Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (12)

Search Parameters:
Keywords = self-homodyne

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 3490 KiB  
Communication
Laser Linewidth Measurement Using an FPGA-Based Delay Self-Homodyne System
by Fanqi Bu, Zhongan Zhao, Longfei Li, Cunwei Zhang, Tie Li, Yaoyao Qi, Jie Ding, Bingzheng Yan, Chen Zhao, Yulei Wang, Zhiwei Lu, Yu Ding and Zhenxu Bai
Photonics 2025, 12(3), 203; https://doi.org/10.3390/photonics12030203 - 26 Feb 2025
Viewed by 787
Abstract
Narrow-linewidth lasers play a crucial role in nonlinear optics, atomic physics, optical metrology, and high-speed coherent optical communications. Precise linewidth measurement is essential for assessing laser noise characteristics; however, conventional methods are often bulky, costly, and unsuitable for integrated applications. This paper presents [...] Read more.
Narrow-linewidth lasers play a crucial role in nonlinear optics, atomic physics, optical metrology, and high-speed coherent optical communications. Precise linewidth measurement is essential for assessing laser noise characteristics; however, conventional methods are often bulky, costly, and unsuitable for integrated applications. This paper presents a compact and cost-effective delay self-homodyne system for laser linewidth measurement, leveraging a field-programmable gate array (FPGA)-based data acquisition circuit. By employing fast Fourier transform (FFT) analysis, the system achieves high-precision linewidth measurement in the kHz range. Additionally, by optimizing the fiber length, the system effectively suppresses low-frequency and 1/f noise, providing an integrated and efficient solution for advanced laser characterization with enhanced performance and reduced cost. Full article
Show Figures

Figure 1

14 pages, 7388 KiB  
Article
Parallel CV-QRNG with Strict Entropy Evaluation
by Zhicang Zheng, Xiaomin Guo, Fading Lin, Yingqi Wang, Yu Wang and Yanqiang Guo
Photonics 2023, 10(7), 786; https://doi.org/10.3390/photonics10070786 - 6 Jul 2023
Cited by 3 | Viewed by 1883
Abstract
Continuous-variable quantum random number generators (CV-QRNGs) have promising application prospects thanks to their advantages such as high detection bandwidth, robustness of system, and integratability. In major CV-QRNGs, the generation of random numbers is based on homodyne detection and discretization of the quadrature fluctuations [...] Read more.
Continuous-variable quantum random number generators (CV-QRNGs) have promising application prospects thanks to their advantages such as high detection bandwidth, robustness of system, and integratability. In major CV-QRNGs, the generation of random numbers is based on homodyne detection and discretization of the quadrature fluctuations of the EM fields. Any defectiveness in physical realization may leak information correlated with the generated numbers and the maximal amount of randomness that can be extracted in presence of such side-information is evaluated by the so-called quantum conditional min-entropy. The parallel CV-QRNG overcomes the rate bottleneck of the previous serial type scheme. As a type of device-trusted QRNG, its security needs to be better guaranteed based on self-testing or monitoring that can be rigorously enforced. In this work, four sideband modes of vacuum state within 1.6 GHz detection bandwidth were extracted parallelly as the entropy source, and 16-bit analog-to-digital conversion in each channel was realized. Without making any ideal assumptions, the transfer function of the homodyne and quantization system was measured based on beat method to calibrate the evaluation of the min-entropy. Based on the rigorous entropy evaluation with a hash security parameter of εhash = 2−110, a real-time generation rate of 7.25 Gbps was finally achieved. Full article
(This article belongs to the Special Issue Optical Quantum System)
Show Figures

Figure 1

14 pages, 2793 KiB  
Article
Polarization Controller Based on Variable-Step Greedy Linear Descent for Self-Homodyne Coherent Transmission Systems
by Qianwen Fang, Xian Zhou, Rui Li, Yuyuan Gao, Shiyao Wang, Feiyu Li and Keping Long
Photonics 2023, 10(7), 770; https://doi.org/10.3390/photonics10070770 - 4 Jul 2023
Cited by 1 | Viewed by 2040
Abstract
A self-homodyne coherent (SHC) transmission system that has a good prospect in terms of short-reach interconnections can simplify digital signal processing (DSP) and reduce the power consumption of laser diodes. However, the polarization control of the carrier becomes a pivotal part of these [...] Read more.
A self-homodyne coherent (SHC) transmission system that has a good prospect in terms of short-reach interconnections can simplify digital signal processing (DSP) and reduce the power consumption of laser diodes. However, the polarization control of the carrier becomes a pivotal part of these systems, and different from the traditional polarization control on a certain state of polarization (SOP), it only needs to lock the two polarization lights after the polarization beam splitter (PBS) in a state of equal power. Half-wave plates or Mach–Zehnder interferometers can accomplish the above goals. In order to evaluate the performance of these polarization control structures in the SHC system, we modeled them on the basis of theoretical analysis. Furthermore, a variable-step greedy linear descent (GLD) algorithm is proposed to solve the power fluctuation problem caused by the accelerated change of SOP near the pole of the Poincaré sphere. The simulation results indicate that the variable-step GLD algorithm can effectively improve the tracking ability of the polarization control loop up to approximately 1.5 times of the GLD algorithm and the gradient descent (GD) algorithm. Full article
(This article belongs to the Special Issue Enabling Technologies for Optical Communications and Networking)
Show Figures

Figure 1

11 pages, 2832 KiB  
Article
The Influence of Noise Floor on the Measurement of Laser Linewidth Using Short-Delay-Length Self-Heterodyne/Homodyne Techniques
by Zhongan Zhao, Zhenxu Bai, Duo Jin, Xiaojing Chen, Yaoyao Qi, Jie Ding, Bingzheng Yan, Yulei Wang, Zhiwei Lu and Richard P. Mildren
Micromachines 2022, 13(8), 1311; https://doi.org/10.3390/mi13081311 - 13 Aug 2022
Cited by 21 | Viewed by 4447
Abstract
Delayed self-heterodyne/homodyne measurements based on an unbalanced interferometer are the most used methods for measuring the linewidth of narrow-linewidth lasers. They typically require the service of a delay of six times (or greater) than the laser coherence time to guarantee the Lorentzian characteristics [...] Read more.
Delayed self-heterodyne/homodyne measurements based on an unbalanced interferometer are the most used methods for measuring the linewidth of narrow-linewidth lasers. They typically require the service of a delay of six times (or greater) than the laser coherence time to guarantee the Lorentzian characteristics of the beat notes. Otherwise, the beat notes are displayed as a coherent envelope. The linewidth cannot be directly determined from the coherence envelope. However, measuring narrow linewidths using traditional methods introduces significant errors due to the 1/f frequency noise. Here, a short fiber-based linewidth measurement scheme was proposed, and the influence of the noise floor on the measurement of the laser linewidth using this scheme was studied theoretically and experimentally. The results showed that this solution and calibration process is capable of significantly improving the measurement accuracy of narrow linewidth. Full article
(This article belongs to the Special Issue Advances in Optoelectronic Devices)
Show Figures

Figure 1

13 pages, 4446 KiB  
Article
Determining the Stable Injection Locking of a Fabry-Pérot Laser by Observing the RF Spectral Components Generated by a Low-Reflectivity External Cavity
by Jakup Ratkoceri and Bostjan Batagelj
Photonics 2021, 8(11), 487; https://doi.org/10.3390/photonics8110487 - 31 Oct 2021
Cited by 4 | Viewed by 4194
Abstract
A novel approach to monitoring the laser injection-locking (IL) state is proposed and verified using the side-mode suppression ratio (SMSR). In a photonics experiment for laser IL, an optical spectrum analyzer with the conventional criterion of a 35-dB SMSR is conventionally used to [...] Read more.
A novel approach to monitoring the laser injection-locking (IL) state is proposed and verified using the side-mode suppression ratio (SMSR). In a photonics experiment for laser IL, an optical spectrum analyzer with the conventional criterion of a 35-dB SMSR is conventionally used to detect the locking state of a Fabry–Pérot (FP) laser with multiple longitudinal modes to an external master laser with one longitudinal mode. Since the 35-dB criterion is not always a sufficient locking condition, we propose a microwave-photonic technique to determine the stable-locking regime based on the observation of the radio-frequency (RF) components. A novel approach to monitoring the generated additional spectral components uses the well-known delayed-self-homodyne technique and the RF spectrum analyzer. For the novel generation of additional longitudinal groups on each FP laser’s resonator mode in the optical spectrum and consequently the overlapping RF components in the RF spectrum, an additional external resonator with low reflectivity was connected to the slave FP laser. The novel monitoring approach was experimentally verified by connecting a 1-m-long external cavity with 0.5% reflectivity and observing the optical IL phenomenon of a 1550-nm FP semiconductor laser. Full article
Show Figures

Figure 1

29 pages, 15483 KiB  
Article
Development of an Optical System for Non-Contact Type Measurement of Heart Rate and Heart Rate Variability
by Jyoti Gondane and Meena S. Panse
Appl. Syst. Innov. 2021, 4(3), 48; https://doi.org/10.3390/asi4030048 - 28 Jul 2021
Cited by 3 | Viewed by 4898
Abstract
Self-mixing optical coherent detection is a non-contact measurement technique which provides accurate information about the vibration frequency of any test subject. In this research, novel designs of optical homodyne and heterodyne detection techniques are explained. Homodyne and heterodyne setups are used for measuring [...] Read more.
Self-mixing optical coherent detection is a non-contact measurement technique which provides accurate information about the vibration frequency of any test subject. In this research, novel designs of optical homodyne and heterodyne detection techniques are explained. Homodyne and heterodyne setups are used for measuring the frequency of the modulated optical signal. This technique works on the principle of the optical interferometer, which provides a coherent detection of two self-mixing beams. In the optical homodyne technique, one of the two beams receives direct modulation from the vibration frequency of the test subject. In the optical heterodyne detection technique, one of the two optical beams is subjected to modulation by an acousto-optics modulator before becoming further modulated by the vibration frequency of the test subject. These two optical signals form an interference pattern that contains the information of the vibration frequency. The measurement of cardiovascular signals, such as heart rate and heart rate variability, are performed with both homodyne and heterodyne techniques. The optical coherent detection technique provides a high accuracy for the measurement of heart period and heart rate variability. The vibrocardiogram output obtained from both techniques are compared for different heart rate values. Results obtained from both optical homodyne and heterodyne detection techniques are compared and found to be within 1% of deviation value. The results obtained from both the optical techniques have a deviation of less than 1 beat per minute from their corresponding ECG values. Full article
Show Figures

Figure 1

17 pages, 1503 KiB  
Article
Single-Element Dual-Interferometer for Precision Inertial Sensing
by Yichao Yang, Kohei Yamamoto, Victor Huarcaya, Christoph Vorndamme, Daniel Penkert, Germán Fernández Barranco, Thomas S. Schwarze, Moritz Mehmet, Juan Jose Esteban Delgado, Jianjun Jia, Gerhard Heinzel and Miguel Dovale Álvarez
Sensors 2020, 20(17), 4986; https://doi.org/10.3390/s20174986 - 3 Sep 2020
Cited by 9 | Viewed by 5124
Abstract
Tracking moving masses in several degrees of freedom with high precision and large dynamic range is a central aspect in many current and future gravitational physics experiments. Laser interferometers have been established as one of the tools of choice for such measurement schemes. [...] Read more.
Tracking moving masses in several degrees of freedom with high precision and large dynamic range is a central aspect in many current and future gravitational physics experiments. Laser interferometers have been established as one of the tools of choice for such measurement schemes. Using sinusoidal phase modulation homodyne interferometry allows a drastic reduction of the complexity of the optical setup, a key limitation of multi-channel interferometry. By shifting the complexity of the setup to the signal processing stage, these methods enable devices with a size and weight not feasible using conventional techniques. In this paper we present the design of a novel sensor topology based on deep frequency modulation interferometry: the self-referenced single-element dual-interferometer (SEDI) inertial sensor, which takes simplification one step further by accommodating two interferometers in one optic. Using a combination of computer models and analytical methods we show that an inertial sensor with sub-picometer precision for frequencies above 10 mHz, in a package of a few cubic inches, seems feasible with our approach. Moreover we show that by combining two of these devices it is possible to reach sub-picometer precision down to 2 mHz. In combination with the given compactness, this makes the SEDI sensor a promising approach for applications in high precision inertial sensing for both next-generation space-based gravity missions employing drag-free control, and ground-based experiments employing inertial isolation systems with optical readout. Full article
Show Figures

Graphical abstract

12 pages, 6984 KiB  
Article
Real-Time Correction and Stabilization of Laser Diode Wavelength in Miniature Homodyne Interferometer for Long-Stroke Micro/Nano Positioning Stage Metrology
by Yindi Cai, Baokai Feng, Qi Sang and Kuang-Chao Fan
Sensors 2019, 19(20), 4587; https://doi.org/10.3390/s19204587 - 22 Oct 2019
Cited by 9 | Viewed by 4690
Abstract
A low-cost miniature homodyne interferometer (MHI) with self-wavelength correction and self-wavelength stabilization is proposed for long-stroke micro/nano positioning stage metrology. In this interferometer, the displacement measurement is based on the analysis of homodyne interferometer fringe pattern. In order to miniaturize the interferometer size, [...] Read more.
A low-cost miniature homodyne interferometer (MHI) with self-wavelength correction and self-wavelength stabilization is proposed for long-stroke micro/nano positioning stage metrology. In this interferometer, the displacement measurement is based on the analysis of homodyne interferometer fringe pattern. In order to miniaturize the interferometer size, a low-cost and small-sized laser diode is adopted as the laser source. The accuracy of the laser diode wavelength is real-time corrected by the proposed wavelength corrector using a modified wavelength calculation equation. The variation of the laser diode wavelength is suppressed by a real-time wavelength stabilizer, which is based on the principle of laser beam drift compensation and the principle of automatic temperature control. The optical configuration of the proposed MHI is proposed. The methods of displacement measurement, wavelength correction, and wavelength stabilization are depicted in detail. A laboratory-built prototype of the MHI is constructed, and experiments are carried out to demonstrate the feasibility of the proposed wavelength correction and stabilization methods. Full article
(This article belongs to the Section Optical Sensors)
Show Figures

Figure 1

17 pages, 2153 KiB  
Technical Note
Development of a Multimode Field Deployable Lidar Instrument for Topographic Measurements of Unsaturated Soil Properties: Instrument Description
by Sean E. Salazar, Cyrus D. Garner and Richard A. Coffman
Remote Sens. 2019, 11(3), 289; https://doi.org/10.3390/rs11030289 - 1 Feb 2019
Cited by 5 | Viewed by 5494
Abstract
The hydrological and mechanical behavior of soil is determined by the moisture content, soil water (matric) potential, fines content, and plasticity. However, these parameters are often difficult or impractical to determine in the field. Remote characterization of soil parameters is a non-destructive data [...] Read more.
The hydrological and mechanical behavior of soil is determined by the moisture content, soil water (matric) potential, fines content, and plasticity. However, these parameters are often difficult or impractical to determine in the field. Remote characterization of soil parameters is a non-destructive data collection process well suited to large or otherwise inaccessible areas. A ground-based, field-deployable remote sensor, called the soil observation laser absorption spectrometer (SOLAS), was developed to collect measurements from the surface of bare soils and to assess the in-situ condition and essential parameters of the soil. The SOLAS instrument transmits coherent light at two wavelengths using two, continuous-wave, near-infrared diode lasers and the instrument receives backscattered light through a co-axial 203-mm diameter telescope aperture. The received light is split into a hyperspectral sensing channel and a laser absorption spectrometry (LAS) channel via a multi-channel optical receiver. The hyperspectral channel detects light in the visible to shortwave infrared wavelengths, while the LAS channel filters and directs near-infrared light into a pair of photodetectors. Atmospheric water vapor is inferred using the differential absorption of the on- and off-line laser wavelengths (823.20 nm and 847.00 nm, respectively). Range measurement is determined using a frequency-modulated, self-chirped, coherent, homodyne detection scheme. The development of the instrument (transmitter, receiver, data acquisition components) is described herein. The potential for rapid characterization of physical and hydro-mechanical soil properties, including volumetric water content, matric potential, fines content, and plasticity, using the SOLAS remote sensor is discussed. The envisioned applications for the instrument include assessing soils on unstable slopes, such as wildfire burn sites, or stacked mine tailings. Through the combination of spectroradiometry, differential absorption, and range altimetry methodologies, the SOLAS instrument is a novel approach to ground-based remote sensing of the natural environment. Full article
(This article belongs to the Special Issue Remote Sensing of Regional Soil Moisture)
Show Figures

Graphical abstract

25 pages, 5535 KiB  
Review
Frequency Comb-Based WDM Transmission Systems Enabling Joint Signal Processing
by Lars Lundberg, Magnus Karlsson, Abel Lorences-Riesgo, Mikael Mazur, Victor Torres-Company, Jochen Schröder and Peter A. Andrekson
Appl. Sci. 2018, 8(5), 718; https://doi.org/10.3390/app8050718 - 4 May 2018
Cited by 92 | Viewed by 9892
Abstract
We review the use of optical frequency combs in wavelength-division multiplexed (WDM) fiber optic communication systems. In particular, we focus on the unique possibilities that are opened up by the stability of the comb-line spacing and the phase coherence between the lines. We [...] Read more.
We review the use of optical frequency combs in wavelength-division multiplexed (WDM) fiber optic communication systems. In particular, we focus on the unique possibilities that are opened up by the stability of the comb-line spacing and the phase coherence between the lines. We give an overview of different techniques for the generation of optical frequency combs and review their use in WDM systems. We discuss the benefits of the stable line spacing of frequency combs for creating densely-packed optical superchannels with high spectral efficiency. Additionally, we discuss practical considerations when implementing frequency-comb-based transmitters. Furthermore, we describe several techniques for comb-based superchannel receivers that enables the phase coherence between the lines to be used to simplify or increase the performance of the digital carrier recovery. The first set of receiver techniques is based on comb-regeneration from optical pilot tones, enabling low-overhead self-homodyne detection. The second set of techniques takes advantage of the phase coherence by sharing phase information between the channels through joint digital signal processing (DSP) schemes. This enables a lower DSP complexity or a higher phase-noise tolerance. Full article
(This article belongs to the Special Issue DSP for Next Generation Fibre Communication Systems)
Show Figures

Figure 1

7 pages, 1196 KiB  
Article
Two Interrogated FBG Spectral Linewidth for Strain Sensing through Correlation
by Shih-Hsiang Hsu, Kuo-Wei Chuang, Ci-Syu Chen, Ching-Yu Lin and Che-Chang Chang
Sensors 2017, 17(12), 2837; https://doi.org/10.3390/s17122837 - 7 Dec 2017
Viewed by 4342
Abstract
The spectral linewidth from two cross-correlated fiber Bragg gratings (FBGs) are interrogated and characterized using a delayed self-homodyne method for fiber strain sensing. This approach employs a common higher frequency resolution instead of wavelength. A sensitivity and resolution of 166 MHz/με and 50 [...] Read more.
The spectral linewidth from two cross-correlated fiber Bragg gratings (FBGs) are interrogated and characterized using a delayed self-homodyne method for fiber strain sensing. This approach employs a common higher frequency resolution instead of wavelength. A sensitivity and resolution of 166 MHz/με and 50 nε were demonstrated from 4 GHz spectral linewidth characterization on the electric spectrum analyzer. A 10 nε higher resolution can be expected through random noise analyses when the spectral linewidth from two FBG correlations is reduced to 1 GHz. Moreover, the FBG spectrum is broadened during strain and experimentally shows a 0.44 pm/με sensitivity, which is mainly caused by the photo elastic effect from the fiber grating period stretch. Full article
(This article belongs to the Special Issue Optical Fiber Sensors 2017)
Show Figures

Figure 1

21 pages, 747 KiB  
Review
Self-Homodyne Detection in Optical Communication Systems
by Benjamin J. Puttnam, Ruben S. Luís, José Manuel Delgado Mendinueta, Jun Sakaguchi, Werner Klaus, Yukiyoshi Kamio, Moriya Nakamura, Naoya Wada, Yoshinari Awaji, Atsushi Kanno, Tetsuya Kawanishi and Tetsuya Miyazaki
Photonics 2014, 1(2), 110-130; https://doi.org/10.3390/photonics1020110 - 6 May 2014
Cited by 61 | Viewed by 15058
Abstract
We review work on self-homodyne detection (SHD) for optical communication systems. SHD uses a transmitted pilot-tone (PT), originating from the transmitter laser, to exploit phase noise cancellation at a coherent receiver and to enable transmitter linewidth tolerance and potential energy savings. We give [...] Read more.
We review work on self-homodyne detection (SHD) for optical communication systems. SHD uses a transmitted pilot-tone (PT), originating from the transmitter laser, to exploit phase noise cancellation at a coherent receiver and to enable transmitter linewidth tolerance and potential energy savings. We give an overview of SHD performance, outlining the key contributors to the optical signal-to-noise ratio penalty compared to equivalent intradyne systems, and summarize the advantages, differences and similarities between schemes using polarization-division multiplexed PTs (PDM-SHD) and those using space-division multiplexed PTs (SDM-SHD). For PDM-SHD, we review the extensive work on the transmission of advanced modulation formats and techniques to minimize the trade-off with spectral efficiency, as well as recent work on digital SHD, where the SHD receiver is combined with an polarization-diversity ID front-end receiver to provide both polarization and modulation format alignment. We then focus on SDM-SHD systems, describing experimental results using multi-core fibers (MCFs) with up to 19 cores, including high capacity transmission with broad-linewidth lasers and experiments incorporating SDM-SHD in networking. Additionally, we discuss the requirement for polarization tracking of the PTs at the receiver and path length alignment and review some variants of SHD before outlining the future challenges of self-homodyne optical transmission and gaps in current knowledge. Full article
(This article belongs to the Special Issue All Optical Networks for Communications)
Show Figures

Figure 1

Back to TopTop