Use of Macroseismic Intensity Data to Validate a Regionally Adjustable Ground Motion Prediction Model
Abstract
:1. Introduction
2. The Component Attenuation Model (CAM) of PGV
2.1. Generic Source Factor
2.2. Regional Whole Path Anelastic Attenuation Factor
2.3. Crustal Modification Factor
2.3.1. Upper-Crustal Amplification
2.3.2. Upper Crustal Attenuation
2.3.3. Mid-Crustal Modification
2.4. Verification of CAM Using Various Seismological Models
2.5. Validation of CAM Using MMI Data
3. Results of Verification Analyses
3.1. PGV Modelling
3.2. Translating Seismological Models into GMPEs in Terms of PGV
3.3. Comparing with Historical MMI Data and Existing GMPEs
4. Discussion
- Uncertainties with the relationship for conversion from MMI to PGV: Although the adopted MMI–PGV conversion function is recommended by many studies, there are still significant variances when applying the function to a diversity of regions, which is demonstrated by the discrepancies between not using residual corrections (Equation (11)) and using residual corrections (Equation (12)) in the relationship functions shown in Figure 10 and Figure 11.
- Uncertainties with the modification factor for conversion from MMI on a soil site to MMI on a rock site: a factor of 1.5 was adopted for both SEA (recommended by AS1170.4-2007 [64]) and SEC region (recommended by Tsang et al. [16]). CAM can only give predictions on rock sites and thus the conversion between soil sites and rock sites is essential.Uncertainties with magnitude conversion: in SEA, local magnitude (ML) has been converted into moment magnitude (M) based on studies conducted by Geoscience Australia [50]. However, the magnitude of ancient recordings in SEC has not been assured (the magnitude identified with individual recordings is assumed to be in moment magnitude).
- Uncertainties with shear wave velocity profiling: a geology-based approach for constructing SWV profile was adopted. This approach can make the best use of local recording data, thereby minimising inter-regional variability when calculating the upper crustal modification factor. For SEA region, the proposed SWV profile resulted in a VS30 value that is the same as previous study (0.76 km/s) [68]. However, for SEC region, the SWV profile obtained from this study (VS30 = 1.45 km/s) is different from that presented by Tsang et al. [16] (VS30 = 1.1 km/s, which is different from VS0.03). More local data for accurate SWV profile modelling is required in future studies.
- Uncertainties with the seismological parameters: no complete seismological model has been developed specifically for the SEC region. The parameter values (including stress drop value and geometric attenuation factor) used in CAM are mainly default values that are expected for a typical intraplate region.
- Another intrinsic limitation of CAM is that it has not taken earthquake duration effects into account in a comprehensive manner. Incorporating an adjustment factor for earthquake duration effects into CAM is recommended for its future development.
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Atkinson, G.M.; Boore, D.M. Ground-motion relations for Eastern North America. Bull. Seism. Soc. Am. 1995, 85, 17–30. [Google Scholar]
- Chiou, B.J.; Youngs, R.R. An NGA model for the average horizontal component of peak ground motion and response spectra. Earthq. Spectra 2008, 24, 173–215. [Google Scholar] [CrossRef]
- Brune, J.N. Tectonic stress and the spectra of seismic shear waves from earthquakes. J. Geophys. Res. 1970, 75, 4997–5009. [Google Scholar] [CrossRef] [Green Version]
- Atkinson, G.M.; Boore, D.M. Earthquake ground-motion prediction equations for Eastern North America. Bull. Seism. Soc. Am. 2006, 96, 2181–2205. [Google Scholar] [CrossRef]
- Hassani, B.; Atkinson, G.M. Adjustable generic ground-motion prediction equation based on equivalent point-source simulations: Accounting for kappa effects. Bull. Seism. Soc. Am. 2018, 108, 913–928. [Google Scholar] [CrossRef]
- Boore, D.M.; Stewart, J.P.; Seyhan, E.; Atkinson, G.M. NGA-West2 equations for predicting PGA, PGV, and 5% damped PSA for shallow crustal earthquakes. Earthq. Spectra 2014, 30, 1057–1085. [Google Scholar] [CrossRef]
- Campbell, K.W.; Bozorgnia, Y. NGA-West2 ground motion model for the average horizontal components of PGA, PGV, and 5% damped linear acceleration response spectra. Earthq. Spectra 2014, 30, 1087–1115. [Google Scholar] [CrossRef]
- Zafarani, H.; Mousavi, M.; Noozad, A.; Ansari, A. Calibration of the specific barrier model to Iranian plateau earthquakes and development of physically based attenuation relationships for Iran. Soil Dyn. Earthq. Eng. 2008, 28, 550–576. [Google Scholar] [CrossRef]
- Lam, N.T.K.; Wilson, J.L.; Hutchinson, G.L. Generation of synthetic earthquake accelerograms using seismological modelling: A review. J. Earthq. Eng. 2000, 4, 321–354. [Google Scholar] [CrossRef]
- Boore, D.M. Simulation of ground motion using the stochastic method. Pure Appl. Geophys. 2003, 160, 635–676. [Google Scholar] [CrossRef]
- Campbell, K.W. Prediction of strong ground motion using the hybrid empirical method and its use in the development of ground-motion (attenuation) relations in Eastern North America. Bull. Seism. Soc. Am. 2003, 93, 1012–1033. [Google Scholar] [CrossRef]
- Pezeshk, S.; Zandieh, A.; Campbell, K.W.; Tavakoli, B. Ground Motion Prediction Equations for CENA Using the Hybrid Empirical Method in Conjunction with NGA-West2 Empirical Ground Motion Models, in NGA-East: Median Ground Motion Models for the Central and Eastern North America Region; PEER Rept. No. 2015/04, Chapter 5; Pacific Earthquake Engineering Research Center: Berkeley, CA, USA, 2015; pp. 119–147. [Google Scholar]
- Atkinson, G.M. Ground-motion prediction equations for Eastern North America from a referenced empirical approach: Implications for epistemic uncertainty. Bull. Seismol. Soc. Am. 2008, 98, 1304–1318. [Google Scholar] [CrossRef]
- Hassani, B.; Atkinson, G.M. Referenced empirical ground-motion model for Eastern North America. Seism. Res. Lett. 2015, 86, 477–491. [Google Scholar] [CrossRef]
- Lam, N.T.K.; Sinadinovski, C.; Koo, R.; Wilson, J.L. Peak ground velocity modelling for Australian intraplate Earthquakes. J. Seismol. Earthq. Eng. 2003, 5, 11–21. [Google Scholar]
- Tsang, H.H.; Sheikh, M.N.; Lam, N.T.K.; Chandler, A.M.; Lo, S.H. Regional differences in attenuation modelling for Eastern China. J. Asian Earth Sci. 2010, 39, 441–459. [Google Scholar] [CrossRef] [Green Version]
- Noman, M.N.A.; Cramer, C.H. Empirical Ground-Motion Prediction Equations for Eastern North America; PEER Rept. No. 2015/04; Chapter 8; Pacific Earthquake Engineering Research Center, University of California: Berkeley, CA, USA, 2015; pp. 193–212. [Google Scholar]
- Allen, T.I. Stochastic Ground-Motion Prediction Equations for Southeastern Australian Earthquakes Using Updated Source and Attenuation Parameters; Geoscience Australia: Canberra, ACT, Australia, 2012. [Google Scholar]
- Allen, T.I.; Dhu, T.I.; Cummins, P.R.; Schneider, J.F. Empirical attenuation of ground-motion spectral amplitudes in Southwestern Western Australia. Bull. Seismol. Soc. Am. 2006, 96, 572–585. [Google Scholar] [CrossRef]
- Newmark, N.M.; Rosenblueth, E. Fundamentals of Earthquake Engineering; Prentice Hall Inc.: New Jersey, NJ, USA, 1971. [Google Scholar]
- Gaull, B.A.; Michael-Leiba, M.O.; Rynn, J.M.W. Probabilistic earthquake risk maps of Australia. Aust. J. Earth Sci. 1990, 37, 169–187. [Google Scholar] [CrossRef]
- Kaka, S.I.; Atkinson, G.M. Relationships between instrumental ground-motion parameters and Modified Mercalli Intensity in eastern North America. Bull. Seism. Soc. Am. 2004, 94, 1728–1736. [Google Scholar] [CrossRef]
- Atkinson, G.M.; Kaka, S.I. Relationship between felt intensity and instrumental ground motion in the Central United States and California. Bull. Seism. Soc. Am. 2007, 97, 497–510. [Google Scholar] [CrossRef]
- Yaghmaei-Sabegh, S.; Tsang, H.H.; Lam, N.T.K. Conversion between Peak Ground Motion Parameters and Modified Mercalli Intensity Values. J. Earthq. Eng. 2011, 15, 1138–1155. [Google Scholar] [CrossRef]
- Bommer, J.J.; Alarcon, J.E. The prediction and use of peak ground velocity. J. Earthq. Eng. 2006, 10, 1–31. [Google Scholar] [CrossRef]
- Akkar, S.; Ozen, O. Effect of peak ground velocity on deformation demands for SDOF systems. Earthq. Eng. Struct. Dyn. 2005, 34, 1551–1571. [Google Scholar] [CrossRef]
- Todorovska, M.I.; Trifunac, M.D. Hazard mapping of normalized peak strain in soils during earthquakes: Mircozonation of a metropolitan area. Soil Dyn. Earthq. Eng. 1996, 15, 321–329. [Google Scholar] [CrossRef]
- FEMA. FEMA’s Software Program for Estimating Potential Losses from Disasters; FEMA: Washington, DC, USA, 2003. [Google Scholar]
- Trifunac, M.D. Empirical criteria for liquefaction in sands via standard penetration tests and sesimic wave energy. Soil Dyn. Earthq. Eng. 1995, 14, 419–426. [Google Scholar] [CrossRef]
- Kostadinov, M.V.; Towhata, I. Assessment of liquefaction-inducing peak ground velocity and frequency of horizontal ground shaking at onset of phenomenon. Soil Dyn. Earthq. Eng. 2002, 22, 309–322. [Google Scholar] [CrossRef]
- Orense, R.P. Assessment of liquefaction potential based on peak ground motion parameters. Soil Dyn. Earthq. Eng. 2005, 25, 225–240. [Google Scholar] [CrossRef]
- Newmark, N.M.; Blume, J.A.; Kapur, K.K. Seismic design spectra for nuclear power plants. J. Power Div. ASCE 1973, 99, 287–303. [Google Scholar]
- Newmark, N.M.; Hall, W.J. Earthquake Spectra and Design; Earthquake Engineering Research Institute: El Cerrito, CA, USA, 1982. [Google Scholar]
- Wilson, J.L.; Lam, N.T.K.; Australian Earthquake Engineering Society. AS 1170.4-2007 Commentary: Structural Design Actions; Part 4, Earthquake Actions in Australia; Australian Earthquake Engineering Society: McKinnon, VIC, Australia, 2007. [Google Scholar]
- Boore, D.M.; Alessandro, C.D.; Abrahamson, N.A. A generalization of the double-corner-frequency source spectral model and its use in the SCEC BBP validation exercise. Bull. Seismol. Soc. Am. 2014, 104, 2387–2398. [Google Scholar] [CrossRef]
- Mak, S.; Chan, L.S.; Chandler, A.M.; Koo, R. Coda Q estimates in the Hong Kong Region. J. Asian Earth Sci. 2004, 24, 127–136. [Google Scholar] [CrossRef]
- Yenier, E.; Atkinson, G.M. Regional adjustable generic ground-motion prediction equation based on equivalent point-source simulations: Application to Central and Eastern North America. Bull. Seismol. Soc. Am. 2015, 105, 1989–2009. [Google Scholar] [CrossRef]
- Boore, D.M.; Joyner, W.B. Site amplification for generic rock sites. Bull. Seismol. Soc. Am. 1997, 87, 327–341. [Google Scholar]
- Boore, D.M. Short Note: Determining generic velocity and density models for crustal amplification calculations, with an update of the Boore and Joyner (1997) generic amplification for VS(Z) = 760 m/s. Bull. Seism. Soc. Am. 2016, 106, 316–320. [Google Scholar] [CrossRef]
- Brocher, T.M. Empirical relations between elastic wavespeeds and density in the earth’s crust. Bull. Seismol. Soc. Am. 2005, 95, 2081–2092. [Google Scholar] [CrossRef]
- Silva, W.J.; Darragh, R.B.; Gregor, N.N.; Martin, G.; Abragamson, N.A.; Kircher, C. Reassessment of Site Coefficients and Near-Fault Factors for Building Code Provisions; Final Technical Report; N.E.R. Program: El Cerrito, CA, USA, 1999. [Google Scholar]
- Chandler, A.M.; Lam, N.T.K.; Tsang, H.H. Near-surface attenuation modelling based on rock shear-wave velocity profile. Soil Dyn. Earthq. Eng. 2006, 26, 1004–1014. [Google Scholar] [CrossRef] [Green Version]
- Chandler, A.M.; Lam, N.T.K.; Tsang, H.H. Regional and Local Factors in Attenuation Modelling: Hong Kong Case Study. J. Asian Earth Sci. 2006, 27, 892–906. [Google Scholar] [CrossRef]
- Drouet, S.; Cotton, F.; Guéguen, P. VS30, κ, regional attenuation and MW from accelerograms: Application to magnitude 3–5 French earthquakes. Geophys. J. Inter. 2010, 182, 880–898. [Google Scholar] [CrossRef]
- Edwards, B.; Fäh, D.; Giardini, D. Attenuation of seismic shear wave energy in Switzerland. Geophys. J.Inter 2011, 185, 967–984. [Google Scholar] [CrossRef] [Green Version]
- Van Houtte, C.; Drouet, S.; Cotton, F. Analysis of the origins of κ (kappa) to compute hard rock to rock adjustment factors for GMPEs. Bull. Seismol. Soc. Am. 2011, 101, 2926–2941. [Google Scholar] [CrossRef]
- Silva, W.J.; Gregor, N.N.; Darragh, R.B. Development of Regional Hard Rock Attenuation Relations for Central and Eastern North America; Pacific Engineering and Analysis: El Cerrito, CA, USA, 2002. [Google Scholar]
- Atkinson, G.M. Empirical attenuation of ground motion spectral amplitudes in Southeastern Canada and the Northeastern United States. Bull. Seismol. Soc. Am. 2004, 94, 1079–1095. [Google Scholar] [CrossRef]
- Boatwright, J.; Seekins, L. Regional spectral analysis of three moderate earthquakes in Northeastern North America. Bull. Seismol. Soc. Am. 2011, 101, 1769–1782. [Google Scholar] [CrossRef]
- Ghasemi, H.; Allen, T.I. Testing the sensitivity of seismic hazard in Australia to new empirical magnitude conversion equations. In Proceedings of the AEES, Canberra, ACT, Australia, 24–26 November 2017. [Google Scholar]
- Gao, W.X. China Earthquake Yearbook; Seismological Press: Beijing, China, 1990. [Google Scholar]
- Gu, G.X. Catalogue of Chinese Earthquake (1831 B.C.–1969 A.D.); Science Press: Beijing, China, 1989. [Google Scholar]
- Chandler, A.M.; Lam, N.T.K.; Tsang, H.H. Shear wave velocity modelling in crustal rock for seismic hazard analysis. Soil Dyn. Earthq. Eng. 2006, 25, 167–185. [Google Scholar] [CrossRef]
- Lam, N.T.K.; Asten, M.W.; Chandler, A.M.; Tsang, H.H.; Venkatesan, S.; Wilson, J.L. Seismic attenuation modelling for Melbourne based on the SPAC-CAM Procedure. In Proceedings of the AEES, Mount Gambier, SA, Australia, 5–7 November 2004. [Google Scholar]
- Roberts, J.; Asten, M.; Tsang, H.H.; Venkatesan, S.; Lam, N.T.K. Shear Wave Velocity Profiling in Melbourne Silurian Mudestone Using the SPAC Method. In Proceedings of the AEES, Mount Grambier, SA, Australia, 5–7 November 2004. [Google Scholar]
- Lam, N.T.K.; Venkatesan, S.; Wilson, J.; Asten, M.; Roberts, J.; Chandler, A.; Tsang, H.H. Generic Approach for Modelling Earthquake Hazard. Adv. Struct. Eng. 2006, 9, 67–82. [Google Scholar] [CrossRef]
- Collins, C.; Kayen, R.; Carkin, B.; Allen, T.I.; Cummins, P.R.; McPherson, A. Shear Wave Velocity Measurement at Australian Ground Motion Seismometer Sites by the Spectral Analysis of Surface Waves (SASW) Method; Earthquake Engineering in Australia: Canberra, ACT, Australia, 2006. [Google Scholar]
- Zhao, B.; Zhang, Z.; Bai, Z.; Badal, J.; Zhang, Z. Shear Velocity and Vp/Vs Ratio Structure of the Crust beneath the Southern Margin of South China Continent. J. Asian Earth Sci. 2013, 62, 167–179. [Google Scholar] [CrossRef]
- Zhao, M.; Qiu, X.; Xia, S.; Xu, H.; Wang, P.; Tan, K.; Lee, C.; Xia, K. Seismic Structure in the Northeastern South China Sea: S-wave Velocity and Vp/Vs Ratios Derived from Three-component OBS Data. Tectonophysics 2010, 480, 183–197. [Google Scholar] [CrossRef]
- Zhang, Z.; Yang, L.; Teng, J.; Badal, J. An Overview of the Earth Crust Under China. Earth Sci. Rev. 2011, 104, 143–166. [Google Scholar] [CrossRef]
- Xie, J.; Li, X.; Wen, Z.; Wu, C. Near-Source Vertical and Horizontal Strong Ground Motion from the 20 April 2013 Mw 6.8 Lushan Earthquake in China. Seism. Res. Lett. 2014, 85, 23–33. [Google Scholar] [CrossRef]
- Megawati, K. Hybrid Simulations of Ground Motions from Local Earthquakes Affecting Hong Kong. Bull. Seismol. Soc. Am. 2007, 97, 1293–1307. [Google Scholar] [CrossRef]
- Standards Australia. Earthquake actions in Australia. In AS 1170.4-2007: Structural Design Actions; Standards Australia: Sidney, NSW, Australia, 2007. [Google Scholar]
- Lam, N.T.K.; Wilson, J.L. The new response spectrum model for Australia. Electron. J. Struct. Eng. 2008, 8, 6–24. [Google Scholar]
- Somerville, P.; Graves, R.; Collins, N.; Song, S.G.; Ni, S.; Cummins, P. Source and Ground Motion Models for Australian Earthquakes. In Proceedings of the AEES, Newcastle, NSW, Australia, 11–13 December 2009. [Google Scholar]
- Campbell, K.W.; Bozorgnia, Y. NGA ground motion model for the geometric mean horizontal component of PGA, PGV, PGD and 5% damped linear elastic response spectra for periods ranging from 0.01 s to 10 s. Earthq. Spectra 2008, 24, 139–171. [Google Scholar] [CrossRef]
- AGSO (Australian Geological Survey Organisation). Atlas of Iso-Seismal Maps of Australian Earthquakes; McCue, K., Ed.; Australian Geological Survey Organisation: Canberra, ACT, Australia, 1995. [Google Scholar]
- Allen, T.I.; Leonard, M.; Clark, D.; Ghasemi, H. The 2018 National Seismic Hazard Assessment for Australia-Model Overview; Clark, D., Ed.; Geoscience Australia: Canberra, ACT, Australia, 2018. [Google Scholar]
- Michetti, A.M.; Esposito, E.; Guerrieri, L.; Porfido, S.; Serva, L.; Tatevossian, R.; Vittori, E.; Audemard, F.; Azuma, T.; Clague, J.; et al. Intensity Scale ESI 2007. Mem. Descr. Carta Geol. 2007, 74, 11–20. [Google Scholar]
- Serva, L. History of the Environmental Seismic Intensity Scale ESI-07. Geoscience 2019, 9, 210. [Google Scholar] [CrossRef]
- Grützner, C.; Walker, R.; Ainscoe, E.; Elliott, A.; Abdrakhmatov, K. Earthquake Environmental Effects of the 1992 Ms7.3 Suusamyr Earthquake, Kyrgyzstan, and Their Implications for Paleo-Earthquake Studies. Geoscience 2019, 9, 271. [Google Scholar] [CrossRef]
- Chunga, K.; Livio, F.A.; Martillo, C.; Lara-Saavedra, H.; Ferrario, M.F.; Zevallos, I.; Michetti, A.M. Landslides Triggered by the 2016 Mw 7.8 Pedernales, Ecuador Earthquake: Correlations with ESI-07 Intensity, Lithology, Slope and PGA-h. Geoscience 2019, 9, 371. [Google Scholar] [CrossRef]
- Caccavale, M.; Sacchi, M.; Spiga, E.; Porfido, S. The 1976 Guatemala Earthquake: ESI Scale and Probabilistic/Deterministic Seismic Hazard Analysis Approaches. Geoscience 2019, 9, 403. [Google Scholar] [CrossRef]
- King, T.R.; Quigley, M.; Clark, D. Surface-Rupturing Historical Earthquakes in Australia and Their Environmental Effects: New Insights from Re-Analyses of Observational Data. Geoscience 2019, 9, 408. [Google Scholar] [CrossRef]
- Silva, P.G.; Rodríguez-Pascua, M.A.; Robles, J.L.G.; Élez, J.; Pérez-López, R.; Davila, M.B.B. Catalogue of the Geological Effects of Earthquakes in Spain Based on the ESI-07 Macroseismic Scale: A New Database for Seismic Hazard Analysis. Geoscience 2019, 9, 334. [Google Scholar] [CrossRef]
- Tuttle, M.P.; Hartleb, R.; Wolf, L.; Mayne, P.W. Paleo liquefaction Studies and the Evaluation of Seismic Hazard. Geoscience 2019, 311, 1–61. [Google Scholar]
Parameter | Input Value |
---|---|
Ref. source shear wave velocity for hard rock (of Eastern North America) | = 3.8 km/s [1] |
Ref. source density for hard rock | = 2.8 g/cm3 [1] |
Source model | Generalised additive double-corner frequency model [35] |
Spectral sag | |
Distance | R = Hypocentral distance |
Geometrical attenuation | Variable function (refer Table 2) |
Stress drop, | = 200 bars (default for intraplate regions) |
Wave transmission quality factor | = 120, 150, 200, 300, 400, 500, 600, 680, 800. |
Exponential factor | 1 [36] |
Time-averaged shear wave velocity for the top 30 m depth, | = 0.618, 0.76, 1.0, 1.2, 1.4, 1.6, 1.8, 2.0, 2.2, 2.4, 2.6, 2.78 km/s |
Kappa factor | κ0 = 0.001, 0.0025, 0.005, 0.0075, 0.01, 0.015, 0.02, 0.025, 0.03, 0.035, 0.04, 0.045, 0.05, 0.055, 0.06, 0.065, 0.07, 0.075, 0.08, 0.085, 0.09, 0.095, 0.1 s |
Source duration | , where and are corner frequencies [35] |
Path duration | 0.05 × R, where R is the hypocentral distance [1] |
Time step | = 0.002 s |
Seismological Model | AB95 [1] | SGD02 [47] | A04 [48] | BS11 [49] |
---|---|---|---|---|
Source model 1 | ||||
Shear Wave Velocity at Source βos (km/s) | 3.8 | 3.52 | 3.7 | 3.5 |
Geometrical Factor G (R in km) 2 | R ≤ 70: R−1 70 < R ≤ 130: R0 130 < R: R−0.5 | R ≤ 80: R-(1.0296−0.0422(M−6.5)) 80 < R: R−0.5(1.0296 + 0.0422(M − 6.5)) | R ≤ 70: R−1.3 70 < R ≤ 140: R0.2 140 < R: R−0.5 | R ≤ 50: R−1 50 < R: R−0.5 |
Quality Factor Q | 680 f 0.36 | 351 f 0.84 | max (1000, 893 f 0.32) | 410 f 0.5 |
Upper Crustal Amplification Parameter | VS30 = 0.76 km/s | VS30 = 0.76 km/s | VS30 = 0.76 km/s | VS30 = 0.76 km/s |
Upper Crustal Attenuation Parameter | κ0 = 0.025 s | κ0 = 0.025 s | κ0 = 0.025 s | κ0 = 0.025 s |
Parameter | SEA | SEC |
---|---|---|
ZS (km) | 1.0 | 0.01 |
ZC (km) | 4.0 | 2.0 |
VS0.03 (km/s) 1 | 1.1 | 1.81 |
VS8 (km/s) 2 | 3.5 | 3.6 [60] |
n | 0.141 | 0.136 |
function form | Z ≤ 0.2, VSZ = VS0.03(Z/0.03)0.3297; 0.2 < Z ≤ ZS 4, VSZ = VS0.2(Z/0.2)0.1732 3; ZS < Z ≤ ZC 5, VSZ = VSZC(Z/ZC)n; ZC < Z, VSZ = VS8(Z/8)0.0833. | 0 < Z ≤ ZS, VSZ = VSZI(Z/ZI)0.3297 (ZI = min (ZS, 0.03)); ZS < Z ≤ ZC, VSZ = VSZC(Z/ZC)n; ZC < Z, VSZ = VS8(Z/8)0.0833. |
Parameter | SEA | SEC |
---|---|---|
Source Shear Wave Velocity (km/s) | 3.5 | 3.6 [60] |
Source Density (g/cm3) | 2.8 [18] | 2.9 [61,62] |
Stress Drop (bar) | 200 | 200 |
(cm/s) | 3.9 1 | 3.9 1 |
Geometric Attenuation Factor (G) [1] | ||
Quality Factor () | 200 (New South Wales) [15] 100 (Victoria) [15] 300 (South Australia) [15] | 320 [16] |
VS30 (km/s) | 0.76 2 | 1.45 2 |
κ0 (s) | 0.03 [42] | 0.02 [42] |
Conversion Factor (PGVS/PGVR) | 1.5 [63,64]3 | 1.5 [16] |
Source Factor () at M6R30 | 1.00 | 1.00 |
Anelastic Attenuation Factor (β) at M6R30 | 0.95 | 0.95 |
Path Adjustment Factor () at M6R30 | 0.98 | 0.98 |
Upper Crustal Amplification Factor () at M6R30 | 2.22 | 1.52 |
Upper Crustal Attenuation Factor () at M6R30 | 0.48 | 0.6 |
Crustal Adjustment Factor () at M6R30 | 1.16 | 1.16 |
Mid-crustal Modification Factor () at M6R30 | 1.1 | 1.06 |
Selected GMPEs | SGC09 [65] 4 A12 [18] 5 | CB08 [66] 6 CY08 [2] 7 |
logα | R2 | |||||
2.952 | 27.797 | 0.0841 | 0.0059 | −33.35 | 0.9994 | |
logβ | ||||||
0.06287 | −0.6326 | −0.4963 | 4.431 | 0.06135 | 0.9807 | |
logβadjustment | ||||||
0.01714 | −0.06931 | 0.08404 | −0.09224 | 0.1389 | 0.9975 | |
0.7334 | −0.5251 | −0.8479 | −0.019 | 0.9953 | ||
−21.35 | −1.351 | 0.5584 | −0.03336 | 0.9978 | ||
−0.01333 | 0.07378 | −0.1294 | 0.1046 | 0.01838 | 0.9948 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, Y.; Lam, N.; Tsang, H.-H.; Lumantarna, E. Use of Macroseismic Intensity Data to Validate a Regionally Adjustable Ground Motion Prediction Model. Geosciences 2019, 9, 422. https://doi.org/10.3390/geosciences9100422
Tang Y, Lam N, Tsang H-H, Lumantarna E. Use of Macroseismic Intensity Data to Validate a Regionally Adjustable Ground Motion Prediction Model. Geosciences. 2019; 9(10):422. https://doi.org/10.3390/geosciences9100422
Chicago/Turabian StyleTang, Yuxiang, Nelson Lam, Hing-Ho Tsang, and Elisa Lumantarna. 2019. "Use of Macroseismic Intensity Data to Validate a Regionally Adjustable Ground Motion Prediction Model" Geosciences 9, no. 10: 422. https://doi.org/10.3390/geosciences9100422
APA StyleTang, Y., Lam, N., Tsang, H. -H., & Lumantarna, E. (2019). Use of Macroseismic Intensity Data to Validate a Regionally Adjustable Ground Motion Prediction Model. Geosciences, 9(10), 422. https://doi.org/10.3390/geosciences9100422