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Abstract: The hydrological and mechanical behavior of soil is determined by the moisture content, soil
water (matric) potential, fines content, and plasticity. However, these parameters are often difficult or
impractical to determine in the field. Remote characterization of soil parameters is a non-destructive
data collection process well suited to large or otherwise inaccessible areas. A ground-based,
field-deployable remote sensor, called the soil observation laser absorption spectrometer (SOLAS),
was developed to collect measurements from the surface of bare soils and to assess the in-situ
condition and essential parameters of the soil. The SOLAS instrument transmits coherent light at two
wavelengths using two, continuous-wave, near-infrared diode lasers and the instrument receives
backscattered light through a co-axial 203-mm diameter telescope aperture. The received light is
split into a hyperspectral sensing channel and a laser absorption spectrometry (LAS) channel via a
multi-channel optical receiver. The hyperspectral channel detects light in the visible to shortwave
infrared wavelengths, while the LAS channel filters and directs near-infrared light into a pair of
photodetectors. Atmospheric water vapor is inferred using the differential absorption of the on-
and off-line laser wavelengths (823.20 nm and 847.00 nm, respectively). Range measurement is
determined using a frequency-modulated, self-chirped, coherent, homodyne detection scheme.
The development of the instrument (transmitter, receiver, data acquisition components) is described
herein. The potential for rapid characterization of physical and hydro-mechanical soil properties,
including volumetric water content, matric potential, fines content, and plasticity, using the SOLAS
remote sensor is discussed. The envisioned applications for the instrument include assessing soils on
unstable slopes, such as wildfire burn sites, or stacked mine tailings. Through the combination of
spectroradiometry, differential absorption, and range altimetry methodologies, the SOLAS instrument
is a novel approach to ground-based remote sensing of the natural environment.
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1. Introduction

Remote sensing is well suited for non-intrusive observation of bare soils, especially over large,
hazardous, or inaccessible areas, such as a wildfire site. For example, spaceborne remote sensing
techniques are commonly used to rapidly (1) establish wildfire perimeters, (2) assess the remaining
vegetative cover, and (3) determine the burn severity after containment of the fire. Collected
remotely sensed data (burn severity, extent) are often calibrated with ground-truthing methods,
yet these proximal ground-truthing methods are often point-wise, spatially limited, and cannot

Remote Sens. 2019, 11, 289 ; doi:10.3390/rs11030289 www.mdpi.com/journal/remotesensing

http://www.mdpi.com/journal/remotesensing
http://www.mdpi.com
https://orcid.org/0000-0003-2345-9167
http://dx.doi.org/10.3390/rs11030289 
http://www.mdpi.com/journal/remotesensing
http://www.mdpi.com/2072-4292/11/3/289?type=check_update&version=2


Remote Sens. 2019, 11, 289 2 of 17

easily cover vast areas. Moreover, information about the soil is not commonly collected in these
areas following a wildfire. Characterization of soil in a wildfire-affected area commonly relies on
regional, typified soils data from databases like the Soil Survey Geographic Database (SSURGO)
and the State Soil Geographic Survey (STATSGO). These data, however, have insufficient resolution
for reliable, site-specific, predictive modeling of post-wildfire hazards (e.g., debris flows) and do
not capture the time-variability associated with meteorological and hydrological action. Because
burned areas are ideally suited for study with remote sensing techniques, due to the absence of
vegetation (fire-induced denudation), there is a need for methods to collect high-resolution, timely,
and site-specific soils information.

To address this need, a ground-based, remote sensor, called the soil observation laser
absorption spectrometer (SOLAS), was developed to rapidly infer soil properties at the field scale.
The development of the SOLAS followed laboratory-based, proof-of-concept testing that successfully
derived soil water characteristic curves (SWCC) as well as index properties (liquid limit (LL), plastic
limit (PL), and clay fraction (CF)) for several soil types by using only non-contact, optical techniques.
By combining spectroradiometric, differential laser absorption, and range altimetry techniques,
the SOLAS instrument was designed to collect range-resolved information from bare soils, including
soil surface moisture (an estimation of volumetric water content, θv), soil matric potential (ψm), burn
severity, LL, PL, and CF. An initial description of the SOLAS instrument is provided herein; as such,
the materials and methods used in the development of the instrument are detailed and described.
Additionally, supporting background information about reflectance spectroradiometry, lidar altimetry,
and differential laser absorption is provided. Measurement results from field-testing will be described
by the authors in later articles.

2. Background

A variety of remote and proximal sensing techniques for obtaining soils information have been
demonstrated. These techniques include passive imaging spectroradiometry (multispectral, hyperspectral,
visible near-infrared (VNIR), shortwave infrared (SWIR), and mid-wave-infrared (MWIR)), active and
passive microwave systems (synthetic- and real-aperture radar, ground-penetrating radar), and
gamma-ray spectrometry [1]. Although the correlation between reflectance and soil moisture was
studied as early as 1925 [2], advances in ground-based multispectral and hyperspectral measurement
techniques of reflectance spectra, primarily in the VNIR (380–1000 nm) and SWIR (1000–2500 nm)
ranges, have been utilized to estimate soil moisture content (SMC) in the laboratory setting [3–24].
In the aforementioned studies, the laboratory measurements were collected using carefully prepared
or dilute soil specimens under controlled conditions. Fewer studies were conducted under field
conditions [23,25,26]. Among the numerous developed soil reflectance correlations in the literature,
other soil parameters of interest have included clay content [9,14,24,27–30], grain size [9,28,29,31], soil
plasticity [24,32,33] and matric potential [24].

The SOLAS instrument that is described herein was designed based on other work previously
performed at the University of Arkansas. For example, Garner [24] utilized a laboratory-based diffuse
reflectance infrared Fourier transform (DRIFT) technique to develop an empirical relationship between
reflectance spectra and soil plasticity for illite and kaolinite soil types, as well as for a commercial
synthetic nepheline synetite material (Donna Fill Co., Little Rock, AR, USA). Garner [24] also developed
a laser analysis of soil tension (LAST) technique to infer the SWCC for dilute pressure plate extractor
(PPE) prepared soil specimens. The measurement technique utilized coherent illumination from
two low-power, near-infrared laser diodes and data collection using a high radiometric-resolution
spectrometer (ASD FieldSpec 4 Hi-Res; Malvern Panalytical, Longmont, CO, USA) to relate θv and
ψm through the SWCC. The empirical relationships relied upon partial least squares and principle
components regression techniques [9,24,34].
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2.1. FMCW Lidar Altimetry

Among laser altimetry methods, coherent, frequency modulated continuous waveform (FMCW)
lidar has been widely pursued [35–42]. A pulse compression technique has been applied to FMCW
lidar systems, whereby a linear frequency sweep or “chirp” with a large bandwidth is used to modulate
the optical carrier signal. As documented in the aforementioned FMCW lidar literature, range accuracy
was maintained, while peak output power and receiver bandwidth requirements were reduced
(over direct detection or conventional, pulsed, time-of-flight systems).

Adany et al. [39] demonstrated the advantages of a self-chirped, homodyne detection scheme for
FMCW lidar. The simplified homodyne system offered significant advantages over direct detection
and heterodyne detection methods through less complex receiver configuration. Furthermore,
improved receiver sensitivity permitted better long-range lidar measurements. In the Adany et al. [39]
configuration, the optical signal was intensity-modulated with a linear frequency modulated (FM)
sweep (from frequency f 1 to f 2) with chirp bandwidth, B, equal to f 2 − f 1. For the Adany et al. [39]
design, a portion of the carrier signal was used as the local oscillator (LO) in conjunction with a balanced
photodetector (BPD). The range to the target was proportional to the frequency difference between
the LO and the received signal (beat frequency, fR). For FMCW lidar with self-chirped homodyne
detection, like that proposed by Adany et al. [39], the range to target (R) should be calculated using
Equations (1) and (2) [39], while the approximate range accuracy (σR) should be determined by using
Equations (3) and (4) [36,43,44].

R =
c· fR·τ

2·( f2 − f1)
(1)

fR =

(
f2 − f1

τ

)
·∆t (2)

σR =
K·c

B
√

SNR
(3)

SNRcoh =
R · Pr

2 · q · BRX
(4)

In Equation (1), R is the range to target, c is the speed of light, fR is the beat frequency, τ is
the chirp duration, and f 2 − f 1 is the chirp bandwidth. In Equation (2), ∆t is the time delay for
roundtrip propagation through the atmosphere. In Equation (3), σR is the range accuracy, K is a chirp
waveform constant, B is the signal bandwidth, and SNR is the signal to noise ratio of the receiver
data. In Equation (4), SNRcoh is the signal to noise ratio for a shot-noise-dominant coherent detection
process, < is the photodetector responsivity, Pr is the received signal power, q is the electron charge
(1.6 × 10−10 C), and BRX is the bandwidth of the receiver.

2.2. Differential Absorption Measurements

The differential absorption lidar (DIAL) technique, sometimes also called (differential) laser
absorption spectrometry (LAS), has been employed to determine the concentration of molecular species
in the atmosphere by measuring the difference in light absorption between two transmitted laser
wavelengths. DIAL theory was developed by Schotland [45] but has been advanced over the last six
decades [46–54]. Moreover, during this time period, DIAL has become the most accurate measurement
technique for tropospheric water vapor concentration [51,53,55,56]. A variety of DIAL instruments and
measurement techniques have been developed to measure water vapor profiles and concentrations
of other atmospheric greenhouse gases (e.g., carbon dioxide, methane). These measurements have
been performed from ground-based platforms [50,57–66], airborne platforms [67–72], and proposed
spaceborne platforms [55,73–76].

DIAL measurements are typically achieved by alternating the transmission of two laser
wavelengths through the atmosphere along the same path to determine the water vapor concentration.
The so-called on-line wavelength is tuned to correspond with a water vapor absorption feature, while
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the off-line wavelength is tuned to a nearby spectral region in which water vapor is not well absorbed.
For accurate measurement, a spectral region of interest must be identified for which the on- and off-line
wavelengths are adjacent and the temperature dependence of the DIAL measurement is minimal.
Various wavelength ranges have been recommended in the literature for measurement of water vapor.
For example, Grant [49] utilized the 720–730 nm wavelength range, while Machol et al. [60] used
wavelengths near 823 nm. The water vapor density (ρυ), averaged over distance (R), is commonly
calculated using the DIAL equation proposed by Schotland [46] and presented in the form of
Equations (5)–(7) [60]. For vertical measurements of the atmospheric water vapor concentration,
the Voigt function (Λ) changes due to thermal- and pressure-broadening effects, which are typically
extrapolated from ground measurements. The water vapor concentration is commonly calculated
using Equations (8) and (9) [60].

ρυ(R) =
MH2O

NA
· 1

2 ·
(

σon − σo f f

)
·∆R

·
[

ln
Pon · R · Po f f · (R + ∆R)
Pon · (R + ∆R) · Po f f · R

]
(5)
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1
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− 1
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[

L
Rυ

(
1
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− 1

T
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In Equation (5), ρυ is the water vapor density averaged over a distance ∆R at a range R, MH2O
is the molecular weight of water, NA is Avogadro’s constant, σon and σoff are the on-line and off-line
water vapor absorption cross-sections obtained from Equation (6), and Pon and Poff are the received
on-line and off-line backscatter signals. In Equation (6), S is the temperature-dependent absorption
line strength and Λ is the Voigt function. In Equation (7), S0 and T0 are the absorption line strength and
temperature under standard conditions, T is the temperature, h is the Planck constant, c is the speed of
light, E” is the lower-state energy (in cm−1), and kB is the Boltzmann constant. In Equation (8), es is the
saturation vapor pressure obtained from Equation (9), RH is the relative humidity (RH ≈ 100 × e/es),
where e = ρυ·Rυ·T, and Rυ is the water vapor gas constant equal to 461 J·kg−1·K−1. In Equation (9),
es0 is the saturation vapor pressure at T0 = 273 K and is equal to 611 Pa, and L is the latent heat of
vaporization and is equal to 2.5 × 106 J·kg−1.

3. Development of the SOLAS Concept

The SOLAS instrument was devised to collect range-resolved hyperspectral measurements of soils
while also measuring water absorption, due to water vapor, over the measurement range. Moreover,
the bench-scale studies conducted by Garner [24] indicated that under coherent illumination, empirical
inference of soil matric potential (ψm), and volumetric water content (θv) was possible. The instrument
therefore utilized laser transmission to achieve these metrics while collecting passive radiometric
measurements across the VNIR to SWIR range (350–2500 nm). Based on water vapor absorption
spectra published by the high-resolution transmission (HITRAN) molecular absorption database [77]
and the availability of commercial off-the-shelf laser diodes, laser wavelengths of 823.20 nm (on-line)
and 847.00 nm (off-line) were selected. For completeness, the on- and off-line wavelengths transmitted
by the SOLAS instrument are transposed over a plot of the atmospheric absorption coefficient as a
function of wavelength in Figure 1.

Because DIAL instruments have primarily been developed to measure vertical gas and aerosol
profiles, there are limited examples of instruments operating in horizontal orientations or for
topographic target returns [48,50,62,78,79]. Furthermore, DIAL instruments have typically utilized
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pulsed, rapid spectral-switching lasers to increase the accuracy of atmospheric volume sampling,
especially over long vertical ranges (vertical measurements of atmospheric water vapor are extremely
sensitive to pressure- and temperature-induced gradients). To provide coherent illumination to the
target, while enabling simplified topographic ranging and differential absorption measurements,
a diode-laser-based FMCW laser scheme was designed to switch between the on-line and off-line laser
sources over short intervals (seconds). The use of a self-chirped, homodyne detection configuration
(similar to [39]), has enabled range-resolved measurements.
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Figure 1. Absorption coefficient, as a function of wavelength, for free water and water vapor with
transposed on-line (823.20 nm) and off-line (847.00 nm) laser wavelengths; raw data from [80–82].

4. Instrument Description

The SOLAS instrument combines range altimetry, differential absorption, and reflectance
spectroradiometry technologies. The instrument is comprised of (1) a laser source and transmitting
system, (2) a multi-channel receiving system (active LAS and passive hyperspectral sensing), and
(3) a data acquisition and control system (signal processing and component control). A schematic
of the major architecture of the SOLAS instrument is presented in Figure 2 and a table describing
the technical specifications is presented as Table 1. Each of the instrument subsystems are further
described in the following sections.
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Figure 2. Schematic of the soil observation laser absorption spectrometer (SOLAS). Key: ECDL =
External Cavity Diode Laser; ISO = Optical Isolator; M = Mirror; S = Shutter; BS = Beam Sampler; IS =
Integrating Sphere; KEM = Knife-Edge Mirror; FCS = Fiber-Coupling Stage; MZM = Mach-Zehnder
Modulator; Amp = Amplifier; BSC = Beamsplitter Cube; TSOA = Tapered Semiconductor Optical
Amplifier; VBE = Variable Beam Expander; M-CRR = Multi-Channel Receiver Relay; Hi-Res FS =
High-Resolution Field Spectroradiometer; DAQ = Data Acquisition; APD = Avalanche Photodetector;
3 dB = 3 dB 2 × 2 Optical Coupler; BPD = Balanced Photodetector; VSA = Vector Signal Analyzer.
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Table 1. Specifications of the soil observation laser absorption spectrometer (SOLAS).

Transmitter Unit Specification Receiver Unit Specification

Type - CW Telescope - Schmidt-Cassegrain
On-line [nm] 823.20 Primary diameter (D) [mm] 203
Off-line [nm] 847.00 Focal length (f ) [mm] 2032
Linewidth [kHz] ≤200 N (f /D) - 10
Modulation - Electrooptic AM Field of view (FOV)

Type - Linear RF chirp Hyperspectral channel [mrad] 0.32–0.61
Frequency [MHz] 100–500 LAS channel [mrad] 0.27

Transmitter power [W] ≤0.5 (fiber-end) Detectors
Beam diameter [mm] 2.0–8.0 Hyperspectral receiver - ASD FieldSpec 4 Hi-Res
Beam divergence [mrad] 0.29 Type - Silicon, InGaAs

Spectral range [nm] 350–2500

Signal Processing Unit Specification Number of bands - 2151

Balanced receiver (LO sig.) - New Focus 1607-AC-FC
Bandwidth (instantan.) [MHz] 50 Type - Silicon
Frequency range [GHz] 0.01–6.6 Bandwidth [MHz] 650
Water vapor resolution - Column averaged Avalanche photodetector - Thorlabs APD430A
Range to target resolution [cm] 10 (theoretical) Type - Silicon

Bandwidth [MHz] 400

Key: CW = Continuous-Wave; AM = Amplitude Modulation; RF = Radio Frequency; N = F-number; LAS = Laser Absorption Spectrometry; ASD = Analytical Spectral Devices;
InGaAs = Indium Gallium Arsenide; LO = Local Oscillator.
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4.1. Transmitter Design

The optical carrier signal is seeded by two New Focus TLB-6817 Vortex Littman–Metcalf external
cavity diode lasers (ECDL) precision-tuned to center wavelengths of 823.20 nm and 847.00 nm, with fine
tuning from 823.03 nm to 823.35 nm, and 846.84 nm to 847.14 nm, respectively (Newport Corporation;
Irvine, CA, USA). Each laser is powered with a low noise controller (New Focus TLB-6800-LN),
producing 17 mW to 26 mW outputs with narrow linewidths (≤200 kHz). As previously presented in
Figure 2, the laser transmission path is partially free space and partially fiber optic based. To protect
each ECDL from back reflections, the laser beams pass through narrowband polarization-dependent
Faraday isolators (Thorlabs IO-5-850-HP) that are tuned to match each respective wavelength (Thorlabs
Inc.; Newton, NJ, USA). Optomechanical shutters in the free space laser paths provide a fail-safe
(Thorlabs SH05). A sequence of dielectric mirrors direct each laser beam into a polarization-maintaining
fiber optic cable via a Thorlabs PAF-X-5-B fiber-coupling stage. The light energy within the fiber optic
cable is then coupled into a Jenoptik AM830 Mach–Zehnder modulator (MZM) where the optical
signal is intensity modulated (Jenoptik Optical Systems GmbH; Jena, Germany). The modulation is
achieved by utilizing a radio frequency (RF) signal generator to encode the transmitted light with a
chirp. Seventy percent of the intensity-modulated optical signal continues along the transmitter path
(into the tapered semiconductor optical amplifier (TSOA)) while the remaining 30% is reflected through
a free-space beamsplitting cube and fiber-coupled into a 650 MHz bandwidth New Focus 1607-AC-FC
balanced photodetector (BPD) to provide the local oscillator (LO) input signal. The carrier signal is
fiber-coupled and amplified through a Thorlabs TPA830P10-SP butterfly package TSOA mounted to a
thermoelectric-cooled (TEC) 205 TEC Butterfly LaserMount (Arroyo Instruments LLC, San Luis Obispo,
CA, USA). The TSOA chip is tuned to a center wavelength (CWL) of 835 nm (centered between the
823.20 nm and 847.00 nm transmitting wavelengths). The amplified beam is subsequently shaped with
a collimation package before exiting the TSOA output window in free space. The beam is then isolated
(Faraday isolator tuned to a CWL of 835 nm) and coupled into a high-power, armored fiber optic cable.
The laser output is transmitted into the atmosphere co-axial with the optical receiver (telescope) by
means of a collimator (Thorlabs F280SMA-835), a variable beam expander (Thorlabs BE052-B), and a
pair of mirrors, as depicted in Figures 2 and 3. The transmitter beam has an adjustable output diameter
between 2.0 mm and 8.0 mm with an average beam divergence of 0.29 mrad (resulting in the diameter
increasing to approximately 29 cm at a range of 1.0 km). The average beam diameter-dependent
power density ranges from 10–160 mW·mm−2 at the source, with the density decreasing as a function
of range.

4.2. Receiver Design

The receiving aperture for the instrument is a 203-mm diameter, 2032-mm equivalent focal length,
Schmidt-Cassegrain catadioptric telescope (model LX200-ACF 203 mm f/10) from Meade Instruments
(Irvine, CA, USA). As depicted in Figure 3, a custom-built, multi-channel, optical receiver relay is
mounted to the rear of the telescope. The receiver was designed to gather, collimate, split, and focus
the light from the telescope into two separate channels. On the primary channel (LAS channel),
backscattered light is filtered (to isolate the on-line and off-line wavelengths and to reduce diffuse
sunlight saturation), focused, and fiber-coupled into the SOLAS instrument. The optical signal is
further divided through a multimode fiber optic coupler. Ten percent of the split light is directed
into a 400 MHz bandwidth, variable gain Thorlabs APD430A silicon avalanche photodetector (APD)
via a beam collimator and focuser. The remaining 90% of the light is coupled into the BPD via a
3 dB 2 × 2 fiber optic coupler. The signal is de-chirped (i.e., mixed with the LO signal) and the beat
frequency is measured directly. On the secondary channel (hyperspectral channel), the light remains
unfiltered and is focused and fiber-coupled into a high-resolution spectroradiometer instrument (ASD
FieldSpec 4 Hi-Res). The spectral resolution of the secondary channel is 3nm in the VNIR range
(350–1000 nm) and 8 nm in the SWIR range (1000–2500 nm). The sampling interval is 1.4 nm and
1.1 nm in the VNIR and SWIR ranges, respectively. The angular field of view (FOV) for the LAS channel



Remote Sens. 2019, 11, 289 8 of 17

is 0.27 mrad and the FOV for the hyperspectral channel is 0.32 mrad (VNIR range) and 0.61 mrad
(SWIR range). Due to space limitations in this manuscript, the optical receiver is described in more
detail in a separate publication.
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Figure 3. Annotated photograph of the (a) front, and (b) rear, of the receiver (scale for reference).

4.3. Data Acquisition and Control Design

Data acquisition and component control for the SOLAS are achieved via a computer that is
mounted in a compact, module-based National Instruments (Austin, TX, USA) PXIe chassis (PXIe-8135
computer, PXIe-1082 chassis) via LabVIEW software in a Windows environment. Within the chassis
are (1) a high frequency RF signal generator module (PXIe-5652), (2) a wide instantaneous bandwidth
vector signal analyzer (PXIe-5663E) comprised of three parallel modules (PXIe-5601, PXIe-5622,
PXIe-5652), and (3) a multifunction input/output module (PXI-6238). The LabVIEW software is
used to generate the chirp signal (100 MHz to 500 MHz linear ramping signal with a chirp rate of
6 MHz/µs) that is amplified and directed into the MZM. The software is also used to (1) collect
and interpret the de-chirped frequency from the BPD (to determine the range to the target), and to
(2) collect and interpret data from the APD (to detect atmospheric water vapor en route to the target).
The ASD RS3 software is used to collect the reflectance spectra from the spectroradiometer and the
ASD ViewSpecTM Pro software is used to export the raw data for further processing. A flow diagram
outlining the data acquisition and processing chain is presented in Figure 4.

4.4. Field Ruggedization

The majority of the components that were previously presented in Figure 2 are mounted within
a hermetically sealed, nitrogen-purged box. The ECDL heads and MZM are mounted directly to
the 12 mm thick aluminum floor of the box with thermal paste to enable the floor to act as a heat
sink. The remaining power-emitting components (e.g., Thorlabs TPA830P10-SP amplifier) are actively
regulated via thermoelectric cooling or are self-regulating (e.g., New Focus 1607-AC-FC and Thorlabs
APD430A photodetectors). The floor of the box also acts as an optical bench for the bulk-optical
components associated with the free space lasers. The transmitting and receiving fiber optic cables, RF
signal cables, and component power cables are fed through one wall of the box via sealed cable glands.
A plan view of the box interior is presented in Figure 5 and a photograph of the SOLAS instrument
annotated with major assemblies is presented as Figure 6.
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Figure 5. Annotated plan view of the hermetically sealed box depicting the major components
of the transmitter and the primary laser absorption spectrometer (LAS) receiver channel. Key:
ECDL = External Cavity Diode Laser; ISO = Optical Isolator; M = Dielectric Mirror; S = Shutter;
BS = Beam Sampler; IS = Integrating Sphere; KEM = Knife-Edge Mirror; FCS = Fiber-Coupling Stage;
BSC = Beamsplitter Cube; MZM = Mach-Zehnder Modulator; TSOA = Tapered Semiconductor Optical
Amplifier; APD = Avalanche Photodetector; BPD = Balanced Photodetector.
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Figure 6. Annotated photograph of the soil observation laser absorption spectrometer (SOLAS)
instrument with major assemblies (transmitter, receiver, data acquisition and control).

5. Discussion

The SOLAS instrument was designed to transmit on-line and off-line wavelengths of
823.20 nm and 847.00 nm, respectively. The difference between these wavelengths combined with
continuous-wave transmission, necessitated the use of two separate seed lasers (whereas some
dedicated DIAL instruments have achieved on- and off-line wavelength transmission with a single,
widely tunable, pulsed laser source). The two lasers were aligned into a common transmitter system
using readily-available, free-space bulk optics to ease customization, calibration, and implementation.
Therefore, the efficiency of the laser delivery system may be improved using an all-fiber-based design
in future iterations.

The collection of measurements in the field introduces additional complexity, primarily due to
(1) viewing geometry (i.e., incidence and viewing angles), (2) the sensitivity of the hyperspectral
measurements to changes in light conditions (solar irradiation intensity), and (3) environmental
interferences (dust, water droplets, vegetative cover). To address these issues, the instrument
observation location must be carefully selected and the spectroradiometer should be calibrated using a
diffuse white reference panel (e.g., Spectralon®; Labsphere Inc., North Sutton, NH, USA) positioned
at approximately the same incidence angle as the intended measurements. The manufacturer of
the spectroradiometer recommends frequent recalibration (referencing of the diffuse reflector panel)
when collecting typical proximal (<1 m distance) measurements in the laboratory or in the field. However,
it would be possible to collect remote (up to 1 km distance, or greater) measurements for an extended period
of time, without frequent recalibration, if careful considerations are made. The spectroradiometer, as
well as other components (e.g., laser sources, data acquisition system, and telescope), should be allowed
a warm-up period (to minimize instrument noise and temperature-induced drift). Furthermore, after
initial calibration of the spectroradiometer, any changes in light conditions (e.g., temporary cloud
cover over target) should be observed and, if necessary, the measurements should be repeated.

The data collected by the three receivers (spectroradiometer and two LAS channel detectors) must
be synthesized for meaningful interpretation of a measurement. Reflectance spectra are compiled,
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averaged, and compared with spectral libraries for different soil types. The measurements require
post-processing (empirical calibration and statistical analysis) to extract the soil properties of interest.
While reflectance data is collected using the ASD software (native to the spectroradiometer), future
development of the SOLAS instrument software will enable custom data collection and near real-time
data interpretation. The reflectance measurements are susceptible to attenuation, due to atmospheric
water vapor, especially at longer ranges or in conditions with higher relative humidity. To correct for
the additional atmospheric absorption en route to the soil surface, the differential laser absorption
measurements are used. The coherent signals also provide sub-meter range to target identification.
Preliminary hyperspectral measurements have been collected for ranges greater than 100 m (laboratory
setting) and 500 m field setting). Based on design calculations, measurements are possible for ranges
of up to a kilometer or more (depending on atmospheric conditions), with spatial resolutions of 6 cm,
30 cm, and 60 cm (nadir) for ranges of 100 m, 500 m, and 1.0 km, respectively.

6. Conclusions

The development of a field-deployable, ground-based, remote sensing instrument for obtaining
physical and hydro-mechanical soil properties was described herein. The soil observation laser
absorption spectrometer (SOLAS) was designed to collect range-resolved hyperspectral backscatter
data from bare soil surfaces across the visible to shortwave infrared spectral ranges (350–2500 nm).
The SOLAS instrument transmits two near-infrared wavelength lasers (823.20 nm and 847.00 nm) to
measure atmospheric water vapor by differential absorption along the transmitter path. Self-chirped,
coherent detection of the same lasers provides target range measurements. The backscattered light
is received through a 203-mm diameter telescope. The combination of high-resolution reflectance
spectroradiometry and lidar (ranging and differential absorption) techniques has introduced a new
ground-based approach to remote sensing of the natural environment. Envisioned applications for the
instrument include rapid classification of soils on unstable slopes, mine tailings, or in wildfire-affected
areas. Future improvements will enable long-range measurements, increased portability (lighter
instrument components), or semi-autonomous measurements as part of a long-term monitoring
installation (e.g., wildfire basin or mining operation).
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Abbreviations

The following abbreviations are used in this manuscript:

dB Decibel
AM Amplitude Modulation
APD Avalanche Photodetector
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ASD Analytical Spectral Devices Inc. (a Malvern Panalytical Company, Longmont, CO, USA)
B Signal Bandwidth
BPD Balanced Photodetector
BRX Bandwidth of the Receiver
BSC Beamsplitter Cube
c Speed of Light
CW Continuous-Wave
CWL Center Wavelength
CF Clay Fraction
∆t Roundtrip Time Delay for Atmospheric Propagation
D Diameter of Primary Mirror (Telescope)
DIAL Differential Absorption Lidar
DRIFT Diffuse Reflectance Infrared Fourier Transform
es Saturation Vapor Pressure
es0 Saturation Vapor Pressure at T0 = 273 K
E" Lower State Energy
ECDL External Cavity Diode Laser
FM Frequency Modulated
FMCW Frequency-Modulated Continuous-Wave
FOV Field of View (Angular)
f Focal Length
f 2 − f 1 Chirp Bandwidth
f R Beat Frequency
h Planck Constant
HITRAN High-Resolution Transmission Molecular Absorption Database
θv Volumetric Water Content
InGaAs Indium Gallium Arsenide
kB Boltzmann Constant
K Chirp Waveform-Dependent Constant
λ Wavelength
Λ Voigt Function
L Latent Heat of Vaporization
LAS Laser Absorption Spectrometry
LAST Laser Analysis of Soil Tension
LIDAR Light Detection and Ranging (commonly Lidar)
LL Liquid Limit
LO Local Oscillator
MH2O Molecular Weight of Water
MWIR Mid-Wave-Infrared
MZM Mach-Zehnder Modulator
N F-Number
NA Avogadro’s Constant
NIR Near-Infrared
ρυ Water Vapor Density
PL Plastic Limit
PPE Pressure Plate Extractor
Pn-RX Receiver Power Noise
Poff Received Off-Line Backscatter Signal
Pon Received On-Line Backscatter Signal
Pr Received Signal Power
Psig Detected Signal Power
PXIe PCI (Peripheral Component Interconnect) Extensions for Instrumentation Express
q Electron Charge
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< Photodetector Responsivity
R Range to Target
RF Radio Frequencies
RH Relative Humidity
Rυ Water Vapor Gas Constant
σoff Off-Line Water Vapor Absorption Cross-section
σon On-Line Water Vapor Absorption Cross-section
σR Range Accuracy
S Temperature-Dependent Absorption Line Strength
S0 Absorption Line Strength under Standard Conditions
SMC Soil Moisture Content
SNR Signal-to-Noise Ratio
SNRcoh Signal to Noise Ratio for Shot-Noise-Dominant Coherent Detection
SOLAS Soil Observation Laser Absorption Spectrometer
SSURGO Soil Survey Geographic Database
STATSGO State Soil Geographic Survey
SWCC Soil Water Characteristic Curve
SWIR Shortwave Infrared
τ Chirp Duration
T Temperature
T0 Absorption Temperature under Standard Conditions
TEC Thermoelectric-Cooled
TSOA Tapered Semiconductor Optical Amplifier
UHTC Ultra-High Transmission Coating (Meade Instruments Corporation, Irvine, CA, USA)
VNIR Visible Near-Infrared
ψm Soil Water Matric Potential (Soil Suction)
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