Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (11)

Search Parameters:
Keywords = seismic velocity characterisation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 4113 KiB  
Article
VS Profile Inversion in Heterogeneous Granular Soil Deposits: Implications for Structural Design in a Study Site (Italy)
by Ferdinando Totani
Appl. Sci. 2025, 15(9), 5032; https://doi.org/10.3390/app15095032 - 1 May 2025
Viewed by 245
Abstract
Many urbanised areas of the Apennines, in Italy, have complex soil stratifications. A typical example is the outskirts of the city of L’Aquila, which is founded on highly heterogeneous soil layers and was severely affected by a strong earthquake in 2009. In such [...] Read more.
Many urbanised areas of the Apennines, in Italy, have complex soil stratifications. A typical example is the outskirts of the city of L’Aquila, which is founded on highly heterogeneous soil layers and was severely affected by a strong earthquake in 2009. In such conditions, shear wave velocity profiles (VS) obtained from in situ tests such as the Seismic Dilatometer Marchetti Test (SDMT) provide reliable analyses of the local seismic response. This article presents the mono-dimensional (1D) and two-dimensional (2D) seismic response analyses conducted to characterise the soil foundation of the hospital complex and adjacent university buildings in L’Aquila before their seismic retrofitting. This study emphasises the importance of accurate soil characterisation prior to repair interventions, especially in deposits where there are VS inversions and in the presence of geometrically irregular and large structures. Under these conditions, estimating the motion amplitudes of the deposit’s higher modes beyond the fundamental level is essential in accurately characterising the seismic response, especially for buildings where higher structural modes play a significant role. The results show that approximating the VS profile with simplified procedures, as proposed by the Italian Building Code of 2018 (equivalent VS, similar to average), leads to incorrect estimates of seismic action. Full article
Show Figures

Figure 1

21 pages, 23330 KiB  
Article
Assessment of Near-Surface Geophysical Methods Used to Discover Karst Bauxite Deposits in the Dinarides Using the Example of Posušje Area, Bosnia and Herzegovina
by Franjo Šumanovac, Josipa Kapuralić, Ivica Pavičić and Luka Perković
Minerals 2024, 14(4), 378; https://doi.org/10.3390/min14040378 - 3 Apr 2024
Cited by 2 | Viewed by 1591
Abstract
Geophysical exploration of bauxite deposits has been carried out in the area of Posušje in Bosnia and Herzegovina, which were formed on an Upper Cretaceous carbonate substrate, whereas the hanging wall rocks can be Paleogene limestones and sedimentary clastic rocks. Karst terrains are [...] Read more.
Geophysical exploration of bauxite deposits has been carried out in the area of Posušje in Bosnia and Herzegovina, which were formed on an Upper Cretaceous carbonate substrate, whereas the hanging wall rocks can be Paleogene limestones and sedimentary clastic rocks. Karst terrains are demanding for geophysical exploration due to the relatively complex geological relationships and exceptional near-surface inhomogeneities that generate large noises and challenging conditions for taking field measurements. The fundamental question is whether geophysical research can detect exceptionally irregular karst bauxite deposits with relatively small dimensions. The basic idea is to combine several geophysical methods and a joint interpretation of several data sets to increase the efficiency of geophysical surveying in detecting complex bauxite deposits in karst terrains. Therefore, fundamental near-surface research methods, electrical tomography and seismic refraction are used. In addition, magnetometry was used to examine whether bauxite deposits yield potential magnetic anomalies that could help in detecting them. Research undertaken in the area of Posušje was carried out in the first step on already discovered and known bauxite deposits to determine whether geophysical responses correlate with the occurrence of bauxite deposits and to evaluate the effectiveness of each of the applied surface geophysical methods. Measurements were taken at several locations, and results for two micro-locations, Krstače and Mratnjača, are shown. Geophysical measurements were firstly performed on discovered bauxite deposits in order to reliably determine the possibility of identifying deposits in geophysical inverse models. Bauxite deposits were clearly recognised as characteristic geophysical responses in inversion models using both methods, electrical tomography and seismic refraction. Although the response of bauxite deposits is expressed in both models, resistivity and velocity, it is much more evident in resistivity models. The characteristic resistivity response was confirmed by the discovery of a new deposit. Therefore, the conclusion is that electrical resistivity tomography should be considered a basic method for exploring karst bauxite deposits. Seismic refraction provides a better characterisation of deposits and reduces the interpretation ambiguity. This solution can generally be applied to the problem of researching bauxite deposits in the Dinarides and similar geological models in the Mediterranean. Magnetometric measurements have shown that no magnetic anomalies could be associated with bauxite deposits, and only magnetometry was not successful in discovering bauxite deposits. Full article
(This article belongs to the Section Mineral Exploration Methods and Applications)
Show Figures

Graphical abstract

12 pages, 4445 KiB  
Article
Blast-Assisted Subsurface Characterisation Using a Novel Distributed Acoustic Sensing Setup Based on Geometric Phases
by Sabahat Shaheen, Konstantin Hicke and Katerina Krebber
Sensors 2024, 24(1), 30; https://doi.org/10.3390/s24010030 - 20 Dec 2023
Cited by 1 | Viewed by 1432
Abstract
A novel DAS setup based on geometric phases in coherent heterodyne detection is applied for the first time to the characterisation of the Earth’s subsurface. In addition, an optimisation of the proposed setup in terms of its spatial resolution is also presented for [...] Read more.
A novel DAS setup based on geometric phases in coherent heterodyne detection is applied for the first time to the characterisation of the Earth’s subsurface. In addition, an optimisation of the proposed setup in terms of its spatial resolution is also presented for the first time. The surface waves are generated by strong blasts of 25 kg of explosives at a dedicated test site. A 10 km dark fiber link in the vicinity of the test site connected to the test setup records the resulting strain signals. The spike-free and low-noise strain data thus obtained minimize post-processing requirements, making the setup a candidate for real-time seismic monitoring. An analysis of the dispersion characteristics of the generated surface waves is performed using a recently reported optimised seismic interferometric technique. Based on the dispersion characteristics, the shear wave velocities of the surface waves as a function of the depth profile of the Earth’s crust are determined using an optimised evolutionary algorithm. Full article
(This article belongs to the Special Issue New Prospects in Fiber Optic Sensors and Applications)
Show Figures

Figure 1

21 pages, 10018 KiB  
Article
Numerical Analysis of Low-Velocity Impact Behaviour of Protective Concrete-Filled Steel Plates Composite Wall
by Hongmei Xiao, Peng Yu, Limeng Zhu, Chunwei Zhang and Po-Chien Hsiao
Materials 2023, 16(11), 4130; https://doi.org/10.3390/ma16114130 - 1 Jun 2023
Cited by 1 | Viewed by 1770
Abstract
In this research, a protective concrete-filled steel plate composite wall (PSC) is developed, consisting of a core concrete-filled bilateral steel plate composite shear wall and two lateral replaceable surface steel plates with energy-absorbing layers. The PSC wall is characterised by high in-plane seismic [...] Read more.
In this research, a protective concrete-filled steel plate composite wall (PSC) is developed, consisting of a core concrete-filled bilateral steel plate composite shear wall and two lateral replaceable surface steel plates with energy-absorbing layers. The PSC wall is characterised by high in-plane seismic performance as well as out-of-plane impact performance. Therefore, it could be employed primarily in high-rise constructions, civil defence initiatives, and buildings with stringent structural safety criteria. To investigate the out-of-plane low-velocity impact behaviour of the PSC wall, fine finite element models are validated and developed. Then, the influence of geometrical and dynamic loading parameters on its impact behaviour is investigated. The results show that the replaceable energy-absorbing layer could significantly decrease the out-of-plane displacement and plastic displacement of the PSC wall due to its large plastic deformation, which could absorb a significantly large amount of impact energy. Meanwhile, the PSC wall could maintain high in-plane seismic performance when subjected to impact load. The plastic yield-line theoretical model is proposed and utilised to predict the out-of-plane displacement of the PSC wall, and the calculated results agree very well with the simulated results. Full article
Show Figures

Figure 1

27 pages, 10161 KiB  
Article
Geophysical Surveys for Geotechnical Model Reconstruction and Slope Stability Modelling
by Agnese Innocenti, Ascanio Rosi, Veronica Tofani, Veronica Pazzi, Elisa Gargini, Elena Benedetta Masi, Samuele Segoni, Davide Bertolo, Marco Paganone and Nicola Casagli
Remote Sens. 2023, 15(8), 2159; https://doi.org/10.3390/rs15082159 - 19 Apr 2023
Cited by 10 | Viewed by 4082
Abstract
Performing a reliable stability analysis of a landslide slope requires a good understanding of the internal geometries and an accurate characterisation of the geotechnical parameters of the identified strata. Geotechnical models are commonly based on geomorphological data combined with direct and intrusive geotechnical [...] Read more.
Performing a reliable stability analysis of a landslide slope requires a good understanding of the internal geometries and an accurate characterisation of the geotechnical parameters of the identified strata. Geotechnical models are commonly based on geomorphological data combined with direct and intrusive geotechnical investigations. However, the existence of numerous empirical correlations between seismic parameters (e.g., S-wave velocity) and geotechnical parameters in the literature has made it possible to investigate areas that are difficult to reach with direct instrumentation. These correlations are often overlooked even though they enable a reduction in investigation costs and time. By means of geophysical tests, it is in fact possible to estimate the N-SPT value and derive the friction angle from results obtained from environmental seismic noise measurements. Despite the empirical character and a certain level of uncertainty derived from the estimation of geotechnical parameters, these are particularly useful in the preliminary stages of an emergency, when straight data are not available and on all those soils where other direct in situ tests are not reliable. These correlations were successfully applied to the Theilly landslide (Western Alps, Italy), where the geotechnical model was obtained by integrating the results of a multi-parameter geophysical survey (H/V seismic noise and ground-penetrating radar) with stratigraphic and geomorphological observations, digital terrain model and field survey data. The analysis of the triggering conditions of the landslide was conducted by means of hydrological–geotechnical modelling, evaluating the behaviour of the slope under different rainfall scenarios and considering (or not) the stabilisation interventions present on the slope. The results of the filtration analyses for all events showed a top-down saturation mechanism, which led to the formation of a saturated face with a maximum thickness of 5 m. Stability analyses conducted for the same events showed the development of a shallow landslide in the first few metres of saturated soil. The modelling results are compatible with the actual evolution of the phenomenon and allow us to understand the triggering mechanism, providing models to support future interventions. Full article
(This article belongs to the Special Issue Landslide Studies Integrating Remote Sensing and Geophysical Data)
Show Figures

Figure 1

31 pages, 10571 KiB  
Article
An Attempt to Study Foundation Anchoring Conditions in Sedimentary Estuaries Using Integrated Methods
by Blaise Pascal Gounou Pokam, Janvier Domra Kana, Jorelle Larissa Meli’i, Marthe Mbond Ariane Gweth, Serges Hugues Pokam Kegni, Michel Constant Njock, Ibrahim Mbouombouo Ngapouth, Michel André Pouth Nkoma, Yves Christian Mbono Samba and Philippe Njandjock Nouck
Appl. Sci. 2022, 12(14), 7175; https://doi.org/10.3390/app12147175 - 16 Jul 2022
Viewed by 1665
Abstract
The search for and knowledge of the best conditions for anchoring the foundations of certain structures such as bridges, tunnels and quays in sedimentary estuaries is a challenge, for both scientists in general and engineers in particular. Indeed, wharves are structures that receive [...] Read more.
The search for and knowledge of the best conditions for anchoring the foundations of certain structures such as bridges, tunnels and quays in sedimentary estuaries is a challenge, for both scientists in general and engineers in particular. Indeed, wharves are structures that receive a lot of stresses and therefore require anchoring to avoid tilting and to guarantee their stability during service. This work, based on the analysis of data from seismic refraction methods, mechanical soundings and laboratory tests, characterises the terrain of the Wouri estuary in Central Africa. The objective is to determine and present the subsurface layers encountered as well as their characteristics, in order to define the best conditions for anchoring the foundations to ensure the stability of the quays to be built there. The seismic refraction campaign shows that the study area is relatively heterogeneous over the first 25 m, with velocities measured in the range 1520–1750 m/s; modulated in two distinct ranges, between 1520–1580 m/s characteristic of mud and loose sediments (alternating layers of clay, sand, loose silt) and the range 1580–1750 m/s corresponding to the signature of sandy-silty or compact clays. The mechanical tests show sedimentary soils, with alternating layers of sandy clay and clayey sand over the 42 m drilled, loose over the first 30 m in the bank area and over the first 15 m in the canal or dredge area, with a limit pressure of less than 1 MPa. Similarly, the soil samples taken and tested in the laboratory show that the soils are clayey over the first 30 metres, plastic and liquid with respect to their water content, respectively, below and above the liquidity limits, confirming their loose character. The results of seismic refraction, mechanical soundings and laboratory tests show that, in estuarine areas characterised by alternating sandy clay and clayey sand, there are not always hard formations in the first 25 metres of depth but, from a depth of 30 m, the soils become moderately compact and begin to form an anchoring layer sufficient to guarantee the stability of the quays against earth pressure forces. Full article
Show Figures

Figure 1

13 pages, 2228 KiB  
Article
Cyclic Liquefaction Resistance of an Alluvial Natural Sand: A Comparison between Fully and Partially Saturated Conditions
by Diana Cordeiro, Fausto Molina-Gómez, Cristiana Ferreira, Sara Rios and António Viana da Fonseca
Geotechnics 2022, 2(1), 1-13; https://doi.org/10.3390/geotechnics2010001 - 6 Jan 2022
Cited by 13 | Viewed by 3343
Abstract
Earthquake-induced liquefaction is one of the major causes of building damage as it decreases the strength and stiffness of soil. The liquefaction resistance of soils increases significantly as the degree of saturation decreases, making soil desaturation an effective measure for the mitigation of [...] Read more.
Earthquake-induced liquefaction is one of the major causes of building damage as it decreases the strength and stiffness of soil. The liquefaction resistance of soils increases significantly as the degree of saturation decreases, making soil desaturation an effective measure for the mitigation of this phenomenon. This paper presents a comparative analysis of liquefaction resistance of an alluvial sand from Aveiro (Portugal) under fully and partially saturated conditions. For this purpose, an in situ characterisation based on CPTu and a laboratory series of cyclic triaxial tests were carried out. The cyclic triaxial tests were conducted under undrained conditions on remoulded specimens with different degrees of saturation, including the full saturation. On the other hand, the triaxial apparatus was instrumented with Hall-effect transducers to accurately measure the strains during all testing phases. In addition, it was equipped with piezoelectric transducers to measure seismic waves velocities, namely P-wave velocity, for evaluation of the saturation level of the specimen in parallel with the Skempton’s B parameter. Hence, relations between the B-value, and P-wave velocity and cyclic strength resistance are presented. The number of cycles to trigger liquefaction, considering the pore pressure build-up criterion, is presented for the different degrees of saturation. Results confirmed the increase in liquefaction resistance for lower degrees of saturation in this soil. Full article
Show Figures

Figure 1

13 pages, 4943 KiB  
Article
Numerical Analysis of Steel Geodesic Dome under Seismic Excitations
by Dominika Bysiec and Tomasz Maleska
Materials 2021, 14(16), 4493; https://doi.org/10.3390/ma14164493 - 10 Aug 2021
Cited by 32 | Viewed by 6523 | Correction
Abstract
The paper presents the response of two geodesic domes under seismic excitations. The structures subjected to seismic analysis were created by two different methods of subdividing spherical triangles (the original octahedron face), as proposed by Fuliński. These structures are characterised by the similar [...] Read more.
The paper presents the response of two geodesic domes under seismic excitations. The structures subjected to seismic analysis were created by two different methods of subdividing spherical triangles (the original octahedron face), as proposed by Fuliński. These structures are characterised by the similar number of elements. The structures are made of steel, which is a material that undoubtedly gives lightness to structures and allows large spans. Designing steel domes is currently a challenge for constructors, as well as architects, who take into account their aesthetic considerations. The analysis was carried out using the finite element method of the numerical program. The two designed domes were analysed using four different seismic excitations. The analysis shows what influence particular earthquakes have on the geodesic dome structures by two different methods. The study analysed the maximum displacements, axial forces, velocities, and accelerations of the designed domes. In addition, the Time History method was used for the analysis, which enabled the analysis of the structure in the time domain. The study will be helpful in designing new structures in seismic areas and in assessing the strength of various geodesic dome structures under seismic excitation. Full article
(This article belongs to the Special Issue Testing of Materials and Elements in Civil Engineering (2nd Edition))
Show Figures

Figure 1

16 pages, 5784 KiB  
Article
The Impact of High-Energy Mining-Induced Tremor in a Fault Zone on Damage to Buildings
by Elżbieta Pilecka, Krystyna Stec, Jacek Chodacki, Zenon Pilecki, Renata Szermer-Zaucha and Krzysztof Krawiec
Energies 2021, 14(14), 4112; https://doi.org/10.3390/en14144112 - 7 Jul 2021
Cited by 15 | Viewed by 2375
Abstract
Seismic energy propagation from the hypocentre of mining-induced tremors usually causes an uneven distribution of the peak ground velocity PGVHmax in tectonically complicated structures, and consequently, an uneven distribution of damage to buildings located on the ground surface. This study aimed to [...] Read more.
Seismic energy propagation from the hypocentre of mining-induced tremors usually causes an uneven distribution of the peak ground velocity PGVHmax in tectonically complicated structures, and consequently, an uneven distribution of damage to buildings located on the ground surface. This study aimed to estimate the impact of high-energy mining-induced tremors in fault zones on damage to buildings. In the study, we describe a case of one of the highest-energy mining-induced tremors E = 4.0 · 108 J (local magnitude ML = 3.6) that occurred in the Upper Silesian Coal Basin (USCB), Poland. The hypocentre of the tremor was most probably located in the Barbara fault zone, one of the larger faults in that western part of the USCB. Numerous damaged buildings on the terrain surface were registered, both in the epicentral zone and at a greater distance from the epicentre, mostly from the southern side of the Barbara fault zone. We calculated that the tremor was characterised by a normal slip mechanism associated with the same kind of fault as the Barbara fault. The azimuth of the nodal planes was similar to the west-east direction, which is consistent with the azimuth of the Barbara fault. From the focal mechanism, the greatest propagation of seismic energy occurred in south and west-east directions from the tremor hypocentre towards the surface. It was found that from the northern side of the hanging wall of the Barbara fault, there were 14 instances of damage (19%), and in the southern part of a hanging wall, there were 58 (81%). Therefore, the directionality of seismic energy propagation is aligned with the focal mechanism acting in the Barbara fault. It has also been concluded that a width of the zone of up to about 1200 m along the Barbara fault is the most threatening on the basis of registered building damage in the geological conditions of USCB. The study has shown that in assessing the impact of mining-induced tremors on buildings and the environment, the disturbance of seismic energy propagation by larger faults should be considered. Full article
(This article belongs to the Topic Interdisciplinary Studies for Sustainable Mining)
Show Figures

Figure 1

30 pages, 6928 KiB  
Article
Seismic Velocity Characterisation of Geothermal Reservoir Rocks for CO2 Storage Performance Assessment
by Martijn T. G. Janssen, Auke Barnhoorn, Deyan Draganov, Karl-Heinz A. A. Wolf and Sevket Durucan
Appl. Sci. 2021, 11(8), 3641; https://doi.org/10.3390/app11083641 - 18 Apr 2021
Cited by 9 | Viewed by 4082
Abstract
As part of a seismic monitoring project in a geothermal field, where the feasibility of re-injection and storage of produced CO2 is being investigated, a P- and S-wave seismic velocity characterisation study was carried out. The effect of axial (up to 95 [...] Read more.
As part of a seismic monitoring project in a geothermal field, where the feasibility of re-injection and storage of produced CO2 is being investigated, a P- and S-wave seismic velocity characterisation study was carried out. The effect of axial (up to 95 MPa) and radial (up to 60 MPa) stress on the seismic velocity was studied in the laboratory for a broad range of dry sedimentary and metamorphic rocks that make up the Kızıldere geothermal system in Turkey. Thin section texture analyses conducted on the main reservoir formations, i.e., marble and calcschist, confirm the importance of the presence of fractures in the reservoir: 2D permeability increases roughly by a factor 10 when fractures are present. Controlled acoustic-assisted unconfined and confined compressive strength experiments revealed the stress-dependence of seismic velocities related to the several rock formations. For each test performed, a sharp increase in velocity was observed at relatively low absolute stress levels, as a result of the closure of microcracks, yielding an increased mineral-to-mineral contact area, thus velocity. A change in radial stress appeared to have a negligible impact on the resulting P-wave velocity, as long as it exceeds atmospheric pressure. The bulk of the rock formations studied showed reducing P-wave velocities as function of increasing temperature due to thermal expansion of the constituting minerals. This effect was most profound for the marble and calcschist samples investigated. Full article
(This article belongs to the Special Issue Seismic Exploration and Geothermal Energy)
Show Figures

Figure 1

22 pages, 3749 KiB  
Article
Use of Macroseismic Intensity Data to Validate a Regionally Adjustable Ground Motion Prediction Model
by Yuxiang Tang, Nelson Lam, Hing-Ho Tsang and Elisa Lumantarna
Geosciences 2019, 9(10), 422; https://doi.org/10.3390/geosciences9100422 - 30 Sep 2019
Cited by 8 | Viewed by 4194
Abstract
In low-to-moderate seismicity (intraplate) regions where locally recorded strong motion data are too scare for conventional regression analysis, stochastic simulations based on seismological modelling have often been used to predict ground motions of future earthquakes. This modelling methodology has been practised in Central [...] Read more.
In low-to-moderate seismicity (intraplate) regions where locally recorded strong motion data are too scare for conventional regression analysis, stochastic simulations based on seismological modelling have often been used to predict ground motions of future earthquakes. This modelling methodology has been practised in Central and Eastern North America (CENA) for decades. It is cautioned that ground motion prediction equations (GMPE) that have been developed for use in CENA might not always be suited for use in another intraplate region because of differences in the crustal structure. This paper introduces a regionally adjustable GMPE, known as the component attenuation model (CAM), by which a diversity of crustal conditions can be covered in one model. Input parameters into CAM have been configured in the same manner as a seismological model, as both types of models are based on decoupling the spectral properties of earthquake ground motions into a generic source factor and a regionally specific path factor (including anelastic and geometric attenuation factors) along with a crustal factor. Unlike seismological modelling, CAM is essentially a GMPE that can be adapted readily for use in different regions (or different areas within a region) without the need of undertaking any stochastic simulations, providing that parameters characterising the crustal structure have been identified. In addressing the challenge of validating a GMPE for use in an area where instrumental data are scarce, modified Mercalli intensity (MMI) data inferred from peak ground velocity values predicted by CAM are compared with records of MMI of past earthquake events, as reported in historical archives. South-Eastern Australia (SEA) and South-Eastern China (SEC) are the two study regions used in this article for demonstrating the viability of CAM as a ground motion prediction tool in an intraplate environment. Full article
Show Figures

Figure 1

Back to TopTop