Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (134)

Search Parameters:
Keywords = sensory afferents

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
36 pages, 1957 KiB  
Review
Rewiring the Brain Through the Gut: Insights into Microbiota–Nervous System Interactions
by Ilinca Savulescu-Fiedler, Serban-Nicolae Benea, Constantin Căruntu, Andreea-Simona Nancoff, Corina Homentcovschi and Sandica Bucurica
Curr. Issues Mol. Biol. 2025, 47(7), 489; https://doi.org/10.3390/cimb47070489 - 26 Jun 2025
Viewed by 1597
Abstract
The gut-brain axis (GBA) represents an operant acting in a two-direction communication system between the gastrointestinal tract and the central nervous system, mediated by the enteric nervous system (ENS), vagus nerve, immune pathways, and endocrine signaling. In recent years, evidence has highlighted the [...] Read more.
The gut-brain axis (GBA) represents an operant acting in a two-direction communication system between the gastrointestinal tract and the central nervous system, mediated by the enteric nervous system (ENS), vagus nerve, immune pathways, and endocrine signaling. In recent years, evidence has highlighted the pivotal role of the gut microbiota in modulating this axis, forming the microbiota-gut-brain axis (MGBA). Our review synthesizes current knowledge on the anatomical and functional substrates of gut-brain communication, focusing on interoceptive signaling, the roles of intrinsic primary afferent neurons (IPANs) and enteroendocrine cells (EECs) and the influence of microbial metabolites, including short-chain fatty acids (SCFAs), bile acids, and indoles. These agents modulate neurotransmission, epithelial barrier function, and neuroimmune interactions. The vagus nerve serves as a primary pathway for afferent sensory signaling from the gut influenced indirectly by the ENS and microbiota. Dysbiosis has been associated with altered gut-brain signaling and implicated in the pathophysiology of disorders ranging from irritable bowel syndrome to mood disorders and neurodegeneration. Microbial modulation of host gene expression via epigenetic mechanisms, including microRNAs, adds another layer of complexity. The gut has a crucial role as an active sensory and signaling organ capable of influencing higher-order brain functions. Understanding the MGBA has significant implications for new therapeutic interventions targeting the microbiome to manage neurogastroenterological and even neuropsychiatric conditions. Full article
Show Figures

Figure 1

12 pages, 611 KiB  
Article
Cutaneous Allodynia of the Withers in Cattle: An Experimental In Vivo Neuroanatomical Preliminary Investigation of the Dichotomizing Sensory Neurons Projecting into the Reticulum and Skin of the Withers—A Case Study on Two Calves
by Roberto Chiocchetti, Luciano Pisoni, Monika Joechler, Adele Cancellieri, Fiorella Giancola, Giorgia Galiazzo, Giulia Salamanca, Rodrigo Zamith Cunha and Arcangelo Gentile
Animals 2025, 15(12), 1689; https://doi.org/10.3390/ani15121689 - 6 Jun 2025
Viewed by 583
Abstract
The presence of dichotomizing neurons in the dorsal root ganglia (DRG) of cattle, innervating both the reticulum and the withers, may indicate a pre-spinal convergence of visceral and cutaneous sensory information, i.e., that the DRG primary sensory neurons may elaborate the sensory information [...] Read more.
The presence of dichotomizing neurons in the dorsal root ganglia (DRG) of cattle, innervating both the reticulum and the withers, may indicate a pre-spinal convergence of visceral and cutaneous sensory information, i.e., that the DRG primary sensory neurons may elaborate the sensory information coming from two different anatomical areas before reaching the secondary sensory neurons within the spinal cord. This anatomical feature could be the underlying basis for the cutaneous allodynia observed in traumatic reticuloperitonitis, also known as the “Kalchschmidt pain test”. The aim of the study was to identify the DRG primary sensory neurons innervating the reticulum and the withers by using two different retrograde fluorescent tracers, Fast Blue (FB, affinity for cytoplasm) and Diamidino Yellow (DY, affinity for nucleus). In two anesthetized calves, FB and DY were injected into the reticulum and skin of the withers, respectively. At the end of the experimental period, the calves were deeply anesthetized and then euthanatized. The thoracic (T1–T8) DRG were collected and processed to obtain cryosections which were examined on a fluorescent microscope. A large number of neurons localized, especially in the T7 DRG, presented nuclei labeled with DY. On the contrary, only a few neurons localized exclusively in T6 and T7 DRG presented the cytoplasm labeled with FB. No neurons displayed FB and DY simultaneously within the cytoplasm and nucleus, respectively. The absence of double-labeled DRG neurons suggests that the convergence of visceral and somatic sensory inputs underlying the Kalchschmidt pain response likely does not occur at the level of individual DRG neurons. Rather, it may involve higher-order integrative centers, possibly including vagal pathways and brainstem nuclei which integrate the afferent information to coordinate respiratory movements of the diaphragm, intercostal muscles, and larynx. Although limited by the sample size, this case study provides a neuroanatomical basis for further investigation into central mechanisms of referred visceral pain in cattle. Full article
(This article belongs to the Section Cattle)
Show Figures

Figure 1

21 pages, 3496 KiB  
Review
Multimodality in the Collicular Pathway: Towards Compensatory Visual Processes
by Dario Rusciano and Paola Bagnoli
Cells 2025, 14(9), 635; https://doi.org/10.3390/cells14090635 - 25 Apr 2025
Cited by 1 | Viewed by 746
Abstract
The integration of multisensory inputs plays a crucial role in shaping perception and behavior, particularly in the visual system. The collicular pathway, encompassing the optic tectum in non-mammalian vertebrates and the superior colliculus (SC) in mammals, is a key hub for integrating sensory [...] Read more.
The integration of multisensory inputs plays a crucial role in shaping perception and behavior, particularly in the visual system. The collicular pathway, encompassing the optic tectum in non-mammalian vertebrates and the superior colliculus (SC) in mammals, is a key hub for integrating sensory information and mediating adaptive motor responses. Comparative studies across species reveal evolutionary adaptations that enhance sensory processing and contribute to compensatory mechanisms following neuronal injury. The present review outlines the structure and function of the multisensory visual pathways, emphasizing the retinocollicular projections, and their multisensory integration, which depends on synaptic convergence of afferents conveying information from different sensory modalities. The cellular mechanisms underlying multimodal integration remain to be fully clarified, and further investigations are needed to clarify the link between neuronal activity in response to multisensory stimulation and behavioral response involving motor activity. By exploring the interplay between fundamental neuroscience and translational applications, we aim to address multisensory integration as a pivotal target for its potential role in visual rehabilitation strategies. Full article
(This article belongs to the Section Tissues and Organs)
Show Figures

Graphical abstract

24 pages, 3208 KiB  
Article
Distribution and Neurochemical Characterization of Dorsal Root Ganglia (DRG) Neurons Containing Phoenixin (PNX) and Supplying the Porcine Urinary Bladder
by Paweł Janikiewicz, Urszula Mazur, Piotr Holak, Nastassia Karakina, Kamil Węglarz, Mariusz Krzysztof Majewski and Agnieszka Bossowska
Cells 2025, 14(7), 516; https://doi.org/10.3390/cells14070516 - 31 Mar 2025
Viewed by 494
Abstract
The present study was designed to establish the distribution pattern and immunohistochemical characteristics of phoenixin-immunoreactive (PNX-IR) urinary bladder afferent neurons (UB-ANs) of dorsal root ganglia (DRG) in female pigs. The sensory neurons investigated were visualized with a retrograde tracing method using Fast Blue [...] Read more.
The present study was designed to establish the distribution pattern and immunohistochemical characteristics of phoenixin-immunoreactive (PNX-IR) urinary bladder afferent neurons (UB-ANs) of dorsal root ganglia (DRG) in female pigs. The sensory neurons investigated were visualized with a retrograde tracing method using Fast Blue (FB), while their chemical profile(s) were identified using double-labelling immunohistochemistry with antibodies against PNX, calcitonin gene-related peptide (CGRP), calretinin (CRT), galanin (GAL), neuronal nitric oxide synthase (nNOS), pituitary adenylate cyclase-activating polypeptide (PACAP), somatostatin (SOM) and substance P (SP). Nearly half of UB-ANs contained PNX (45%), and the majority of such encoded sensory neurons were small in size (66%). The most numerous subpopulation of FB/PNX-positive neurons were those containing SP (71%). CGRP, GAL or PACAP were observed in a smaller number of PNX-containing UB-ANs (50%, 30% or 25%, respectively), while PNX-positive sensory neurons simultaneously immunostained with nNOS, CRT or SOM constituted a small fraction of all retrogradely-traced DRG neurons (DRGs; 15%, 6.5% or 1.6%, respectively). Furthermore, the numerical analysis of neurons expressing individual antigens, performed on 10 μm-thick consecutive sections, allows us to state that studied sensory neurons can be classified as neurons “coded” either by the simultaneous presence of SP/CGRP/PACAP/GAL, SP/CGRP/PACAP/NOS, SP/CGRP/PACAP/NOS/CRT and/or SP/CGRP/GAL/PACAP, or, as a separate population, those capable of SOM synthesis (SP/CGRP/SOM/PACAP/GAL-positive neurons). The present study reveals the extensive expression of PNX in the DRGs supplying to the urinary bladder, indicating an important regulatory role of this neuropeptide in the control of physiological function(s) of this organ. Full article
(This article belongs to the Section Cells of the Nervous System)
Show Figures

Figure 1

15 pages, 863 KiB  
Article
Enhancing Hand Sensorimotor Function in Individuals with Cervical Spinal Cord Injury: A Novel Tactile Discrimination Feedback Approach Using a Multiple-Baseline Design
by Ken Kitai, Kaichi Nishigaya, Yasuhisa Mizomoto, Hiroki Ito, Ryosuke Yamauchi, Osamu Katayama, Kiichiro Morita, Shin Murata and Takayuki Kodama
Brain Sci. 2025, 15(4), 352; https://doi.org/10.3390/brainsci15040352 - 28 Mar 2025
Viewed by 697
Abstract
Background/Objectives: This study evaluated the effects of a tactile-discrimination compensatory real-time feedback device on hand sensorimotor function in cervical spinal cord injury patients. The study assessed changes in hand numbness, dexterity, and electroencephalogram (EEG) activity, particularly γ-wave power in the sensorimotor area [...] Read more.
Background/Objectives: This study evaluated the effects of a tactile-discrimination compensatory real-time feedback device on hand sensorimotor function in cervical spinal cord injury patients. The study assessed changes in hand numbness, dexterity, and electroencephalogram (EEG) activity, particularly γ-wave power in the sensorimotor area during skilled finger movements. Methods: Three patients with cervical spinal cord injury who presented with hand sensorimotor dysfunction underwent treatment with this device. All cases underwent the intervention using an AB design; A is the exercise task without the system device, and B is the exercise task under the system device. To confirm the reproducibility and minimize the influence of confounding factors, a multiple-baseline design, in which the intervention period was staggered for each subject, was applied. To determine efficacy, the hand numbness numerical rating scale, peg test, and EEG were measured daily, and Tau-U calculations were performed. Results: In two of three cases, moderate or very large changes were observed in numbness in B. In all cases, there was a large or very large change in the peg test results in the B. Regarding EEG activity, the non-skilled participants showed amplification of γ-wave power in the sensorimotor area during the B. Conversely, in the skilled participants, the γ-wave power of the sensorimotor area was attenuated during skillful movements. Conclusions: These findings indicate that the ability of the brain to compare and align predictive control with sensory feedback might be compromised in patients with damage to the afferent pathways of the central nervous system. Moreover, the use of this device appears to have played a role in supporting functional recovery. Full article
(This article belongs to the Special Issue New Insights into Movement Generation: Sensorimotor Processes)
Show Figures

Figure 1

25 pages, 17553 KiB  
Article
Extracting Sensory Preferability from Motor Streams
by Vilelmini Kalampratsidou
Sensors 2025, 25(7), 2087; https://doi.org/10.3390/s25072087 - 26 Mar 2025
Viewed by 279
Abstract
(1) Background: Based on the reafference principle, our system creates an efferent signal copy to distinguish external inputs from our activities in the afferent signal. According to this principle, sensory and motor information from the outside world travel together from the periphery to [...] Read more.
(1) Background: Based on the reafference principle, our system creates an efferent signal copy to distinguish external inputs from our activities in the afferent signal. According to this principle, sensory and motor information from the outside world travel together from the periphery to the brain. (2) Methods: This work introduces signal processing methods that extract contextual sensory preferences from motor streams. Speed and acceleration data were collected as participants walked under different conditions: in silence (with open and closed eyes), while listening to two different songs (each with open and closed eyes), and finally while walking to their favorite song. Ten individuals completed a total of seven conditions. (3) Results: Variations in the walking patterns of each participant were identified, revealing the sensory inputs they perceived. The results also indicated the audio and visual conditions that optimized the participant’s sensory–motor system performance. (4) Conclusions: The outcomes suggest that we can extract from motor stream particulars that go beyond an individual’s movement qualities and toward the contextual sensory inputs accompanying the movement data, even when participants execute the very same task of walking. Full article
(This article belongs to the Special Issue Intelligent Wearable Sensor-Based Gait and Movement Analysis)
Show Figures

Figure 1

46 pages, 1183 KiB  
Review
Molecular Anatomy of Synaptic and Extrasynaptic Neurotransmission Between Nociceptive Primary Afferents and Spinal Dorsal Horn Neurons
by Miklós Antal
Int. J. Mol. Sci. 2025, 26(5), 2356; https://doi.org/10.3390/ijms26052356 - 6 Mar 2025
Cited by 2 | Viewed by 1799
Abstract
Sensory signals generated by peripheral nociceptors are transmitted by peptidergic and nonpeptidergic nociceptive primary afferents to the superficial spinal dorsal horn, where their central axon terminals establish synaptic contacts with secondary sensory spinal neurons. In the case of suprathreshold activation, the axon terminals [...] Read more.
Sensory signals generated by peripheral nociceptors are transmitted by peptidergic and nonpeptidergic nociceptive primary afferents to the superficial spinal dorsal horn, where their central axon terminals establish synaptic contacts with secondary sensory spinal neurons. In the case of suprathreshold activation, the axon terminals release glutamate into the synaptic cleft and stimulate postsynaptic spinal neurons by activating glutamate receptors located on the postsynaptic membrane. When overexcitation is evoked by peripheral inflammation, neuropathy or pruritogens, peptidergic nociceptive axon terminals may corelease various neuropeptides, neurotrophins and endomorphin, together with glutamate. However, in contrast to glutamate, neuropeptides, neurotrophins and endomorphin are released extrasynaptically. They diffuse from the site of release and modulate the function of spinal neurons via volume transmission, activating specific extrasynaptic receptors. Thus, the released neuropeptides, neurotrophins and endomorphin may evoke excitation, disinhibition or inhibition in various spinal neuronal populations, and together with glutamate, induce overall overexcitation, called central sensitization. In addition, the synaptic and extrasynaptic release of neurotransmitters is subjected to strong retrograde control mediated by various retrogradely acting transmitters, messengers, and their presynaptic receptors. Moreover, the composition of this complex chemical apparatus is heavily dependent on the actual patterns of nociceptive primary afferent activation in the periphery. This review provides an overview of the complexity of this signaling apparatus, how nociceptive primary afferents can activate secondary sensory spinal neurons via synaptic and volume transmission in the superficial spinal dorsal horn, and how these events can be controlled by presynaptic mechanisms. Full article
(This article belongs to the Special Issue Editorial Board Members’ Collection Series: Pain)
Show Figures

Figure 1

22 pages, 3529 KiB  
Article
Activation of Adenosine Triphosphate-Gated Purinergic 2 Receptor Channels by Transient Receptor Potential Vanilloid Subtype 4 in Cough Hypersensitivity
by Wanzhen Li, Shengyuan Wang, Tongyangzi Zhang, Yiqing Zhu, Li Yu and Xianghuai Xu
Biomolecules 2025, 15(2), 285; https://doi.org/10.3390/biom15020285 - 14 Feb 2025
Viewed by 1227
Abstract
Background: Transient receptor potential vanilloid subtype 4 (TRPV4) is a Ca2+-permeable non-selective cation channel that is involved in the development of cough hypersensitivity. Purinergic 2 receptors (P2X) belong to a class of adenosine triphosphate (ATP)-gated non-selective cation channels that also play [...] Read more.
Background: Transient receptor potential vanilloid subtype 4 (TRPV4) is a Ca2+-permeable non-selective cation channel that is involved in the development of cough hypersensitivity. Purinergic 2 receptors (P2X) belong to a class of adenosine triphosphate (ATP)-gated non-selective cation channels that also play an important role in cough hypersensitivity. Nevertheless, little is known about the interaction between them for cough hypersensitivity. The present study was designed to clarify the roles of TRPV4 and ATP-P2X receptors in cough hypersensitivity, and to explore the possible involvement of ATP-P2X receptors in the development of cough hypersensitivity mediated by TRPV4. Design and Method: This study aims to establish a guinea pig model of citric acid-induced enhanced cough to confirm the effects of the TRPV4-mediated purinergic signaling pathway on cough sensitivity by testing the number of coughs, the release of ATP, and the expressions of P2X and TRPV4 receptors in the tracheal carina and vagal ganglion; recording the activity of cellular currents with the whole-cell patch clamp technique; and detecting changes in intracellular calcium flow in the vagus nerve cells. Results: The number of coughs in the TRPV4 agonist GSK1016790A-treated control group was elevated compared with that in the control group, whereas the number of coughs in the TRPV4 antagonist HC067047-treated model group was significantly reduced compared with that in the chronic cough group. When the individuals in the chronic cough group were treated with A317491, PSB12062, and A804598 (P2X3,4,7 antagonists), the number of coughs was significantly decreased. This suggests that TRPV4 and P2X3, P2X4, and P2X7 receptors have an effect on cough hyper-responsiveness in guinea pigs with chronic cough. Enzyme-linked immunosorbent assay results suggested that TRPV4 antagonist and P2X3,4,7 antagonist could differentially reduce the levels of inflammatory factor SP and CGRP in alveolar lavage fluid, and TRPV4 antagonist could reduce the ATP content in the alveolar lavage fluid of guinea pigs in the model. Western blot and immunohistochemistry results showed that, in the tracheal carina and vagal ganglion, the TRPV4 and P2X3,4,7 expression was elevated in the chronic cough group compared with the control group, and could be significantly inhibited by TRPV4 antagonist. Vagus ganglion neurons were isolated, cultured, identified, and subjected to whole-cell membrane clamp assay. When ATP was given extracellularly, a significant inward current was recorded in the examined cells of individuals in the chronic cough and control groups, and the inward current induced by ATP was higher in the chronic cough group relative to the control group. This inward current (IATP) was differentially blocked by P2X3, P2X4, and P2X7 antagonists. Further studies revealed that TRPV4 agonists potentiated ATP-activated currents, and the potentiated currents could still be inhibited by P2X3, P2X4, and P2X7 receptor antagonists, whereas TRPV4 inhibitors partially blocked ATP-activated currents. It is suggested that TRPV4 affects P2X3, P2X4, and P2X7 receptor-mediated ATP-activated currents. Calcium imaging also showed that TRPV4 agonists induced different degrees of calcium inward currents in the vagal neurons of the chronic cough and the control group, and the calcium inward currents were more significant in the model group. Conclusions: The TRPV4-mediated purinergic signaling pathway was identified to be involved in the development of cough hypersensitivity in guinea pigs with chronic cough; i.e., TRPV4 can lead to the release of airway epithelial ATP, which can stimulate P2X receptors on the cough receptor, and further activate the sensory afferent nerves in the peripheral airway, leading to increased cough sensitivity. Full article
(This article belongs to the Special Issue TRP Channels in Cardiovascular and Inflammatory Disease)
Show Figures

Figure 1

22 pages, 13437 KiB  
Article
The Intrinsic Neuronal Activation of the CXCR4 Signaling Axis Is Associated with a Pro-Regenerative State in Cervical Primary Sensory Neurons Conditioned by a Sciatic Nerve Lesion
by Petr Dubový, Ivana Hradilová-Svíženská, Václav Brázda, Anna Jambrichová, Viktorie Svobodová and Marek Joukal
Int. J. Mol. Sci. 2025, 26(1), 193; https://doi.org/10.3390/ijms26010193 - 29 Dec 2024
Viewed by 1074
Abstract
CXCL12 and CXCR4 proteins and mRNAs were monitored in the dorsal root ganglia (DRGs) of lumbar (L4–L5) and cervical (C7–C8) spinal segments of naïve rats, rats subjected to sham operation, and those undergoing unilateral complete sciatic nerve transection (CSNT) on post-operation day 7 [...] Read more.
CXCL12 and CXCR4 proteins and mRNAs were monitored in the dorsal root ganglia (DRGs) of lumbar (L4–L5) and cervical (C7–C8) spinal segments of naïve rats, rats subjected to sham operation, and those undergoing unilateral complete sciatic nerve transection (CSNT) on post-operation day 7 (POD7). Immunohistochemical, Western blot, and RT-PCR analyses revealed bilaterally increased levels of CXCR4 protein and mRNA in both lumbar and cervical DRG neurons after CSNT. Similarly, CXCL12 protein levels increased, and CXCL12 mRNA was upregulated primarily in lumbar DRGs ipsilateral to the nerve lesion. Intrathecal application of the CXCR4 inhibitor AMD3100 following CSNT reduced CXCL12 and CXCR4 protein levels in cervical DRG neurons, as well as the length of afferent axons regenerated distal to the ulnar nerve crush. Furthermore, treatment with the CXCR4 inhibitor decreased levels of activated Signal Transducer and Activator of Transcription 3 (STAT3), a critical transforming factor in the neuronal regeneration program. Administration of IL-6 increased CXCR4 levels, whereas the JAK2-dependent STAT3 phosphorylation inhibitor (AG490) conversely decreased CXCR4 levels. This indicates a link between the CXCL12/CXCR4 signaling axis and IL-6-induced activation of STAT3 in the sciatic nerve injury-induced pro-regenerative state of cervical DRG neurons. The role of CXCR4 signaling in the axon-promoting state of DRG neurons was confirmed through in vitro cultivation of primary sensory neurons in a medium supplemented with CXCL12, with or without AMD3100. The potential involvement of conditioned cervical DRG neurons in the induction of neuropathic pain is discussed. Full article
(This article belongs to the Special Issue Advances in Peripheral Nerve Regeneration)
Show Figures

Figure 1

3 pages, 4119 KiB  
Correction
Correction: Lin et al. ATF3-Expressing Large-Diameter Sensory Afferents at Acute Stage as Bio-Signatures of Persistent Pain Associated with Lumbar Radiculopathy. Cells 2021, 10, 992
by Jiann-Her Lin, Yu-Wen Yu, Yu-Chia Chuang, Cheng-Han Lee and Chih-Cheng Chen
Cells 2024, 13(24), 2061; https://doi.org/10.3390/cells13242061 - 13 Dec 2024
Viewed by 714
Abstract
In the original publication [...] Full article
Show Figures

Figure 4

15 pages, 7972 KiB  
Article
PM2.5 Exposure Induces Glomerular Hyperfiltration in Mice in a Gender-Dependent Manner
by Hao Wang, Li Ma, Yuqiong Guo, Lingyu Ren, Guangke Li and Nan Sang
Toxics 2024, 12(12), 878; https://doi.org/10.3390/toxics12120878 - 1 Dec 2024
Cited by 1 | Viewed by 7854
Abstract
As one of the most common air pollutants, fine particulate matter (PM2.5) increases the risk of diseases in various systems, including the urinary system. In the present study, we exposed male and female C57BL/6J mice to PM2.5 for 8 weeks. [...] Read more.
As one of the most common air pollutants, fine particulate matter (PM2.5) increases the risk of diseases in various systems, including the urinary system. In the present study, we exposed male and female C57BL/6J mice to PM2.5 for 8 weeks. Examination of renal function indices, including creatinine (CRE), blood urea nitrogen (BUN), uric acid (UA), and urinary microalbumin, indicated that the kidneys of female mice, not male mice, underwent early renal injury, exhibiting glomerular hyperfiltration. Meanwhile, pathological staining showed that the kidneys of female mice exhibited enlarged glomerulus that filled the entire Bowman’s capsule in the female mice. Afterward, we explored the potential causes and mechanisms of glomerular hyperfiltration. Variations in mRNA levels of key genes involved in the renin–angiotensin system (RAS) and kallikrein–kinin system (KKS) demonstrated that PM2.5 led to elevated glomerular capillary hydrostatic pressure in female mice by disturbing the balance between the RAS and KKS, which in turn increased the glomerular filtration rate (GFR). In addition, we found that PM2.5 increased blood glucose levels in the females, which enhanced tubular reabsorption of glucose, attenuated macular dense sensory signaling, induced renal hypoxia, and affected adenosine triphosphate (ATP) synthesis, thus attenuating tubuloglomerular feedback (TGF)-induced afferent arteriolar constriction and leading to glomerular hyperfiltration. In conclusion, this study indicated that PM2.5 induced glomerular hyperfiltration in female mice by affecting RAS/KKS imbalances, as well as the regulation of TGF; innovatively unveiled the association between PM2.5 subchronic exposure and early kidney injury and its gender dependence; enriched the toxicological evidence of PM2.5 and confirmed the importance of reducing ambient PM2.5 concentrations. Full article
(This article belongs to the Special Issue Toxicity and Human Health Assessment of Air Pollutants)
Show Figures

Graphical abstract

14 pages, 3997 KiB  
Review
Peripheral Mechanisms Underlying Bacillus Calmette–Guerin-Induced Lower Urinary Tract Symptoms (LUTS)
by Meera Elmasri, Aaron Clark and Luke Grundy
Brain Sci. 2024, 14(12), 1203; https://doi.org/10.3390/brainsci14121203 - 28 Nov 2024
Viewed by 1508
Abstract
Non-muscle invasive bladder cancer (NMIBC) accounts for approximately 70–75% of all bladder cancer cases. The standard treatment for high-risk NMIBC involves transurethral tumour resection followed by intravesical Bacillus Calmette–Guerin (BCG) immunotherapy. While BCG immunotherapy is both safe and effective, it frequently leads to [...] Read more.
Non-muscle invasive bladder cancer (NMIBC) accounts for approximately 70–75% of all bladder cancer cases. The standard treatment for high-risk NMIBC involves transurethral tumour resection followed by intravesical Bacillus Calmette–Guerin (BCG) immunotherapy. While BCG immunotherapy is both safe and effective, it frequently leads to the development of lower urinary tract symptoms (LUTS) such as urinary urgency, frequency, dysuria, and pelvic discomfort. These symptoms can significantly diminish patients’ quality of life and may result in the discontinuation of BCG treatment, adversely affecting oncological outcomes. Despite the considerable clinical impact of BCG-induced LUTS, the underlying mechanisms remain unclear, hindering the implementation or development of effective treatments. This review provides novel insights into the potential mechanisms underlying BCG-induced LUTS, focusing on the integrated roles of afferent and efferent nerves in both normal and pathological bladder sensation and function. Specifically, this review examines how the body’s response to BCG—through the development of inflammation, increased urothelial permeability, and altered urothelial signalling—might contribute to LUTS development. Drawing from known mechanisms in other common urological disorders and data from successful clinical trials involving NMIBC patients, this review summarises evidence supporting the likely changes in both sensory nerve signalling and bladder muscle function in the development of BCG-induced LUTS. However, further research is required to understand the intricate mechanisms underlying the development of BCG-induced LUTS and identify why some patients are more likely to experience BCG intolerance. Addressing these knowledge gaps could have profound implications for patients’ quality of life, treatment adherence, and overall outcomes in NMIBC care. Full article
(This article belongs to the Special Issue Reviews in Neural Control of Peripheral Function)
Show Figures

Figure 1

20 pages, 4792 KiB  
Article
Expression of Acid-Sensing Ion Channel 3 in Afferents Averts Long-Term Sensitization and the Development of Visceral Pain
by Nicolas Montalbetti, Guadalupe Manrique-Maldonado, Youko Ikeda, Marianela Dalghi, Anthony Kanai, Gerard Apodaca and Marcelo D. Carattino
Int. J. Mol. Sci. 2024, 25(23), 12503; https://doi.org/10.3390/ijms252312503 - 21 Nov 2024
Viewed by 1171
Abstract
Sensitization of primary afferents is essential for the development of pain, but the molecular events involved in this process and its reversal are poorly defined. Recent studies revealed that acid-sensing ion channels (ASICs) control the excitability of nociceptors in the urinary bladder. Using [...] Read more.
Sensitization of primary afferents is essential for the development of pain, but the molecular events involved in this process and its reversal are poorly defined. Recent studies revealed that acid-sensing ion channels (ASICs) control the excitability of nociceptors in the urinary bladder. Using genetic and pharmacological tools we show that ASICs are functionally coupled with voltage-gated Ca2+ channels to mediate Ca2+ transients evoked by acidification in sensory neurons. Genetic deletion of Asic3 of these sensory neurons does not alter the mechanical response of bladder afferents to distension in naïve mice. Both control and sensory neuron conditional Asic3 knockout (Asic3-KO) mice with chemical cystitis induced by cyclophosphamide (CYP) administration exhibit frequent low volume voiding events. However, these changes are transient and revert over time. Of major significance, in Asic3-KO mice, CYP treatment results in the sensitization of a subset of bladder afferents and pelvic allodynia that persist beyond the resolution of the inflammatory process. Thus, ASICs function is necessary to prevent long-term sensitization of visceral nociceptors. Full article
(This article belongs to the Section Molecular Nanoscience)
Show Figures

Figure 1

22 pages, 809 KiB  
Review
Neuromodulators in Acute and Chronic Cough in Children: An Update from the Literature
by Simone Foti Randazzese, Fabio Toscano, Antonella Gambadauro, Mariarosaria La Rocca, Giulia Altavilla, Mariagrazia Carlino, Lucia Caminiti, Paolo Ruggeri and Sara Manti
Int. J. Mol. Sci. 2024, 25(20), 11229; https://doi.org/10.3390/ijms252011229 - 18 Oct 2024
Cited by 3 | Viewed by 3894
Abstract
Cough is one of the most common reasons leading to pediatric consultations, negatively impacting the quality of life of patients and caregivers. It is defined as a sudden and forceful expulsion of air from the lungs through the mouth, typically triggered by irritation [...] Read more.
Cough is one of the most common reasons leading to pediatric consultations, negatively impacting the quality of life of patients and caregivers. It is defined as a sudden and forceful expulsion of air from the lungs through the mouth, typically triggered by irritation or the stimulation of sensory nerves in the respiratory tract. This reflex is controlled by a neural pathway that includes sensory receptors, afferent nerves, the brainstem’s cough center, efferent nerves, and the muscles involved in coughing. Based on its duration, cough in children may be classified as acute, lasting less than four weeks, and chronic, persisting for more than four weeks. Neuromodulators have shown promise in reducing the frequency and severity of cough by modulating the neural pathways involved in the cough reflex, although they require careful monitoring and patient selection to optimize the outcomes. This review aims to examine the rationale for using neuromodulators in the management of cough in children. Full article
(This article belongs to the Special Issue Molecular Relationships between Brain and Lung Diseases)
Show Figures

Figure 1

16 pages, 1912 KiB  
Article
Inhibition of Ionic Currents by Fluoxetine in Vestibular Calyces in Different Epithelial Loci
by Nesrien M. M. Mohamed, Frances L. Meredith and Katherine J. Rennie
Int. J. Mol. Sci. 2024, 25(16), 8801; https://doi.org/10.3390/ijms25168801 - 13 Aug 2024
Viewed by 1503
Abstract
Previous studies have suggested a role for selective serotonin reuptake inhibitors (SSRIs) such as fluoxetine (Prozac®) in the treatment of dizziness and inner ear vestibular dysfunction. The potential mechanism of action within the vestibular system remains unclear; however, fluoxetine has been [...] Read more.
Previous studies have suggested a role for selective serotonin reuptake inhibitors (SSRIs) such as fluoxetine (Prozac®) in the treatment of dizziness and inner ear vestibular dysfunction. The potential mechanism of action within the vestibular system remains unclear; however, fluoxetine has been reported to block certain types of K+ channel in other systems. Here, we investigated the direct actions of fluoxetine on membrane currents in presynaptic hair cells and postsynaptic calyx afferents of the gerbil peripheral vestibular system using whole cell patch clamp recordings in crista slices. We explored differences in K+ currents in peripheral zone (PZ) and central zone (CZ) calyces of the crista and their response to fluoxetine application. Outward K+ currents in PZ calyces showed greater inactivation at depolarized membrane potentials compared to CZ calyces. The application of 100 μM fluoxetine notably reduced K+ currents in calyx terminals within both zones of the crista, and the remaining currents exhibited distinct traits. In PZ cells, fluoxetine inhibited a non-inactivating K+ current and revealed a rapidly activating and inactivating K+ current, which was sensitive to blocking by 4-aminopyridine. This was in contrast to CZ calyces, where low-voltage-activated and non-inactivating K+ currents persisted following application of 100 μM fluoxetine. Additionally, marked inhibition of transient inward Na+ currents by fluoxetine was observed in calyces from both crista zones. Different concentrations of fluoxetine were tested, and the EC50 values were found to be 40 µM and 32 µM for K+ and Na+ currents, respectively. In contrast, 100 μM fluoxetine had no impact on voltage-dependent K+ currents in mechanosensory type I and type II vestibular hair cells. In summary, micromolar concentrations of fluoxetine are expected to strongly reduce both Na+ and K+ conductance in afferent neurons of the peripheral vestibular system in vivo. This would lead to inhibition of action potential firing in vestibular sensory neurons and has therapeutic implications for disorders of balance. Full article
(This article belongs to the Special Issue Modulation of Ion Channels)
Show Figures

Figure 1

Back to TopTop