ecological, economic, and social sustainability. Using survey data from seven Chinese villages across three provinces, we analyze the impact pattern and mechanism of part-time farming on CLS. We find the following: (1) The impact of part-time farming on CLS presents an inverted U-shape, peaking negatively at a 45% inflection point; (2) Spatial heterogeneity exists in the effect of part-time farming on CLS; (3) A household’s non-agricultural workforce size and the gender of the household head significantly moderate the link between part-time farming and CLS; (4) CLS strongly hinges on various factors including the household head’s health, other family members’ education levels, commercial insurance, and agricultural skills training. Our findings provide empirical insights into governing part-time farming for sustainable cultivated land use and, eventually, rural human–land system sustainability. Full article
Show Figures

Figure 1

18 pages, 11335 KiB  
Article
Self-Balanced Switched-Capacitor Common-Grounding Boost Multilevel Inverter
by Kaibalya Prasad Panda, Sumant Kumar Dalai, Gayadhar Panda, Ramasamy T. Naayagi and Sze Sing Lee
Electronics 2024, 13(13), 2608; https://doi.org/10.3390/electronics13132608 - 3 Jul 2024
Viewed by 1489
Abstract
Transformerless inverters have been extensively deployed in photovoltaic (PV) applications, owing to features such as high efficiency, high power quality, and low cost. However, the leakage current in such inverters due to the absence of galvanic isolation has resulted in several topological modifications. [...] Read more.
Transformerless inverters have been extensively deployed in photovoltaic (PV) applications, owing to features such as high efficiency, high power quality, and low cost. However, the leakage current in such inverters due to the absence of galvanic isolation has resulted in several topological modifications. This paper introduces a single-input switched-capacitor (SC)-based multilevel inverter (MLI) that is capable of eliminating the leakage current due to its common-ground structure. Also, the proposed inverter has the capability of single-stage voltage boosting, which is essential in PV systems. The series–parallel switching facilitates the self-balancing of SCs, which, in turn, assists in voltage boosting. Moreover, the proposed MLI synthesizes a seven-level output using only eight switches. Following an in-depth analysis of the circuit operation, modulation scheme, and power losses, a detailed comparison among recently developed seven-level MLIs is carried out, which verifies the design's superiority. Extensive simulation and experimental results are presented to validate the prominent features of the seven-level MLI under dynamic operating conditions. Full article
Show Figures

Figure 1

19 pages, 8066 KiB  
Article
Transformer-Less Seven-Level Inverter with Triple Boosting Capability and Common Ground
by Naser Vosoughi Kurdkandi, Kazem Varesi, Jaber Fallah Ardashir, Wei Gao, Zhi Cao and Chunting (Chris) Mi
Energies 2024, 17(13), 3115; https://doi.org/10.3390/en17133115 - 25 Jun 2024
Cited by 6 | Viewed by 1179
Abstract
This paper proposes a single-phase, transformer-less, seven-level inverter that utilizes eight switches, three capacitors, and two diodes to produce seven voltage levels with triple boosting ability. The availability of the common-ground point eliminates the leakage current in PV applications. The proposed Transformer-Less Triple-Boosting [...] Read more.
This paper proposes a single-phase, transformer-less, seven-level inverter that utilizes eight switches, three capacitors, and two diodes to produce seven voltage levels with triple boosting ability. The availability of the common-ground point eliminates the leakage current in PV applications. The proposed Transformer-Less Triple-Boosting Seven-Level Inverter (TLTB7LI) has the ability to feed different types of loads from non-unity to unity power factors. The voltage balancing of capacitors takes place naturally without the need for auxiliary circuits and complicated control strategies. This paper investigates the appropriateness of the proposed TLTB7LI for grid-connected application. The Peak Current Controller (PCC) is employed to generate the switching pulses and regulate the active/reactive power transfer between the converter and the output, which guarantees the high quality of injected current to the output. Moreover, the operational principles, its control technique, as well as the design procedure of the key components of the proposed inverter have been presented. The superiority of the proposed inverter over existing counterparts has been verified through comparative analysis. The simulation and experimental analysis validated the proper operation of the proposed TLTB7LI. Full article
(This article belongs to the Topic Power Electronics Converters)
Show Figures

Figure 1

26 pages, 7133 KiB  
Article
High-Performance Multi-Level Inverter with Symmetry and Simplification
by Jenn-Jong Shieh, Kuo-Ing Hwu and Sheng-Ju Chen
Micromachines 2024, 15(6), 766; https://doi.org/10.3390/mi15060766 - 7 Jun 2024
Viewed by 1824
Abstract
This paper presents a high-performance, multilevel inverter with symmetry and simplification. This inverter is a single-phase, seven-level symmetric switched-capacitor inverter based on the concept of the double voltage clamping circuit connected to the half-bridge circuit. Above all, only a single DC power supply [...] Read more.
This paper presents a high-performance, multilevel inverter with symmetry and simplification. This inverter is a single-phase, seven-level symmetric switched-capacitor inverter based on the concept of the double voltage clamping circuit connected to the half-bridge circuit. Above all, only a single DC power supply is used to achieve a single-phase inverter with seven levels and a voltage gain of three. In addition to analyzing the operating principle of the proposed switched-capacitor multilevel inverter in detail, the stability analysis and controller design are carried out by the state-space averaging method. The feasibility and effectiveness of the proposed structure are validated by some simulated results based on the PSIM simulation tool and by some experiments using FPGA as a control kernel, respectively. However, in this study, the switches were implemented by MOSFETs to meet a high switching frequency. These MOSFETs can be replaced by IGBTs in the motor drive applications so that the used switching frequency can be reduced. Full article
(This article belongs to the Special Issue Insulated Gate Bipolar Transistor (IGBT) Modules)
Show Figures

Figure 1

20 pages, 8084 KiB  
Article
Current-Prediction-Controlled Quasi-Z-Source Cascaded Multilevel Photovoltaic Inverter
by Shanshan Lei, Ningzhi Jin and Jiaxin Jiang
Electronics 2024, 13(10), 1824; https://doi.org/10.3390/electronics13101824 - 8 May 2024
Cited by 2 | Viewed by 1319
Abstract
To address problems that traditional two-stage inverters suffer such as high cost, low efficiency, and complex control, this study adopts a quasi-Z-source cascaded multilevel inverter. Firstly, the quasi-Z-source inverter utilizes a unique impedance network to achieve single-stage boost and inversion without requiring a [...] Read more.
To address problems that traditional two-stage inverters suffer such as high cost, low efficiency, and complex control, this study adopts a quasi-Z-source cascaded multilevel inverter. Firstly, the quasi-Z-source inverter utilizes a unique impedance network to achieve single-stage boost and inversion without requiring a dead zone setting. Additionally, its cascaded multilevel structure enables independent control of each power unit structure without capacitor voltage sharing problems. Secondly, this study proposes a current-predictive control strategy to reduce current harmonics on the grid side. Moreover, the feedback model of current and system state is established, and the fast control of grid-connected current is realized with the deadbeat control weighted by the predicted current deviation. And a grid-side inductance parameter identification is added to improve control accuracy. Also, an improved multi-carrier phase-shifted sinusoidal PWM method is adopted to address the issue of switching frequency doubling, which is caused by the shoot-through zero vector in quasi-Z-source inverters. Finally, the problems of switching frequency doubling and high harmonics on the grid side are solved by the improved deadbeat control strategy with an improved MPSPWM method. And a seven-level simulation model is built in MATLAB (2022b) to verify the correctness and superiority of the above theory. Full article
(This article belongs to the Special Issue Power Electronics in Renewable Systems)
Show Figures

Figure 1

25 pages, 10664 KiB  
Article
Coaxial 3D Bioprinting Process Research and Performance Tests on Vascular Scaffolds
by Jiarun Sun, Youping Gong, Manli Xu, Huipeng Chen, Huifeng Shao and Rougang Zhou
Micromachines 2024, 15(4), 463; https://doi.org/10.3390/mi15040463 - 29 Mar 2024
Cited by 9 | Viewed by 3287
Abstract
Three-dimensionally printed vascularized tissue, which is suitable for treating human cardiovascular diseases, should possess excellent biocompatibility, mechanical performance, and the structure of complex vascular networks. In this paper, we propose a method for fabricating vascularized tissue based on coaxial 3D bioprinting technology combined [...] Read more.
Three-dimensionally printed vascularized tissue, which is suitable for treating human cardiovascular diseases, should possess excellent biocompatibility, mechanical performance, and the structure of complex vascular networks. In this paper, we propose a method for fabricating vascularized tissue based on coaxial 3D bioprinting technology combined with the mold method. Sodium alginate (SA) solution was chosen as the bioink material, while the cross-linking agent was a calcium chloride (CaCl2) solution. To obtain the optimal parameters for the fabrication of vascular scaffolds, we first formulated theoretical models of a coaxial jet and a vascular network. Subsequently, we conducted a simulation analysis to obtain preliminary process parameters. Based on the aforementioned research, experiments of vascular scaffold fabrication based on the coaxial jet model and experiments of vascular network fabrication were carried out. Finally, we optimized various parameters, such as the flow rate of internal and external solutions, bioink concentration, and cross-linking agent concentration. The performance tests showed that the fabricated vascular scaffolds had levels of satisfactory degradability, water absorption, and mechanical properties that meet the requirements for practical applications. Cellular experiments with stained samples demonstrated satisfactory proliferation of human umbilical vein endothelial cells (HUVECs) within the vascular scaffold over a seven-day period, observed under a fluorescent inverted microscope. The cells showed good biocompatibility with the vascular scaffold. The above results indicate that the fabricated vascular structure initially meet the requirements of vascular scaffolds. Full article
(This article belongs to the Special Issue Microfluidics and 3D Printing for Biomedical Applications)
Show Figures

Figure 1

Back to TopTop