Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (58)

Search Parameters:
Keywords = seismic wave propagation velocity

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 9399 KiB  
Article
An Investigation of Pre-Seismic Ionospheric TEC and Acoustic–Gravity Wave Coupling Phenomena Using BDS GEO Measurements: A Case Study of the 2023 Jishishan Ms6.2 Earthquake
by Xiao Gao, Lina Shu, Zongfang Ma, Penggang Tian, Lin Pan, Hailong Zhang and Shuai Yang
Remote Sens. 2025, 17(13), 2296; https://doi.org/10.3390/rs17132296 - 4 Jul 2025
Viewed by 406
Abstract
This study investigates pre-seismic ionospheric anomalies preceding the 2023 Jishishan Ms6.2 earthquake using total electron content (TEC) data derived from BDS geostationary orbit (GEO) satellites. Multi-scale analysis integrating Butterworth filtering and wavelet transforms resolved TEC disturbances into three distinct frequency regimes: (1) high-frequency [...] Read more.
This study investigates pre-seismic ionospheric anomalies preceding the 2023 Jishishan Ms6.2 earthquake using total electron content (TEC) data derived from BDS geostationary orbit (GEO) satellites. Multi-scale analysis integrating Butterworth filtering and wavelet transforms resolved TEC disturbances into three distinct frequency regimes: (1) high-frequency perturbations (0.56–3.33 mHz) showed localized disturbances (amplitude ≤ 4 TECU, range < 300 km), potentially associated with near-field acoustic waves from crustal stress adjustments; (2) mid-frequency signals (0.28–0.56 mHz) exhibited anisotropic propagation (>1200 km) with azimuth-dependent N-shaped waveforms, consistent with the characteristics of acoustic–gravity waves (AGWs); and (3) low-frequency components (0.18–0.28 mHz) demonstrated phase reversal and power-law amplitude attenuation, suggesting possible lithosphere–atmosphere–ionosphere (LAI) coupling oscillations. The stark contrast between near-field residuals and far-field weak fluctuations highlighted the dominance of large-scale atmospheric gravity waves over localized acoustic disturbances. Geometry-based velocity inversion revealed incoherent high-frequency dynamics (5–30 min) versus anisotropic mid/low-frequency traveling ionospheric disturbance (TID) propagation (30–90 min) at 175–270 m/s, aligning with theoretical AGW behavior. During concurrent G1-class geomagnetic storm activity, spatial attenuation gradients and velocity anisotropy appear primarily consistent with seismogenic sources, providing insights for precursor discrimination and contributing to understanding multi-scale coupling in seismo-ionospheric systems. Full article
Show Figures

Figure 1

18 pages, 1108 KiB  
Article
Three-Phase-Lag Effect on Rayleigh Waves in a Generalized Thermoelastic Diffusion Medium with Modified Couple Stress
by Emad K. Jaradat, Sayed M. Abo-Dahab, Rajneesh Kumar and Eslam S. Elidy
Crystals 2025, 15(7), 588; https://doi.org/10.3390/cryst15070588 - 22 Jun 2025
Viewed by 315
Abstract
This study examines the behavior of Rayleigh waves propagating through a homogeneous, isotropic material, analyzed using a three-phase-lag thermoelastic diffusion framework enhanced by modified couple stress theory. The mathematical model integrates coupled thermoelastic and diffusive effects, incorporating phase-lags associated with (1) temperature gradients, [...] Read more.
This study examines the behavior of Rayleigh waves propagating through a homogeneous, isotropic material, analyzed using a three-phase-lag thermoelastic diffusion framework enhanced by modified couple stress theory. The mathematical model integrates coupled thermoelastic and diffusive effects, incorporating phase-lags associated with (1) temperature gradients, (2) heat flux, and (3) thermal displacement gradients. By solving the derived governing equations analytically subject to stress-free, thermally insulated, and impermeable boundary conditions, we obtain the characteristic secular equation for Rayleigh wave propagation. Numerical simulations conducted on a copper medium evaluate how the secular equation’s determinant, wave velocity, and attenuation coefficient vary with angular frequency. The analysis focuses particularly on the influence of phase-lag parameters, including thermal and diffusion gradients and relaxation times. Results demonstrated that increasing the displacement gradient phase-lag elevated the secular determinant but reduced wave velocity and attenuation, while temperature gradient phase-lags exhibited the opposite trend. The study highlights the sensitivity of Rayleigh wave propagation to thermo-diffusive coupling and microstructural effects, offering insights applicable to seismic wave analysis, geophysical exploration, and material processing. Comparisons with prior theories underscore the model’s advancement in capturing size-dependent and memory-dependent phenomena. Full article
Show Figures

Figure 1

18 pages, 4697 KiB  
Article
Wave-Screening Methods for Prestress-Loss Assessment of a Large-Scale Post-Tensioned Concrete Bridge Model Under Outdoor Conditions
by Chun-Man Liao, Felix Bernauer, Ernst Niederleithinger, Heiner Igel and Céline Hadziioannou
Appl. Sci. 2025, 15(11), 6005; https://doi.org/10.3390/app15116005 - 27 May 2025
Viewed by 456
Abstract
This paper presents advancements in structural health monitoring (SHM) techniques, with a particular focus on wave-screening methods for assessing prestress loss in a large-scale prestressed concrete (PC) bridge model under outdoor conditions. The wave-screening process utilizes low-frequency wave propagation obtained from seismic interferometry [...] Read more.
This paper presents advancements in structural health monitoring (SHM) techniques, with a particular focus on wave-screening methods for assessing prestress loss in a large-scale prestressed concrete (PC) bridge model under outdoor conditions. The wave-screening process utilizes low-frequency wave propagation obtained from seismic interferometry of structural free vibrations and high-frequency wave propagation obtained through ultrasonic transducers embedded in the structure. An adjustable post-tensioning system was employed in a series of experiments to simulate prestress loss. By comparing bridge vibrations under varying post-tensioning forces, the study investigated prestress loss and examined temperature-related effects using the coda wave interferometry (CWI) method. Local structural alterations were analyzed through wave velocity variations, demonstrating sensitivity to bridge temperature changes. The findings indicate that wave-based methods are more effective than traditional modal analysis for damage detection, highlighting the dual impacts of prestress loss and temperature, as well as damage localization. This study underscores the need for long-term measurements to account for temperature fluctuations when analyzing vibration measurements to investigate changes in prestressing force in PC structures. Full article
Show Figures

Figure 1

23 pages, 3423 KiB  
Article
First-Arrival Constrained Physics-Informed Recurrent Neural Networks for Initial Model-Insensitive Full Waveform Inversion in Vertical Seismic Profiling
by Cai Lu, Jijun Liu, Liyuan Qu, Jianbo Gao, Hanpeng Cai and Jiandong Liang
Appl. Sci. 2025, 15(10), 5757; https://doi.org/10.3390/app15105757 - 21 May 2025
Viewed by 423
Abstract
FWI is a nonlinear optimization problem; significant discrepancies between the initial and true velocity models can lead to solutions converging to local optima. To address this issue, we proposed a PIRNN-based FWI method with first-arrival time constraints. Physics-informed recurrent neural networks (PIRNNs) integrate [...] Read more.
FWI is a nonlinear optimization problem; significant discrepancies between the initial and true velocity models can lead to solutions converging to local optima. To address this issue, we proposed a PIRNN-based FWI method with first-arrival time constraints. Physics-informed recurrent neural networks (PIRNNs) integrate the physical processes of seismic wave propagation into recurrent neural networks, offering a novel approach for full-waveform inversion (FWI). First, the physical processes of seismic wave propagation were embedded into the recurrent neural network, enabling finite-difference solutions of the wave equation through forward propagation. Second, first-arrival time differences between synthetic and observed records were calculated, which then guided the selection of appropriate seismic traces for FWI loss computation. Additionally, the spatiotemporal gradient information recorded during the forward propagation of the recurrent neural network was utilized for backpropagation, enabling nonlinear optimization of FWI. This method avoids the local optima caused by waveform mismatches between the observed and synthetic records resulting from inaccurate initial velocity models. Numerical experiments on the BP and Marmousi velocity models demonstrated that the proposed method accurately reconstructed subsurface velocity structures even when the initial model significantly deviated from the true model, and maintained a degree of reconstruction accuracy in the presence of considerable noise, thereby validating its low sensitivity to the initial model and its robustness against noise. Full article
Show Figures

Figure 1

10 pages, 2833 KiB  
Communication
Crust and Upper Mantle Structure of Mars Determined from Surface Wave Analysis
by Víctor Corchete
Appl. Sci. 2025, 15(9), 4732; https://doi.org/10.3390/app15094732 - 24 Apr 2025
Viewed by 479
Abstract
The crust and upper mantle structure of Mars is determined in the depth range of 0 to 100 km, by means of dispersion analysis and its inversion, which is performed for the surface waves present in the traces of the seismic event: S1094b. [...] Read more.
The crust and upper mantle structure of Mars is determined in the depth range of 0 to 100 km, by means of dispersion analysis and its inversion, which is performed for the surface waves present in the traces of the seismic event: S1094b. From these traces, Love and Rayleigh waves are measured in the period range of 4 to 40 s. This dispersion was calculated with a combination of digital filtering techniques, and later was inverted to obtain both models: isotropic (from 0 to 100 km depth) and anisotropic (from 0 to 15 km depth), which were calculated considering the hypothesis of the surface wave propagation in slightly anisotropic media. The seismic anisotropy determined from 0 to 5 km depth (7% of S-velocity variation and ξ ~ 1.1) could be associated with the presence of sediments or lava-flow layering, and wide damage zones surrounding the long-term fault networks. For greater depths, the observed anisotropy (17% of S-velocity variation and ξ ~ 1.4) could be due to the possible presence of volcanic materials and/or the layering of lava flows. Another cause for this anisotropy could be the presence of layered intrusions due to a single or multiple impacts, which could cause internal layering within the crust. Finally, the Moho depth is determined at 50 km as a gradual transition from crust to mantle S-velocities, through an intermediate value (3.90 km/s) determined from 50 to 60 km-depth. Full article
Show Figures

Figure 1

41 pages, 10214 KiB  
Review
A Review of Parameters and Methods for Seismic Site Response
by A. S. M. Fahad Hossain, Ali Saeidi, Mohammad Salsabili, Miroslav Nastev, Juliana Ruiz Suescun and Zeinab Bayati
Geosciences 2025, 15(4), 128; https://doi.org/10.3390/geosciences15040128 - 1 Apr 2025
Cited by 1 | Viewed by 2869
Abstract
Prediction of the intensity of earthquake-induced motions at the ground surface attracts extensive attention from the geoscience community due to the significant threat it poses to humans and the built environment. Several factors are involved, including earthquake magnitude, epicentral distance, and local soil [...] Read more.
Prediction of the intensity of earthquake-induced motions at the ground surface attracts extensive attention from the geoscience community due to the significant threat it poses to humans and the built environment. Several factors are involved, including earthquake magnitude, epicentral distance, and local soil conditions. The local site effects, such as resonance amplification, topographic focusing, and basin-edge interactions, can significantly influence the amplitude–frequency content and duration of the incoming seismic waves. They are commonly predicted using site effect proxies or applying more sophisticated analytical and numerical models with advanced constitutive stress–strain relationships. The seismic excitation in numerical simulations consists of a set of input ground motions compatible with the seismo-tectonic settings at the studied location and the probability of exceedance of a specific level of ground shaking over a given period. These motions are applied at the base of the considered soil profiles, and their vertical propagation is simulated using linear and nonlinear approaches in time or frequency domains. This paper provides a comprehensive literature review of the major input parameters for site response analyses, evaluates the efficiency of site response proxies, and discusses the significance of accurate modeling approaches for predicting bedrock motion amplification. The important dynamic soil parameters include shear-wave velocity, shear modulus reduction, and damping ratio curves, along with the selection and scaling of earthquake ground motions, the evaluation of site effects through site response proxies, and experimental and numerical analysis, all of which are described in this article. Full article
(This article belongs to the Special Issue Geotechnical Earthquake Engineering and Geohazard Prevention)
Show Figures

Figure 1

27 pages, 6152 KiB  
Article
Neural Network-Based Prediction of Amplification Factors for Nonlinear Soil Behaviour: Insights into Site Proxies
by Ahmed Boudghene Stambouli and Lotfi Guizani
Appl. Sci. 2025, 15(7), 3618; https://doi.org/10.3390/app15073618 - 26 Mar 2025
Cited by 3 | Viewed by 417
Abstract
The identification of the most pertinent site parameters to classify soils in terms of their amplification of seismic ground motions is still of prime interest to earthquake engineering and codes. This study investigates many options for improving soil classifications in order to reduce [...] Read more.
The identification of the most pertinent site parameters to classify soils in terms of their amplification of seismic ground motions is still of prime interest to earthquake engineering and codes. This study investigates many options for improving soil classifications in order to reduce the deviation between “exact” predictions using wave propagation and the method used in seismic codes based on amplification (site) factors. To this end, an exhaustive parametric study is carried out to obtain nonlinear responses of sets of 324 clay and sand columns and to constitute the database for neuronal network methods used to predict the regression equations of the amplification factors in terms of seismic and site parameters. A wide variety of parameters and their combinations are considered in the study, namely, soil depth, shear wave velocity, the stiffness of the underlaying bedrock, and the intensity and frequency content of the seismic excitation. A database of AFs for 324 nonlinear soil profiles of sand and clay under multiple records with different intensities and frequency contents is obtained by wave propagation, where soil nonlinearity is accounted for through the equivalent linear model and an iterative procedure. Then, a Generalized Regression Neural Network (GRNN) is used on the obtained database to determine the most significant parameters affecting the AFs. A second neural network, the Radial Basis Function (RBF) network, is used to develop simple and practical prediction equations. Both the whole period range and specific short-, mid-, and long-period ranges associated with the AFs, Fa, Fv, and Fl, respectively, are considered. The results indicate that the amplification factor of an arbitrary soil profile can be satisfactorily approximated with a limited number of sites and the seismic record parameters (two to six). The best parameter pair is (PGA; resonance frequency, f0), which leads to a standard deviation reduction of at least 65%. For improved performance, we propose the practical triplet PGA;Vs30;f0 with Vs30 being the average shear wave velocity within the upper 30 m of soil below the foundation. Most other relevant results include the fact that the AFs for long periods (Fl) can be significantly higher than those for short or mid periods for soft soils. Finally, it is recommended to further refine this study by including additional soil parameters such as spatial configuration and by adopting more refined soil models. Full article
Show Figures

Figure 1

21 pages, 33924 KiB  
Article
Multiparameter Inversion of Seismic Pre-Stack Amplitude Variation with Angle Based on a New Propagation Matrix Method
by Qianlong Ding, Shuangquan Chen, Jinsong Shen, Zuzhi Hu and Guoquan Wang
Appl. Sci. 2025, 15(5), 2636; https://doi.org/10.3390/app15052636 - 28 Feb 2025
Cited by 1 | Viewed by 828
Abstract
The classical pre-stack seismic inversion technique uses the Zoeppritz equation and its simplified versions to calculate the PP and PS reflection coefficients at different incidence angles, aiding in inverting the subsurface velocity and density parameters. Despite its widespread application, the amplitude variation with [...] Read more.
The classical pre-stack seismic inversion technique uses the Zoeppritz equation and its simplified versions to calculate the PP and PS reflection coefficients at different incidence angles, aiding in inverting the subsurface velocity and density parameters. Despite its widespread application, the amplitude variation with angle (AVA) inversion based on the Zoeppritz equation has limitations regarding the accuracy. The AVA neglects transmission losses and the effects of multiple reflections during seismic wave propagation, resulting in reduced resolution. In contrast, the propagation matrix theory offers a comprehensive range of reflection coefficients for P- and S-waves in multilayered media at arbitrary incidence angles, thereby theoretically enhancing the inversion accuracy. However, the seismic responses obtained using this method exist in the slowness–frequency domain and require constant slowness for consistency along a profile. This assumption is violated when variations in the P-wave velocity occur within the subsurface, affecting the incidence angle of propagating seismic waves. This study modifies the propagation matrix theory to compute AVA seismic responses and applies it to pre-stack multiparameter inversion. The effectiveness of the modified method was validated by deriving theoretical AVA seismic responses and comparing them to solutions from a typical layered media model. The modified theory was also employed for seismic pre-stack inversion. Numerical simulations and field data tests demonstrated that the new propagation matrix method offers a high accuracy and stability. Full article
Show Figures

Figure 1

12 pages, 3048 KiB  
Article
A Fractional Hybrid Staggered-Grid Grünwald–Letnikov Method for Numerical Simulation of Viscoelastic Seismic Wave Propagation
by Xinmin Zhang, Guojie Song, Puchun Chen and Dan Wang
Fractal Fract. 2025, 9(3), 153; https://doi.org/10.3390/fractalfract9030153 - 28 Feb 2025
Viewed by 505
Abstract
The accurate and efficient simulation of seismic wave energy dissipation and phase dispersion during propagation in subsurface media due to inelastic attenuation is critical for the hydrocarbon-bearing distinction and improving the quality of seismic imaging in strongly attenuating geological media. The fractional viscoelastic [...] Read more.
The accurate and efficient simulation of seismic wave energy dissipation and phase dispersion during propagation in subsurface media due to inelastic attenuation is critical for the hydrocarbon-bearing distinction and improving the quality of seismic imaging in strongly attenuating geological media. The fractional viscoelastic equation, which quantifies frequency-independent anelastic effects, has recently become a focal point in seismic exploration. We have developed a novel hybrid staggered-grid Grünwald–Letnikov (HSGGL) finite difference method for solving the fractional viscoelastic equation in the time domain. The proposed method achieves accurate and computationally efficient solutions by using a staggered grid to discretize the first-order partial derivatives of the velocity–stress equations, combined with Grünwald–Letnikov finite difference discretization for the fractional-order terms. To improve the computational efficiency, we employ a preset accuracy to truncate the difference stencil, resulting in a compact fractional-order difference scheme. A stability analysis using the eigenvalue method reveals that the proposed method confers a relaxed stability condition, providing greater flexibility in the selection of sampling intervals. The numerical experiments indicate that the HSGGL method achieves a maximum relative error of no more than 0.17% compared to the reference solution (on a finely meshed domain) while being significantly faster than the conventional global FD method (GFD). In a 500 × 500 computational domain, the computation times for the proposed methods, which meet the specified accuracy levels used, are only approximately 4.67%, 4.47%, 4.44%, and 4.42% of that of the GFD method. This indicates that the novel HSGGL method has the potential as an effective forward modeling tool for understanding complex subsurface structures by employing a fractional viscoelastic equation. Full article
Show Figures

Figure 1

25 pages, 2876 KiB  
Article
Resource-Efficient Acoustic Full-Waveform Inversion via Dual-Branch Physics-Informed RNN with Scale Decomposition
by Cai Lu, Jijun Liu, Liyuan Qu, Jianbo Gao, Hanpeng Cai and Jiandong Liang
Appl. Sci. 2025, 15(2), 941; https://doi.org/10.3390/app15020941 - 18 Jan 2025
Cited by 1 | Viewed by 1008
Abstract
Full-waveform velocity inversion has long been a primary focus in seismic exploration. Full-waveform inversion techniques employing physics-informed recurrent neural networks (PIRNNs) have recently gained significant scholarly attention. However, these approaches demand considerable storage to capture spatiotemporal seismic wave propagation fields and their gradient [...] Read more.
Full-waveform velocity inversion has long been a primary focus in seismic exploration. Full-waveform inversion techniques employing physics-informed recurrent neural networks (PIRNNs) have recently gained significant scholarly attention. However, these approaches demand considerable storage to capture spatiotemporal seismic wave propagation fields and their gradient information, often exceeding the memory capabilities of current GPU resources during field data processing. This study proposes a full-waveform inversion method utilizing a dual-branch PIRNN architecture to effectively minimize GPU resource consumption. The primary PIRNN branch performs forward-wave equation modeling at the original scale and computes the discrepancy between synthetic and observed seismic records. Additionally, a downscaled spatiotemporal PIRNN branch is introduced, transforming the original-scale error into a loss function via scale decomposition, which drives the inversion process in the downscaled domain. This dual-branch design necessitates recording only the spatiotemporal field and gradient information of the downscaled branch, significantly reducing GPU memory requirements. The proposed dual-branch PIRNN framework was validated through full-waveform inversions on synthetic horizontal-layer models and the Marmousi model across various scales. The results demonstrate that this approach markedly reduces resource consumption while maintaining high inversion accuracy. Full article
Show Figures

Figure 1

25 pages, 16213 KiB  
Article
Imaging Shallow Velocity Structure of an Inactive Fault by Airgun Seismic Source: A Case Study of Xiliushui Fault in Qiliang Mountain
by Manzhong Qin, Baichen Wu, Yi Wang, Xueyi Shang, Yuansheng Zhang, Xuzhou Liu, Xiao Guo, Rui Zou, Yahong Wang and Dianfeng Sun
Geosciences 2025, 15(1), 16; https://doi.org/10.3390/geosciences15010016 - 7 Jan 2025
Viewed by 886
Abstract
We observed high-quality waves from a repeatable airgun seismic source recorded by a linear ultra-dense seismic array across the Xiliushui fault zone, one of the inactive faults in the Qilian Mountain, on the northeastern margin of the Tibetan Plateau, China. We used Snell’s [...] Read more.
We observed high-quality waves from a repeatable airgun seismic source recorded by a linear ultra-dense seismic array across the Xiliushui fault zone, one of the inactive faults in the Qilian Mountain, on the northeastern margin of the Tibetan Plateau, China. We used Snell’s law of seismic ray propagation to determine a simplified ambient velocity model. Based on the flexible and precise spectral element method, we computed broadband synthetic seismograms for a shallow low-velocity fault zone (FZ) to model the direct P-wave travel time delay and incident angle of the wavefield near the FZ. The FZ extent range and boundaries were inverted by apparent travel time delays and amplification patterns across the fault. According to prior information on the properties of the direct P-waves, we could constrain the inverse modeling and conduct a grid search for the fault parameters. The velocity reduction between the FZ and host rock, along with the dip angle of the FZ, were also constrained by the P-wave travel time delay systematic analysis and incoming angle of the P-waves. We found that the Xiliushui fault has a 70~80 m-wide low-velocity fault damage zone in which the P-wave velocity is reduced to ~40% with respect to the host rock. The fault damage zone dips ~35°southwest and extends to ~165 m in depth. The repeatability and environment protection characteristics of the airgun seismic survey and the economic benefits of a limited number of instruments setting are prominent. Full article
(This article belongs to the Special Issue Geophysical Inversion)
Show Figures

Figure 1

21 pages, 10242 KiB  
Article
Nonlinear Analysis of Bridges Considering Soil–Structure Interaction and Travelling Wave Effects Under Combined Train and Near-Fault Seismic Loads
by Panagiota S. Katsimpini, George Papagiannopoulos and George Hatzigeorgiou
Appl. Sci. 2024, 14(24), 11688; https://doi.org/10.3390/app142411688 - 14 Dec 2024
Cited by 1 | Viewed by 1372
Abstract
This paper presents a comprehensive method for analyzing prestressed concrete bridges subjected to multiple concurrent dynamic loads, incorporating soil–structure interaction (SSI) and seismic wave propagation effects. The study develops a comprehensive numerical framework that simultaneously accounts for traveling seismic waves, train-induced vibrations, and [...] Read more.
This paper presents a comprehensive method for analyzing prestressed concrete bridges subjected to multiple concurrent dynamic loads, incorporating soil–structure interaction (SSI) and seismic wave propagation effects. The study develops a comprehensive numerical framework that simultaneously accounts for traveling seismic waves, train-induced vibrations, and soil–foundation dynamics. Three-dimensional finite element modeling captures the complex interaction between the bridge structure, foundation system, and surrounding soil medium. The investigation considers the spatial variability of ground motion and its influence on the bridge’s dynamic response, particularly examining how different wave velocities and coherency patterns affect structural behavior. Advanced material constitutive models based on damage mechanics theory are implemented to represent both linear and non-linear structure responses under dynamic loading conditions. The analysis reveals that traditional simplified approaches, which neglect SSI, train, and seismic loading combinations, and traveling wave effects may significantly misestimate the structural demands. The results demonstrate how wave passage effects can either amplify or attenuate the combined response depending on the relationship between seismic wave velocity, the frequency content of the ground motion recordings, and the local soil conditions. These findings could contribute to the development of more reliable design methodologies for prestressed bridges in seismically active regions with significant railway traffic. Full article
Show Figures

Figure 1

12 pages, 2745 KiB  
Article
Single-Shot Time-Lapse Target-Oriented Velocity Inversion Using Machine Learning
by Katerine Rincon, Ramon C. F. Araújo, Moisés M. Galvão, Samuel Xavier-de-Souza, João M. de Araújo, Tiago Barros and Gilberto Corso
Appl. Sci. 2024, 14(21), 10047; https://doi.org/10.3390/app142110047 - 4 Nov 2024
Viewed by 985
Abstract
In this study, we used machine learning (ML) to estimate time-lapse velocity variations in a reservoir region using seismic data. To accomplish this task, we needed an adequate training set that could map seismic data to velocity perturbation. We generated a synthetic seismic [...] Read more.
In this study, we used machine learning (ML) to estimate time-lapse velocity variations in a reservoir region using seismic data. To accomplish this task, we needed an adequate training set that could map seismic data to velocity perturbation. We generated a synthetic seismic database by simulating reservoirs of varying velocities using a 2D velocity model typical of the Brazilian pre-salt ocean bottom node (OBN) acquisition, located in the Santos basin, Brazil. The largest velocity change in the injector well was around 3% of the empirical velocity model, which mimicked a realistic scenario. The acquisition geometry was formed by the geometry of 1 shot and 49 receivers. For each synthetic reservoir, the corresponding seismic data were obtained by estimating a one-shot forward-wave propagation using acoustic approximation. We studied the reservoir illumination to optimize the input data of the ML inversion. We split the set of synthetic reservoirs into two subsets: training (80%) and testing (20%) sets. We point out that the ML inversion was restricted to the reservoir zone, which means that it was inversion-oriented to a target. We obtained a good similarity between true and ML-inverted reservoir anomalies. The similarity diminished for a situation with non-repeatability noise. Full article
(This article belongs to the Section Earth Sciences)
Show Figures

Figure 1

25 pages, 10539 KiB  
Article
Evaluation of Cumulative Damage and Safety of Large-Diameter Pipelines under Ultra-Small Clear Distance Multiple Blasting Using Non-Electric and Electronic Detonators
by Xiaoming Guan, Ning Yang, Yingkang Yao, Bocheng Xin and Qingqing Yu
Appl. Sci. 2024, 14(19), 9112; https://doi.org/10.3390/app14199112 - 9 Oct 2024
Viewed by 1195
Abstract
The safety assessment and control of large-diameter pipelines under tunnel blasting at ultrasmall clear distances is a significant problem faced in construction. However, there has been no reference case for the quantitative comparison of the disturbance degree of surrounding rock by using two [...] Read more.
The safety assessment and control of large-diameter pipelines under tunnel blasting at ultrasmall clear distances is a significant problem faced in construction. However, there has been no reference case for the quantitative comparison of the disturbance degree of surrounding rock by using two blasting schemes of non-electric detonator design and electronic detonator design under a similar total blasting charge consumption. In this study, the blasting test was carried out based on the engineering background of drilling and blasting methods to excavate the tunnel under the water pipeline at a close distance. The peak particle velocity (PPV), stress, and deformation responses of the pipeline under the two construction methods of non-electric and electronic detonators were comparatively analyzed. The PPV can be remarkably reduced by 64.2% using the hole-by-hole initiation of the electronic detonators. For the large-diameter pipeline, the PPV on the blasting side was much larger than that on the opposite side because the blasting seismic wave propagated a longer distance and attenuated more rapidly, owing to its greater cavity vibration reduction effect. The PPV of the electronic detonators decayed more slowly than that of the non-electric detonators. The cumulative damage caused by consecutive hole-by-hole blasting using electronic detonators was less than that caused by simultaneous multi-hole initiation using non-electric detonators, with a reduction of about 50.5%. When the nearest peripheral holes away from the pipeline are detonated, the cumulative damage variable D and damage range increase rapidly. The PPV, dynamic tensile strength, and cumulative damage variables were used to evaluate the safety of the pipelines. Full article
(This article belongs to the Special Issue New Challenges in Urban Underground Engineering)
Show Figures

Figure 1

15 pages, 3643 KiB  
Article
Deconvolution-Based System Identification and Finite Element Model Calibration of the UCLA Factor Building
by Fei Wang, Jiemei Ma, Xiandong Kang, Qixuan Liu and Hongyu Chen
Buildings 2024, 14(9), 2910; https://doi.org/10.3390/buildings14092910 - 14 Sep 2024
Viewed by 759
Abstract
Analysis of wave propagation within buildings in response to earthquakes enables the tracking of changes in dynamic characteristics using impulse response functions. The velocity of traveling shear waves and the intrinsic attenuation of buildings can be retrieved, providing valuable input for system identification. [...] Read more.
Analysis of wave propagation within buildings in response to earthquakes enables the tracking of changes in dynamic characteristics using impulse response functions. The velocity of traveling shear waves and the intrinsic attenuation of buildings can be retrieved, providing valuable input for system identification. The Factor Building at the University of California, Los Angeles campus (henceforth referred to as the UCLA Factor Building), an instrumented 15-story steel moment frame structure, is selected for dynamic response characterization. Shear wave travel time and attenuation are computed from wave propagation using seismic interferometry applied to recorded motions, with deconvolved waves used to compute these parameters. In this study, the natural logarithm of the envelopes of waveforms deconvolved with the basement signal provided the measure of attenuation. Additionally, the waveforms deconvolved with the basement motion, indicating the building’s fundamental mode. The frequency and time decay further constrained the shear velocity and attenuation. Shear velocity was determined using arrival times measured from deconvolved waves, resulting in an average velocity of 147.1 m/s. The observed quality factor was 10.8, with a corresponding damping ratio of 5%. The shear wave velocity and damping ratio estimates derived from deconvolved waves showed consistency with those obtained from basement deconvolved waveforms. This consistency validates wave deconvolution as an effective method for isolating building response from excitation and ground coupling. By incorporating the resonant frequencies and damping ratios derived from previous analyses into a refined element model, this study underscores the potential of wave deconvolution for extracting building dynamic characteristics, thereby enhancing our understanding of their responses to earthquakes. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

Back to TopTop