Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (8)

Search Parameters:
Keywords = settling cage

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 6393 KiB  
Article
Design and Experimental Research of a Lifting-Type Tidal Energy Capture Device
by Lingjie Bao, Ying Wang, Hao Li, Junhua Chen, Fangping Huang and Chuhua Jiang
J. Mar. Sci. Eng. 2024, 12(7), 1100; https://doi.org/10.3390/jmse12071100 - 28 Jun 2024
Viewed by 1252
Abstract
In this study, in order to promote the development of far-reaching marine aquaculture equipment in an intelligent direction and solve the problems related to power supply, a tidal current energy harvesting device for a low-velocity sea area is proposed. For low-velocity waters in [...] Read more.
In this study, in order to promote the development of far-reaching marine aquaculture equipment in an intelligent direction and solve the problems related to power supply, a tidal current energy harvesting device for a low-velocity sea area is proposed. For low-velocity waters in farming areas, the device can effectively harness tidal energy to provide a stable power supply to open sea cages. A mathematical model of the Savonius turbine blade is established, and the influence of the distance between the impeller center and the water surface on the energy capture efficiency of the turbine is analyzed through numerical simulation. Using ANSYS2021R1 software, the velocity field of the floating body is simulated, and the overall structure and anchoring system of the power generation device is designed. In order to verify the effectiveness of the power generation device, a test model is built and a physical model test is carried out. The variation in parameters related to the relative distance between the impeller and the water under different flow velocities is tested, and the test data are analyzed. The test results show that the floating body can increase the flow speed by 10%. Optimizing the blade number and order of the S-turbine can capture more than 20% of the energy. Under different flow velocities, the capture power of the impeller first increases and then decreases with increasing distance from the water. When the center of the impeller is one-quarter of the impeller diameter higher than the water surface, the output power of the impeller is at the maximum. This indicates that the proposed power generation device can effectively use tidal energy under different water depth conditions and provide a stable power supply for far-reaching marine aquaculture equipment. Full article
(This article belongs to the Section Marine Energy)
Show Figures

Figure 1

12 pages, 1633 KiB  
Article
Begomovirus Transmission to Tomato Plants Is Not Hampered by Plant Defenses Induced by Dicyphus hesperus Knight
by Saioa Legarrea, Angela Gabrielle LaTora, Alvin M. Simmons and Rajagopalbabu Srinivasan
Viruses 2024, 16(4), 587; https://doi.org/10.3390/v16040587 - 10 Apr 2024
Cited by 2 | Viewed by 1675
Abstract
Plants can respond to insect infestation and virus infection by inducing plant defenses, generally mediated by phytohormones. Moreover, plant defenses alter host quality for insect vectors with consequences for the spread of viruses. In agricultural settings, other organisms commonly interact with plants, thereby [...] Read more.
Plants can respond to insect infestation and virus infection by inducing plant defenses, generally mediated by phytohormones. Moreover, plant defenses alter host quality for insect vectors with consequences for the spread of viruses. In agricultural settings, other organisms commonly interact with plants, thereby inducing plant defenses that could affect plant–virus–vector interactions. For example, plant defenses induced by omnivorous insects can modulate insect behavior. This study focused on tomato yellow leaf curl virus (TYLCV), a plant virus of the family Geminiviridae and genus Begomovirus. It is transmitted in a persistent circulative manner by the whitefly Bemisia tabaci Gennadius (Hemiptera: Aleyrodidae), posing a global threat to tomato production. Mirids (Hemiptera: Miridae) are effective biological control agents of B. tabaci, but there is a possibility that their omnivorous nature could also interfere with the process of virus transmission. To test this hypothesis, this study first addressed to what extent the mirid bug Dicyphus hesperus Knight induces plant defenses in tomato. Subsequently, the impact of this plant–omnivore interaction on the transmission of TYLCV was evaluated. Controlled cage experiments were performed in a greenhouse setting to evaluate the impact of mirids on virus transmission and vector acquisition by B. tabaci. While we observed a reduced number of whiteflies settling on plants exposed to D. hesperus, the plant defenses induced by the mirid bug did not affect TYLCV transmission and accumulation. Additionally, whiteflies were able to acquire comparable amounts of TYLCV on mirid-exposed plants and control plants. Overall, the induction of plant defenses by D. hesperus did not influence TYLCV transmission by whiteflies on tomato. Full article
(This article belongs to the Special Issue Molecular Virus-Insect Interactions)
Show Figures

Figure 1

18 pages, 9458 KiB  
Article
Fostering the Development of Western Black Sea Aquaculture: A Scientific Case Study for Finfish Cage Farming Allocated Zone Designation
by Magda Nenciu, Victor Niță, Luminița Lazăr, Alina Spînu and Elena Vlăsceanu-Mateescu
Fishes 2023, 8(2), 104; https://doi.org/10.3390/fishes8020104 - 9 Feb 2023
Cited by 3 | Viewed by 2638
Abstract
Mariculture offers enormous potential for providing sustainable food, playing a key role in achieving nutrition security, employment, and Blue Growth. This is particularly true in geographical areas where the dependence of local economies on fishery products is high and yet access to sustainable [...] Read more.
Mariculture offers enormous potential for providing sustainable food, playing a key role in achieving nutrition security, employment, and Blue Growth. This is particularly true in geographical areas where the dependence of local economies on fishery products is high and yet access to sustainable landings is hindered by environmental drawbacks. One such area is represented by the Black Sea, which offers different degrees of suitability for aquaculture development. While the southern and eastern shores are sheltered enough to allow for the development of large aquaculture activities, the north-western shoreline is characterized by wide environmental fluctuations and the strong influence of the Danube. This study aimed at investigating the suitability of a selected area of the Romanian coast (Mangalia) for finfish cage farming by adapting an internationally endorsed methodology for determining its Degree of Compatibility (DC). The development and expansion of finfish aquaculture depends on the availability of space, so designating Allocated Zones for Aquaculture (AZAs) is essential. The result obtained (DC = 80) indicates that the Mangalia area is suitable for finfish aquaculture activities: there is no major interference with other uses of the maritime space, no conflicts with nature conservation, and the environmental conditions are appropriate for fish culture in floating cages. The novel information provided by this study can be the building block for authorities to settle the governance gap that has so far impeded the development of marine aquaculture in Romania. At a larger scale, this study can serve as a good practice example at the regional Black Sea level. Full article
(This article belongs to the Special Issue Aquaculture Economics and Fisheries Management)
Show Figures

Figure 1

17 pages, 1435 KiB  
Review
Research Progress of High-Temperature Resistant Functional Gel Materials and Their Application in Oil and Gas Drilling
by Junwei Fang, Xiong Zhang, Liang Li, Jianjun Zhang, Xin Shi and Guangqiang Hu
Gels 2023, 9(1), 34; https://doi.org/10.3390/gels9010034 - 30 Dec 2022
Cited by 17 | Viewed by 4274
Abstract
With the development of oil exploration, the number of complex situations encountered in the drilling process is continuously increasing. During the operation of large displacement and horizontal wells, the safe density window of drilling fluid is narrow in complex formations and the lost [...] Read more.
With the development of oil exploration, the number of complex situations encountered in the drilling process is continuously increasing. During the operation of large displacement and horizontal wells, the safe density window of drilling fluid is narrow in complex formations and the lost circulation problem is becoming increasingly prominent. This can easily cause the drilling fluid to enter the formation from inside the well through lost circulation channels, which will prolong the drilling cycle, increase drilling costs, affect geological logging, and could cause a series of malignant accidents (such as blowout, sticking of a drilling tool, borehole collapse, and well abandoned). According to the severity, common lost circulation can be classified into three types: fractured lost circulation, karst cave lost circulation, and permeability lost circulation. Currently, researchers are developing different types of lost circulation materials (LCMs) for various lost circulation situations. Compared with conventional lost circulation control methods, the polymer gel lost circulation control technique applies a three-dimensional cage-like viscoelastic body formed via the crosslinking reaction of polymer gels. These materials have strong deformability and can enter fractures and holes through extrusion and deformation without being restricted by lost circulation channels. They then settle in the lost circulation formation and form a plugging layer through a curing reaction or swelling effect. Among the polymer gel LCMs, high-temperature resistant polymer gels can either be used alone or in combination with other LCMs, bringing the advantages of adjustable gelation time, strong lost circulation control ability, and strong filtration ability of the plugging slurry. Moreover, they are suitable for the lost circulation control of microporous leaky layer and have limited influence on the performance of drilling fluids. Therefore, the high-temperature resistant polymer gel lost circulation control technique is increasingly becoming a hot spot in the research of LCMs nowadays. This paper summarizes the research progress into high-temperature resistant functional gels for profile control and water shutoff, lost circulation prevention and control, and hydraulic fracturing. Furthermore, the current application status of high-temperature resistant gels and high-temperature resistant gel temporary plugging agents is demonstrated, followed by a detailed overview of the gel-breaking methods. Overall, this research lays the theoretical foundation for the application and promotion of high-temperature resistant gels. Full article
(This article belongs to the Special Issue Gels for Oil Drilling and Enhanced Recovery)
Show Figures

Figure 1

14 pages, 1300 KiB  
Article
Assessment of Biophysical Properties of Faecal Pellets from Channel Catfish (Ictalurus punctatus) and Bighead Carp (Aristichthys nobilis)
by Ting Yuan, Qidong Wang, Shiqi Li, Geng Huang, Tanglin Zhang, Zhongjie Li and Jiashou Liu
Sustainability 2022, 14(12), 7201; https://doi.org/10.3390/su14127201 - 12 Jun 2022
Cited by 3 | Viewed by 2073
Abstract
Fish faeces are a crucial component of solid wastes from cage culture systems. In order to investigate the environmental impacts of faeces from channel catfish (Ictalurus punctatus) and bighead carp (Aristichthys nobilis), certain biophysical characteristics during faecal sinking at [...] Read more.
Fish faeces are a crucial component of solid wastes from cage culture systems. In order to investigate the environmental impacts of faeces from channel catfish (Ictalurus punctatus) and bighead carp (Aristichthys nobilis), certain biophysical characteristics during faecal sinking at three temperatures (10, 20 and 30 °C for winter, spring-autumn and summer conditions, respectively) were assessed in the present study. Settling velocities of faeces from channel catfish (1.72–13.33 cm/s) and bighead carp (4.16–13.83 cm/s) accelerated with an increase in water temperature. For channel catfish faeces, there were positive correlations between settling velocity and physical properties, i.e., weight, volume, length and diameter; however, for bighead carp faeces, no linear relationship between settling velocity and length was found. The main faecal water absorption period for these two species occurred after 2.5 min of immersion. The main leaching period of faecal carbon and nitrogen was 0–2.5 min, and the leaching period of faecal phosphorus was 0–10 min. The nutrient contents in channel catfish faeces were significantly higher than those in bighead carp faeces. These results suggest that co-culturing channel catfish with bighead carp can effectively reduce the discharge of nutrients from aquaculture. The biophysical properties of these two types of fish faeces can also provide guidance in particle waste collection. Full article
(This article belongs to the Special Issue Wetlands: Conservation, Management, Restoration and Policy)
Show Figures

Figure 1

16 pages, 3699 KiB  
Article
A Study on the Modeling Method of Cage Slip and Its Effects on the Vibration Response of Rolling-Element Bearing
by Ya Luo, Wenbing Tu, Chunyu Fan, Lu Zhang, Yudong Zhang and Wennian Yu
Energies 2022, 15(7), 2396; https://doi.org/10.3390/en15072396 - 24 Mar 2022
Cited by 10 | Viewed by 2752
Abstract
Rolling-element bearings play vital roles in the dynamic vibration performance of the whole machinery. Hence, accurate modeling and assessment of the rolling-element bearing are beneficial for the well understanding of the vibration response of rolling-element bearing. However, cage slip is usually ignored in [...] Read more.
Rolling-element bearings play vital roles in the dynamic vibration performance of the whole machinery. Hence, accurate modeling and assessment of the rolling-element bearing are beneficial for the well understanding of the vibration response of rolling-element bearing. However, cage slip is usually ignored in the traditional rolling-element bearing modeling methods, which has a direct influence on the rotating speed and friction force of the rolling elements. To settle the modeling problem of rolling-element bearing with cage slip, in this study, a nonlinear dynamic model with multiple degrees of freedom of the roller bearing is established. The cage slip, the motion of each roller, nonlinear contact, damping, and friction are taken into consideration. With the proposed method, a nonlinear traction model is presented to describe the friction forces induced by cage slip. Furthermore, both the friction force acting on rolling elements and the effects of cage slip on the vibration response are investigated based on the established model. Some comparisons between the proposed modeling method with cage slip and the classical method without cage slip are made. The results show that the friction force applied to the balls increases with the cage slip, friction coefficient, rotational speed, and radial load. A slight cage slip could be beneficial for reducing the vibration energy of rolling-element bearing; however, it will result in more friction loss and impact components. Full article
Show Figures

Figure 1

24 pages, 15336 KiB  
Article
An Innovative IMTA System: Polychaetes, Sponges and Macroalgae Co-Cultured in a Southern Italian In-Shore Mariculture Plant (Ionian Sea)
by Adriana Giangrande, Cataldo Pierri, Daniele Arduini, Jacopo Borghese, Margherita Licciano, Roberta Trani, Giuseppe Corriero, Grazia Basile, Ester Cecere, Antonella Petrocelli, Loredana Stabili and Caterina Longo
J. Mar. Sci. Eng. 2020, 8(10), 733; https://doi.org/10.3390/jmse8100733 - 23 Sep 2020
Cited by 63 | Viewed by 5969
Abstract
In this paper, we report data from the first year of rearing of a set of filter feeder bioremediator organisms: macrobenthic invertebrates (sabellid polychaetes and sponges), coupled with macroalgae, realized in a mariculture fish farm. This innovative integrated multi-trophic aquaculture (IMTA) system was [...] Read more.
In this paper, we report data from the first year of rearing of a set of filter feeder bioremediator organisms: macrobenthic invertebrates (sabellid polychaetes and sponges), coupled with macroalgae, realized in a mariculture fish farm. This innovative integrated multi-trophic aquaculture (IMTA) system was realized at a preindustrial level in the Gulf of Taranto (southern Italy, northern Ionian Sea), within the framework of the EU Remedia Life project. Long lines containing different collector typologies were placed around the fish breeding cages. Vertical collectors were utilized for both polychaetes and sponges, whilst macroalgae were cultivated in horizontal collectors. Data on the growth and mortality of the target species after the first year of rearing and cultivation are given together with their biomass estimation. Polychaete biomass was obtained from natural settlement on ropes previously hung in the system, while sponges and macroalgae were derived from explants and/or inocules inserted in the collectors. The description of the successional pattern occurring on collectors used for settling until reaching a “stable” point is also described, with indications of additional filter feeder macroinvertebrates other than polychaetes and sponges that are easily obtainable and useful in the system as bioremediators as well. The results demonstrate an easy, natural obtaining of large biomass of sabellid polychaetes settling especially from about a 4 to 10 m depth. Sponges and macroalgae need to be periodically cleaned from the fouling covering. The macroalgae cycle was different from that of invertebrates and requires the cultivation of two different species with about a 6-month cycle for each one. The present study represents one of the first attempts at IMTA in the Mediterranean area where invertebrates and macroalgae are co-cultured in an inshore fish farm. Possible utilization of the produced biomass is also suggested. Full article
(This article belongs to the Special Issue New Perspectives in Sustainable Aquaculture)
Show Figures

Figure 1

21 pages, 2894 KiB  
Review
Implications of Extracellular Polymeric Substance Matrices of Microbial Habitats Associated with Coastal Aquaculture Systems
by Juan Carlos Camacho-Chab, Fabiola Lango-Reynoso, María Del Refugio Castañeda-Chávez, Itzel Galaviz-Villa, Demian Hinojosa-Garro and Benjamín Otto Ortega-Morales
Water 2016, 8(9), 369; https://doi.org/10.3390/w8090369 - 27 Aug 2016
Cited by 20 | Viewed by 9738
Abstract
Coastal zones support fisheries that provide food for humans and feed for animals. The decline of fisheries worldwide has fostered the development of aquaculture. Recent research has shown that extracellular polymeric substances (EPS) synthesized by microorganisms contribute to sustainable aquaculture production, providing feed [...] Read more.
Coastal zones support fisheries that provide food for humans and feed for animals. The decline of fisheries worldwide has fostered the development of aquaculture. Recent research has shown that extracellular polymeric substances (EPS) synthesized by microorganisms contribute to sustainable aquaculture production, providing feed to the cultured species, removing waste and contributing to the hygiene of closed systems. As ubiquitous components of coastal microbial habitats at the air–seawater and seawater–sediment interfaces as well as of biofilms and microbial aggregates, EPS mediate deleterious processes that affect the performance and productivity of aquaculture facilities, including biofouling of marine cages, bioaccumulation and transport of pollutants. These biomolecules may also contribute to the persistence of harmful algal blooms (HABs) and their impact on cultured species. EPS may also exert a positive influence on aquaculture activity by enhancing the settling of aquaculturally valuable larvae and treating wastes in bioflocculation processes. EPS display properties that may have biotechnological applications in the aquaculture industry as antiviral agents and immunostimulants and as a novel source of antifouling bioproducts. Full article
Show Figures

Figure 1

Back to TopTop