Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,715)

Search Parameters:
Keywords = sensor testing and evaluation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 4463 KB  
Article
A Method for Road Spectrum Identification in Real-Vehicle Tests by Fusing Time-Frequency Domain Features
by Biao Qiu and Chaiyan Jettanasen
Computation 2026, 14(2), 36; https://doi.org/10.3390/computation14020036 (registering DOI) - 2 Feb 2026
Abstract
Most unpaved roads are subjectively classified as Class D roads. However, significant variations exist across different sites and environments (e.g., mining areas). A major challenge in the engineering field is how to quickly correct the Power Spectral Density (PSD) of the unpaved road [...] Read more.
Most unpaved roads are subjectively classified as Class D roads. However, significant variations exist across different sites and environments (e.g., mining areas). A major challenge in the engineering field is how to quickly correct the Power Spectral Density (PSD) of the unpaved road in question using existing equipment and limited sensors. To address this issue, this study combines real-vehicle test data with a suspension dynamics simulation model. It employs time-domain reconstruction via Inverse Fast Fourier Transform (IFFT) and wavelet processing methods to construct an optimized model that fuses time-frequency domain features. With the help of a surrogate optimization method, the model achieves the best approximation of the actual road surface, corrects the PSD parameters of the unpaved road, and provides a reliable input basis for vehicle dynamics simulation, fatigue life prediction, and performance evaluation. Full article
(This article belongs to the Section Computational Engineering)
Show Figures

Figure 1

23 pages, 2643 KB  
Article
Data-Driven Soft Sensing for Raw Milk Ethanol Stability Prediction
by Song Shen, Xiaodong Song, Haohan Ding, Xiaohui Cui, Zhenqi Xie, Huadi Huang and Guanjun Dong
Sensors 2026, 26(3), 903; https://doi.org/10.3390/s26030903 - 30 Jan 2026
Viewed by 96
Abstract
Ethanol stability is an important indicator for evaluating the quality and heat-processing suitability of raw milk. Traditional ethanol stability testing relies on destructive laboratory procedures, which are not suitable for large-scale industrial use. In contrast, parameters such as protein, fat, lactose and other [...] Read more.
Ethanol stability is an important indicator for evaluating the quality and heat-processing suitability of raw milk. Traditional ethanol stability testing relies on destructive laboratory procedures, which are not suitable for large-scale industrial use. In contrast, parameters such as protein, fat, lactose and other basic compositional indicators are already measured routinely in dairy plants through sensor-based or spectroscopic systems. This provides the basis for developing a non-destructive soft sensing approach for ethanol stability. In this study, a soft sensing model was developed to predict ethanol stability from commonly monitored raw-milk intake indicators. An autoencoder was used to examine feature correlations and select variables with stronger relevance to ethanol stability. TabNet was then applied to build the classification model, and a TabDDPM-based data generation method was introduced to address class imbalance in the dataset. The proposed model was trained and tested using three years of industrial raw-milk intake data from a dairy company. It achieved an accuracy of 92.57% and a recall of 90.26% for identifying ethanol-unstable samples. These results demonstrate the model’s strong potential for practical engineering applications in real-world dairy quality monitoring. Full article
(This article belongs to the Special Issue Tomographic and Multi-Dimensional Sensors)
Show Figures

Figure 1

25 pages, 1806 KB  
Article
Transfer Learning-Based Ethnicity Recognition Using Arbitrary Images Captured Through Diverse Imaging Sensors
by Hasti Soudbakhsh, Sonjoy Ranjon Das, Bilal Hassan and Muhammad Farooq Wasiq
Sensors 2026, 26(3), 886; https://doi.org/10.3390/s26030886 - 29 Jan 2026
Viewed by 97
Abstract
Ethnicity recognition has become increasingly important for a wide range of applications, highlighting the need for accurate and robust predictive models. Despite advances in machine learning, ethnicity classification remains a challenging research problem due to variations in facial features, class imbalance, and generalization [...] Read more.
Ethnicity recognition has become increasingly important for a wide range of applications, highlighting the need for accurate and robust predictive models. Despite advances in machine learning, ethnicity classification remains a challenging research problem due to variations in facial features, class imbalance, and generalization issues. This study provides a concise synthesis of prior work to motivate the problem and then introduces a novel experimental framework for ethnicity recognition rather than a survey review. It proposes an improved approach that leverages transfer learning to enhance classification performance. The inclusion of various imaging sensors in the proposed methodology allows for an examination of how these imaging sensors impact the performance of facial recognition systems when a variety of images are captured under a number of real-world conditions, using professional and consumer-grade devices to create a range of conditions; from this dataset, the UTKFace dataset will be used to train and validate our method; an additional balanced dataset of Test Celebrities Faces was also created, representing five different ethnic groups (Black, Asian, White, Indian, and Other); the “Other” classification was specifically excluded for final evaluations to eliminate ambiguity and enhance stability. Rigorous preprocessing of both datasets was performed for optimal extraction of features from the sensors’ acquired images; the performance of several pre-trained CNN (Convolutional Neural Network) models (VGG16, DenseNet169, VGG19, ResNet50, MobileNetV2, InceptionV3 and EfficientNetB4) was used to identify an Ideal Hyperparameter Configuration for Optimal Performance. The resulting experimental results indicate that the VGG19 model achieved an 87% validation accuracy and a Maximum test accuracy of 75% on the Primary Dataset of Celebrity Faces; subsequently, the VGG19 model demonstrated a Range of Per-Class Accuracies, in addition to an overall accuracy of 87% across all five ethnic groups (51–90%+). This work demonstrates that leveraging transfer learning on imaging-sensor-captured images enables robust ethnicity classification with high accuracy and improved training efficiency relative to full model retraining. Furthermore, systematic hyperparameter optimization enhances model generalization and mitigates overfitting. Comparative experiments with recent state-of-the-art methods (2023–2025) further confirm that our optimized VGG19 model achieves competitive performance, reinforcing the effectiveness of the proposed reproducible and fairness-aware evaluation framework. Full article
(This article belongs to the Special Issue Deep Learning Based Face Recognition and Feature Extraction)
Show Figures

Figure 1

18 pages, 1316 KB  
Article
Virtual Testbed for Cyber-Physical System Security Research and Education: Design, Evaluation, and Impact
by Minal Akeel, Salaheddin Hosseinzadeh, Muhammad Zeeshan, Hamid Homatash, Nsikak Owoh and Moses Ashawa
Electronics 2026, 15(3), 582; https://doi.org/10.3390/electronics15030582 - 29 Jan 2026
Viewed by 82
Abstract
This article presents the design and implementation of a Virtual Cyber-Physical Testbed (VCPT) for transportation systems, featuring an automated level-crossing process. The proposed design improves network fidelity while keeping the platform lightweight. Key components include the Programmable Logic Controller (PLC), sensors, actuators, the [...] Read more.
This article presents the design and implementation of a Virtual Cyber-Physical Testbed (VCPT) for transportation systems, featuring an automated level-crossing process. The proposed design improves network fidelity while keeping the platform lightweight. Key components include the Programmable Logic Controller (PLC), sensors, actuators, the Supervisory Control and Data Acquisition (SCADA) system, and OPNsense. Guided by NIST SP 800-115, penetration testing revealed several vulnerabilities and weaknesses that can be exploited and mitigated. Six attack scenarios—enumeration, brute force, remote code execution, ARP poisoning, DoS, and command injection—were executed, demonstrating realistic impacts on process safety and availability. Mitigation strategies using custom firewall and Intrusion Detection and Prevention System (IDPS) rules contributed to improving the security posture of VCPT. Educational evaluation with 41 cybersecurity students showed a 24% increase in average scores and a significant rise in top performers, further supported by positive feedback on engagement and realism. These results validate the VCPT as an effective platform for cybersecurity research, training, and experiential learning. Full article
(This article belongs to the Special Issue Trends in Information Systems and Security)
Show Figures

Figure 1

21 pages, 5402 KB  
Article
Sensorized Vascular High-Fidelity Physical Simulator for Robot-Assisted Surgery Training: A Multisite Pilot Evaluation
by Giulia Gamberini, Alessandro Dario Mazzotta, Angela Durante, Selene Tognarelli, Niccolò Petrucciani, Gianluca Mennini, Gianfranco Silecchia and Arianna Menciassi
J. Clin. Med. 2026, 15(3), 1054; https://doi.org/10.3390/jcm15031054 - 28 Jan 2026
Viewed by 159
Abstract
Background/Objectives: Robot-Assisted Surgery poses challenges in skill acquisition due to the lack of haptic feedback, which may lead to adverse intraoperative events. This study focused on a multisite pilot evaluation on the simulator’s ability to discriminate between different levels of expertise and [...] Read more.
Background/Objectives: Robot-Assisted Surgery poses challenges in skill acquisition due to the lack of haptic feedback, which may lead to adverse intraoperative events. This study focused on a multisite pilot evaluation on the simulator’s ability to discriminate between different levels of expertise and the ability to explore potential differences between surgical specialties. Methods: We built a simulator that can replicate anatomies of vascular and adipose tissue. A resistive stretching sensor was integrated into a silicone vessel to objectively measure its deformation. A total of 18 males and 12 females, aged between 26 and 64 years old, participated to the study. In total, there were 30 participants, (21 general surgeons, 2 thoracic surgeons, 4 gynecologists, 3 urologists) and they performed two repetitions of a surgical task and filled in a questionnaire about face- and content validities and a system usability scale. The tests were conducted between February and October 2023. Results: The discriminant validity was positively assessed, considering the maximum deformation value (p-value = 0.0479) and the mean deformation value (p-value = 0.0317). Differences were found between urologists, (i) general surgeons (p-value = 0.0167) and, (ii) gynecologists (p-value = 0.0495). The face- and content validity of the simulator received 80% and 90% of positive answers, respectively. Conclusions: Future works will deal with the evaluation of the simulator abilities in surgical training by comparing surgeons trained on the simulator to those who are not. Full article
Show Figures

Figure 1

27 pages, 4885 KB  
Article
AI–Driven Multimodal Sensing for Early Detection of Health Disorders in Dairy Cows
by Agne Paulauskaite-Taraseviciene, Arnas Nakrosis, Judita Zymantiene, Vytautas Jurenas, Joris Vezys, Antanas Sederevicius, Romas Gruzauskas, Vaidas Oberauskas, Renata Japertiene, Algimantas Bubulis, Laura Kizauskiene, Ignas Silinskas, Juozas Zemaitis and Vytautas Ostasevicius
Animals 2026, 16(3), 411; https://doi.org/10.3390/ani16030411 - 28 Jan 2026
Viewed by 190
Abstract
Digital technologies that continuously quantify animal behavior, physiology, and production offer significant potential for the early identification of health and welfare disorders of dairy cows. In this study, a multimodal artificial intelligence (AI) framework is proposed for real-time health monitoring of dairy cows [...] Read more.
Digital technologies that continuously quantify animal behavior, physiology, and production offer significant potential for the early identification of health and welfare disorders of dairy cows. In this study, a multimodal artificial intelligence (AI) framework is proposed for real-time health monitoring of dairy cows through the integration of physiological, behavioral, production, and thermal imaging data, targeting veterinarian-confirmed udder, leg, and hoof infections. Predictions are generated at the cow-day level by aggregating multimodal measurements collected during daily milking events. The dataset comprised 88 lactating cows, including veterinarian-confirmed udder, leg, and hoof infections grouped under a single ‘sick’ label. To prevent information leakage, model evaluation was performed using a cow-level data split, ensuring that data from the same animal did not appear in both training and testing sets. The system is designed to detect early deviations from normal health trajectories prior to the appearance of overt clinical symptoms. All measurements, with the exception of the intra-ruminal bolus sensor, were obtained non-invasively within a commercial dairy farm equipped with automated milking and monitoring infrastructure. A key novelty of this work is the simultaneous integration of data from three independent sources: an automated milking system, a thermal imaging camera, and an intra-ruminal bolus sensor. A hybrid deep learning architecture is introduced that combines the core components of established models, including U-Net, O-Net, and ResNet, to exploit their complementary strengths for the analysis of dairy cow health states. The proposed multimodal approach achieved an overall accuracy of 91.62% and an AUC of 0.94 and improved classification performance by up to 3% compared with single-modality models, demonstrating enhanced robustness and sensitivity to early-stage disease. Full article
(This article belongs to the Section Animal Welfare)
Show Figures

Figure 1

30 pages, 6969 KB  
Article
Machine Learning for In Situ Quality Assessment and Defect Diagnosis in Refill Friction Stir Spot Welding
by Jordan Andersen, Taylor Smith, Jared Jackson, Jared Millett and Yuri Hovanski
J. Manuf. Mater. Process. 2026, 10(2), 44; https://doi.org/10.3390/jmmp10020044 - 27 Jan 2026
Viewed by 252
Abstract
Refill Friction Stir Spot Welding (RFSSW) provides significant advantages over competing spot joining technologies, but detecting RFSSW’s often small and subtle defects remains challenging. In this study, kinematic feedback data from a RFSSW machine’s factory-installed sensors was used to successfully predict defect presence [...] Read more.
Refill Friction Stir Spot Welding (RFSSW) provides significant advantages over competing spot joining technologies, but detecting RFSSW’s often small and subtle defects remains challenging. In this study, kinematic feedback data from a RFSSW machine’s factory-installed sensors was used to successfully predict defect presence with 96% accuracy (F1 = 0.92) and preliminary multi-class defect diagnosis with 84% accuracy (F1 = 0.82). Thirty adverse treatments (e.g., contaminated coupons, worn tools, and incorrect material thickness) were carried out to create 300 potentially defective welds, plus control welds, which were then evaluated using profilometry, computed tomography (CT) scanning, cutting and polishing, and tensile testing. Various machine learning (ML) models were trained and compared on statistical features, with support vector machine (SVM) achieving top performance on final quality prediction (binary), random forest outperforming other models in classifying welds into six diagnosis categories (plus a control category) based on the adverse treatments. Key predictors linking process signals to defect formation were identified, such as minimum spindle torque during the plunge phase. In conclusion a framework is proposed to integrate these models into a manufacturing setting for low-cost, full-coverage evaluation of RFSSWs. Full article
Show Figures

Figure 1

22 pages, 8373 KB  
Article
Real-Time Automated Ergonomic Monitoring: A Bio-Inspired System Using 3D Computer Vision
by Gabriel Andrés Zamorano Núñez, Nicolás Norambuena, Isabel Cuevas Quezada, José Luis Valín Rivera, Javier Narea Olmos and Cristóbal Galleguillos Ketterer
Biomimetics 2026, 11(2), 88; https://doi.org/10.3390/biomimetics11020088 - 26 Jan 2026
Viewed by 200
Abstract
Work-related musculoskeletal disorders (MSDs) remain a global occupational health priority, with recognized limitations in current point-in-time assessment methodologies. This research extends prior computer vision ergonomic assessment approaches by implementing biological proprioceptive feedback principles into a continuous, real-time monitoring system. Unlike traditional periodic ergonomic [...] Read more.
Work-related musculoskeletal disorders (MSDs) remain a global occupational health priority, with recognized limitations in current point-in-time assessment methodologies. This research extends prior computer vision ergonomic assessment approaches by implementing biological proprioceptive feedback principles into a continuous, real-time monitoring system. Unlike traditional periodic ergonomic evaluation methods such as “Rapid Upper Limb Assessment” (RULA), our bio-inspired system translates natural proprioceptive mechanisms—which enable continuous postural monitoring through spinal feedback loops operating at 50–150 ms latencies—into automated assessment technology. The system integrates (1) markerless 3D pose estimation via MediaPipe Holistic (33 anatomical landmarks at 30 FPS), (2) depth validation via Orbbec Femto Mega RGB-D camera (640 × 576 resolution, Time-of-Flight sensor), and (3) proprioceptive-inspired alert architecture. Experimental validation with 40 adult participants (age 18–25, n = 26 female, n = 14 male) performing standardized load-lifting tasks (6 kg) demonstrated that 62.5% exhibited critical postural risk (RULA ≥ 5) during dynamic movement versus 7.5% at static rest, with McNemar test p<0.001 (Cohen’s h=1.22, 95% CI: 0.91–0.97). The system achieved 95% Pearson correlation between risk elevation and alert activation, with response latency of 42.1±8.3 ms. This work demonstrates technical feasibility for continuous occupational monitoring. However, long-term prospective studies are required to establish whether continuous real-time feedback reduces workplace injury incidence. The biomimetic design framework provides a systematic foundation for translating biological feedback principles into occupational health technology. Full article
(This article belongs to the Section Bioinspired Sensorics, Information Processing and Control)
Show Figures

Figure 1

26 pages, 2450 KB  
Article
Fault Detection in Axial Deformation Sensors for Hydraulic Turbine Head-Cover Fastening Bolts Using Analytical Redundancy
by Eddy Yujra Rivas, Alexander Vyacheslavov, Kirill Gogolinskiy, Kseniia Sapozhnikova and Roald Taymanov
Sensors 2026, 26(3), 801; https://doi.org/10.3390/s26030801 - 25 Jan 2026
Viewed by 247
Abstract
This study proposes an analytical redundancy method that combines empirical models with a Kalman filter to ensure the reliability of measurements from axial deformation sensors in a turbine head-cover bolt-monitoring system. This integration enables the development of predictive models that optimally estimate the [...] Read more.
This study proposes an analytical redundancy method that combines empirical models with a Kalman filter to ensure the reliability of measurements from axial deformation sensors in a turbine head-cover bolt-monitoring system. This integration enables the development of predictive models that optimally estimate the dynamic deformation of each bolt during turbine operation at full and partial load. The test results of the models under conditions of outliers, measurement noise, and changes in turbine operating mode, evaluated using accuracy and sensitivity metrics, confirmed their high accuracy (Acc ≈ 0.146 µm) and robustness (SA < 0.001). The evaluation of the models’ responses to simulated sensor faults (offset, drift, precision degradation, stuck-at) revealed characteristic residual patterns for faults with magnitudes > 5 µm. These findings establish the foundation for developing a fault detection and isolation algorithm for continuous monitoring of these sensors’ operational health. For practical implementation, the models require validation across all operational modes, and maximum admissible deformation thresholds must be defined. Full article
Show Figures

Figure 1

20 pages, 7468 KB  
Article
Evaluation of Phytoremediation Effectiveness Using Laser-Induced Breakdown Spectroscopy with Integrated Transfer Learning and Spectral Indices
by Yi Lu, Zhengyu Tao, Xinyu Guo, Tingqiang Li, Wenwen Kong and Fei Liu
Chemosensors 2026, 14(2), 29; https://doi.org/10.3390/chemosensors14020029 - 24 Jan 2026
Viewed by 204
Abstract
Phytoremediation is an eco-friendly and in situ solution for remediating heavy metal-contaminated soils, yet practical application requires timely and accurate effectiveness evaluation. However, conventional chemical analysis of plant parts and soils is labor-intensive, time-consuming and limited for large-scale monitoring. This study proposed a [...] Read more.
Phytoremediation is an eco-friendly and in situ solution for remediating heavy metal-contaminated soils, yet practical application requires timely and accurate effectiveness evaluation. However, conventional chemical analysis of plant parts and soils is labor-intensive, time-consuming and limited for large-scale monitoring. This study proposed a rapid sensing framework integrating laser-induced breakdown spectroscopy (LIBS) with deep transfer learning and spectral indices to assess phytoremediation effectiveness of Sedum alfredii (a Cd/Zn co-hyperaccumulator). LIBS spectra were collected from plant tissues and diverse soil matrices. To overcome strong matrix effects, fine-tuned convolutional neural networks were developed for simultaneous multi-matrix quantification, achieving high-accuracy prediction for Cd and Zn (R2test > 0.99). These predicted concentrations enabled calculating conventional phytoremediation indicators like bioconcentration factor (BCF), translocation factor (TF), plant effective number (PEN), and removal efficiency (RE), yielding recovery rates near 100% for TF and PEN. Additionally, novel spectral indices (SIs)—directly derived from characteristic wavelength combinations—were constructed to bypass intermediate quantification. SIs significantly improved the direct evaluation of Zn removal and translocation. Finally, a decision-level fusion strategy combining concentration predictions and SIs enhanced Cd removal assessment accuracy. This study validates LIBS combined with intelligent algorithms as a rapid sensor tool for monitoring phytoremediation performance, facilitating sustainable environmental management. Full article
(This article belongs to the Special Issue Application of Laser-Induced Breakdown Spectroscopy, 2nd Edition)
Show Figures

Figure 1

26 pages, 4548 KB  
Article
Design and Experimentation of High-Throughput Granular Fertilizer Detection and Real-Time Precision Regulation System
by Li Ding, Feiyang Wu, Yuanyuan Li, Kaixuan Wang, Yechao Yuan, Bingjie Liu and Yufei Dou
Agriculture 2026, 16(3), 290; https://doi.org/10.3390/agriculture16030290 - 23 Jan 2026
Viewed by 253
Abstract
To address the challenge of imprecise detection and control of fertilizer application rates caused by high granular flow during fertilization operations, a parallel diversion detection method with real-time application rate regulation is proposed. The mechanism of uniform distribution of discrete particles formed by [...] Read more.
To address the challenge of imprecise detection and control of fertilizer application rates caused by high granular flow during fertilization operations, a parallel diversion detection method with real-time application rate regulation is proposed. The mechanism of uniform distribution of discrete particles formed by high-throughput aggregated granular fertilizer was elucidated. Key components including the uniform fertilizer tube, sensor detection structure, six-channel diversion cone disc, and fertilizer convergence tube underwent parametric design, culminating in the innovative development of a six-channel parallel diversion detection device. A multi-channel parallel signal detection method was studied, and a synchronous multi-channel signal acquisition system was designed. Through calibration tests, relationship models were established between the measured flow rate of granular fertilizer and voltage, as well as between the actual flow rate and the rotational speed of the fertilizer discharge shaft. A fuzzy PID control model was constructed in MATLAB2023/Simulink. Using overshoot, response time, and stability as evaluation metrics, the control performance of traditional PID and fuzzy PID was compared and analyzed. To validate the control system’s precision, device performance tests were conducted. Results demonstrated that fuzzy PID control reduced the time required to reach steady state by 66.87% compared to traditional PID, while overshoot decreased from 7.38 g·s−1 to 1.49 g·s−1. Divergence uniformity tests revealed that at particle generation rates of 10, 20, 30, and 40 g·s−1, the coefficient of variation for channel divergence consistency gradually increased with rising tilt angles. During field operations at 0–5.0° tilt, the coefficient of variation for channel divergence consistency remained below 7.72%. Bench tests revealed that the fuzzy PID control system achieved an average accuracy improvement of 3.64% compared to traditional PID control, with a maximum response time of 0.9 s. Field trials demonstrated detection accuracy no less than 92.64% at normal field operation speeds of 3.0–6.0 km·h−1. This system enables real-time, precise detection of fertilizer application rates and closed-loop regulation. Full article
Show Figures

Figure 1

20 pages, 2228 KB  
Article
Sensor-Derived Parameters from Standardized Walking Tasks Can Support the Identification of Patients with Parkinson’s Disease at Risk of Gait Deterioration
by Francesca Boschi, Stefano Sapienza, Alzhraa A. Ibrahim, Magdalena Sonner, Juergen Winkler, Bjoern Eskofier, Heiko Gaßner and Jochen Klucken
Bioengineering 2026, 13(2), 130; https://doi.org/10.3390/bioengineering13020130 - 23 Jan 2026
Viewed by 261
Abstract
Background: People with Parkinson’s disease suffer from gait impairments. Clinical scales provide a limited and rater-dependent assessment of gait. Wearable sensors allow an objective characterization by capturing rhythm, pace, and signature patterns. This study investigated if sensor-derived gait parameters have prognostic value for [...] Read more.
Background: People with Parkinson’s disease suffer from gait impairments. Clinical scales provide a limited and rater-dependent assessment of gait. Wearable sensors allow an objective characterization by capturing rhythm, pace, and signature patterns. This study investigated if sensor-derived gait parameters have prognostic value for short-term progression of gait impairments. Methods: A total of 111 longitudinal visit pairs were analyzed, where participants underwent clinical evaluation and a 4 × 10 m walking test instrumented with wearable sensors. Changes in the UPDRSIII gait score between baseline and follow-up were used to classify participants as Improvers, Stables, or Deteriorators. Baseline group differences were assessed statistically. Machine-learning classifiers were trained to predict group membership using clinical variables alone, sensor-derived gait features alone, or a combination of both. Results: Significant between-group differences emerged. In participants with UPDRSIII gait score = 1, Improvers showed higher median gait velocity (0.81 m/s) and stride length (0.80 m) than Stables (0.68 m/s; 0.70 m) and Deteriorators (0.59 m/s; 0.68 m), along with lower stance time variability (3.10% vs. 4.49% and 3.75%; all p<0.05). The combined sensor-based and clinical model showed the best performance (AUC 0.82). Conclusions: Integrating sensor-derived gait parameters with clinical score can support the identification of patients at risk of gait deterioration in the near future. Full article
(This article belongs to the Special Issue Technological Advances for Gait and Balance Assessment)
Show Figures

Figure 1

20 pages, 7268 KB  
Article
A Two-Dimensional (2-D) Sensor Network Architecture with Artificial Intelligence Models for the Detection of Magnetic Anomalies
by Paolo Gastaldo, Rodolfo Zunino, Alessandro Bellesi, Alessandro Carbone, Marco Gemma and Edoardo Ragusa
Sensors 2026, 26(3), 764; https://doi.org/10.3390/s26030764 - 23 Jan 2026
Viewed by 162
Abstract
The paper presents the development and preliminary evaluation of a two-dimensional (2-D) network of magnetometers for magnetic anomaly detection. The configuration significantly improves over the existing one-dimensional (1-D) architecture, as it enhances the spatial characterization of magnetic anomalies through the simultaneous acquisition of [...] Read more.
The paper presents the development and preliminary evaluation of a two-dimensional (2-D) network of magnetometers for magnetic anomaly detection. The configuration significantly improves over the existing one-dimensional (1-D) architecture, as it enhances the spatial characterization of magnetic anomalies through the simultaneous acquisition of data over an extended area. This leads to a reliable estimation of the target motion parameters. Each sensor node in the network includes a custom-designed electronic system, integrating a biaxial fluxgate magnetometer that operates in null mode. Deep learning models process the raw measurements collected by the magnetometers and extract structured information that enables both automated detection and preliminary target tracking. In the experimental evaluation, a 5×5 array of nodes was deployed over a 12×12 m2 area for terrestrial tests, using moving ferromagnetic cylinders as targets. The results confirmed the feasibility of the 2-D configuration and supported its integration into intelligent, real-time surveillance systems for security and underwater monitoring applications. Full article
(This article belongs to the Special Issue Feature Papers in Physical Sensors 2025)
Show Figures

Figure 1

27 pages, 16408 KB  
Article
A SNR-Based Adaptive Goldstein Filter for Ionospheric Faraday Rotation Estimation Using Spaceborne Full-Polarimetric SAR Data
by Zelin Wang, Xun Wang, Dong Li and Yunhua Zhang
Remote Sens. 2026, 18(2), 378; https://doi.org/10.3390/rs18020378 - 22 Jan 2026
Viewed by 121
Abstract
The spaceborne full-polarimetric (FP) synthetic aperture radar (SAR) is an advanced sensor for high-resolution Earth observation. However, FP data acquired by such a system are prone to distortions induced by ionospheric Faraday rotation (FR). From the perspective of exploiting these distortions, this enables [...] Read more.
The spaceborne full-polarimetric (FP) synthetic aperture radar (SAR) is an advanced sensor for high-resolution Earth observation. However, FP data acquired by such a system are prone to distortions induced by ionospheric Faraday rotation (FR). From the perspective of exploiting these distortions, this enables the estimation of the ionospheric FR angle (FRA), and consequently the total electron content, across most global regions (including the extensive ocean areas) using spaceborne FP SAR measurements. The accuracy of FRA estimation, however, is highly sensitive to noise interference. This study addresses denoising in FRA retrieval based on the Bickel–Bates estimator, with a specific focus on noise reduction methods built upon the adaptive Goldstein filter (AGF) that was originally designed for radar interferometric processing. For the first time, three signal-to-noise ratio (SNR)-based AGFs suitable for FRA estimation are investigated. A key feature of these filters is that their SNRs are all defined using the amplitude of the Bickel–Bates estimator signal rather than the FRA estimates themselves. Accordingly, these AGFs are applied to the estimator signal instead of the estimated FRAs. Two of the three AGFs are developed by adopting the mathematical forms of SNRs and filter parameters consistent with the existing SNR-based AGFs for interferogram. The third AGF is newly proposed by utilizing more general mathematical forms of SNR and filter parameter that differ from the first two. Specifically, its SNR definition aligns with that widely used in image processing, and its filter parameter is derived as a function of the defined SNR plus an additionally introduced adjustable factor. The three SNR-based AGFs tailored for FRA estimation are tested and evaluated against existing AGF variants and classical image denoising methods using three sets of FP SAR Datasets acquired by the L-band ALOS PALSAR sensor, encompassing an ocean-only scene, a plain land–ocean combined scene, and a more complex land–ocean combined scene. Experimental results demonstrate that all three filters can effectively mitigate noise, with the newly proposed AGF achieving the best performance among all denoising methods included in the comparison. Full article
Show Figures

Figure 1

19 pages, 17706 KB  
Article
From Simplified Markers to Muscle Function: A Deep Learning Approach for Personalized Cervical Biomechanics Assessment Powered by Massive Musculoskeletal Simulation
by Yuanyuan He, Siyu Liu and Miao Li
Sensors 2026, 26(2), 752; https://doi.org/10.3390/s26020752 - 22 Jan 2026
Viewed by 146
Abstract
Accurate, subject-specific estimation of cervical muscle forces is a critical prerequisite for advancing spinal biomechanics and clinical diagnostics. However, this task remains challenging due to substantial inter-individual anatomical variability and the invasiveness of direct measurement techniques. In this study, we propose a novel [...] Read more.
Accurate, subject-specific estimation of cervical muscle forces is a critical prerequisite for advancing spinal biomechanics and clinical diagnostics. However, this task remains challenging due to substantial inter-individual anatomical variability and the invasiveness of direct measurement techniques. In this study, we propose a novel data-driven biomechanical framework that addresses these limitations by integrating massive-scale personalized musculoskeletal simulations with an efficient Feedforward Neural Network (FNN) model. We generated an unprecedented dataset comprising one million personalized OpenSim cervical models, systematically varying key anthropometric parameters (neck length, shoulder width, head mass) to robustly capture human morphological diversity. A random subset was selected for inverse dynamics simulations to establish a comprehensive, physics-based training dataset. Subsequently, an FNN was trained to learn a robust, nonlinear mapping from non-invasive kinematic and anthropometric inputs to the forces of 72 cervical muscles. The model’s accuracy was validated on a test set, achieving a coefficient of determination (R2) exceeding 0.95 for all 72 muscle forces. This approach effectively transforms a computationally intensive biomechanical problem into a rapid tool. Additionally, the framework incorporates a functional assessment module that evaluates motion deficits by comparing observed head trajectories against a simulated idealized motion envelope. Validation using data from a healthy subject and a patient with restricted mobility demonstrated the framework’s ability to accurately track muscle force trends and precisely identify regions of functional limitations. This methodology offers a scalable and clinically translatable solution for personalized cervical muscle evaluation, supporting targeted rehabilitation and injury risk assessment based on readily obtainable sensor data. Full article
(This article belongs to the Section Biomedical Sensors)
Show Figures

Figure 1

Back to TopTop