Seismic Velocity Characterisation of Geothermal Reservoir Rocks for CO2 Storage Performance Assessment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. Core Samples
2.3. Thin Section Analyses
2.4. Experimental Procedure: UCS and CCS Tests
2.5. Experimental Procedure: Temperature Effect
3. Results and Discussion
3.1. Thin Section Analyses
3.2. Acoustic-Assisted UCS Experiments
3.3. Acoustic-Assisted CCS Experiments: σ1 = σ2
3.4. Acoustic-Assisted CCS Experiments: σdiff = Fixed
3.5. Acoustic-Assisted CCS Experiments: Varying σ1
3.6. Acoustic-Assisted CCS Experiments: Effect of Brine-Saturated Pore Space
3.7. Temperature Effect
4. General Discussion
4.1. Comparison with Observations from the Literature
4.2. Experimental Implications and Limitations
4.3. Velocity Profile of Rocks at the Kızıldere Geothermal Field
4.4. Recommendations and Plans for Future Research
5. Conclusions
- Thin section analyses showed that the presence of a fracture increases the 2D permeability by roughly a factor 10 for the main reservoir formations, i.e., marble and calcschist. This underlines the importance of the presence of fractures in the Kızıldere geothermal reservoir.
- Most of the UCS-related acoustic results showed a similar P-wave velocity–stress trend. It includes a sharp increase in velocity due to initial compaction, followed by a moderate increase in velocity since bulk of the pore space was already closed and, finally, just before rock failure, a slight decrease in velocity due to rock damage (i.e., microcracking).
- Several limestone and quartzite rock samples revealed the presence of axial splitting patterns after failure occurred. The degree of axial splitting appears to be related to their porosity, where the presence of axial splitting fractures increases with decreasing porosity. All marble, calcschist, quartzschist, mudstone, and siltstone samples investigated showed clear shear failure characteristics after rock failure.
- Large variations in static elastic parameters were found among the three limestone samples used for conducting the UCS experiments. Most likely, a high level of heterogeneity, due to diagenesis processes and the presence of fossils, within the limestone yielded different axial stress–strain relationships for the three studied cores.
- Radial stress appeared to have a negligible impact on the P-wave velocity, as long as it was higher than atmospheric pressure. Experiments without any additional radial stress applied on the rock, i.e., UCS experiments, showed lower velocities compared to the experiments where a radial stress was imposed on the sample (CCS experiments). This is due to the fact that in the CCS tests (experimental series B–D), overall compaction was more efficient since it also took place in the radial direction. The latter promoted an increased mineral-to-mineral contact area, hence higher velocities.
- Most of the studied rock formations showed a reducing P-wave velocity as a function of increasing temperature due to thermal expansion of the constituting minerals, leading to loosening of the rock’s internal structure. The marble and calcschist samples showed the largest reduction in P-wave velocity as function of increasing temperature (40–240 °C): 42% and 36% for the marble and calcschist samples, respectively.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bertani, B. Geothermal power generation in the world 2010–2014 update report. In Proceedings of the World Geothermal Congress, Melbourne, Australia, 12–24 April 2015. [Google Scholar]
- Sanner, B. Summary of EGC 2019 country update reports on geothermal energy in Europe. In Proceedings of the European Geothermal Congress, The Hague, The Netherlands, 11–14 June 2019. [Google Scholar]
- Kaygusuz, K.; Guney, M.; Kaygusuz, O. Renewable energy for rural development in Turkey. J. Eng. Res. Appl. Sci. 2019, 8, 1109–1118. [Google Scholar]
- Yamanlar, S.; Korkmaz, E.D.; Serpen, U. Assessment of geothermal power potential in buyuk menderes basin, Turkey. Geothermics 2020, 88, 101912. [Google Scholar] [CrossRef]
- Rybach, L. Geothermal energy: Sustainability and the environment. Geothermics 2003, 32, 463–470. [Google Scholar] [CrossRef]
- Lund, J.W.; Toth, A.N. Direct utilization of geothermal energy 2020 worldwide review. Geothermics 2020, 90, 101915. [Google Scholar] [CrossRef]
- Haklidir, F.S.T.; Baytar, K.; Kekevi, M. Global CO2 capture and storage methods and a new approach to reduce the emissions of geothermal power plants with high CO2 emissions: A case study from Turkey. In Climate Change and Energy Dynamics in the Middle East. Understanding Complex Systems; Qudrat-Ullah, H., Kayal, A., Eds.; Springer: Cham, Germany, 2019. [Google Scholar] [CrossRef]
- Miranda-Barbosa, E.; Sigfússon, B.; Carlsson, J.; Tzimas, E. Advantages from combining CCS with geothermal energy. Energy Procedia. 2017, 114, 6666–6676. [Google Scholar] [CrossRef]
- Pruess, K. Enhanced Geothermal Systems (EGS) using CO2 as working fluid—A novel approach for generating renewable energy with simultaneous sequestration of carbon. Geothermics 2006, 35, 351–367. [Google Scholar] [CrossRef] [Green Version]
- Xu, T.; Feng, G.; Shi, Y. On Fluid-rock chemical interaction in CO2-based geothermal systems. J. Geochem. Explor. 2014, 144, 179–193. [Google Scholar] [CrossRef]
- Brown, D.W. A hot dry rock geothermal energy concept utilizing supercritical CO2 instead of water. In Proceedings of the Twenty-Fifth Workshop on Geothermal Reservoir Engineering, Stanford, CA, USA, 24–26 January 2000. [Google Scholar]
- Wolf, K.H.A.A.; Willemsen, A.; Bakker, T.W.; Wever, A.K.T.; Gilding, D.T. The development of a multi-purpose geothermal site in an urban area. In Proceedings of the 70th EAGE Conference and Exhibition Incorporating SPE EUROPEC, Rome, Italy, 9–12 June 2008. [Google Scholar]
- Pruess, K. On production behavior of enhanced geothermal systems with CO2 as working fluid. Energy Convers. Manag. 2008, 49, 1446–1454. [Google Scholar] [CrossRef] [Green Version]
- Salimi, H.; Wolf, K.H.A.A.; Bruining, J. Geothermal energy combined with CO2 sequestration: An additional benefit. In Proceedings of the 1st ITB Geothermal Workshop, Bandung, Indonesia, 6–8 March 2012. [Google Scholar]
- Randolph, J.B.; Saar, M.O. Combining geothermal energy capture with geologic carbon dioxide sequestration. Geophys. Res. Lett. 2011, 38. [Google Scholar] [CrossRef] [Green Version]
- Randolph, J.B.; Saar, M.O. Coupling carbon dioxide sequestration with geothermal energy capture in naturally permeable, porous geologic formations: Implications for CO2 sequestration. Energy Procedia. 2011, 4, 2206–2213. [Google Scholar] [CrossRef] [Green Version]
- Ezekiel, J.; Ebigbo, A.; Adams, B.M.; Saar, M.O. Combining natural gas recovery and CO2-based geothermal energy extraction for electric power generation. Appl. Energy. 2020, 269, 115012. [Google Scholar] [CrossRef]
- Cui, G.; Ren, S.; Rui, Z.; Ezekiel, J.; Zhang, L.; Wang, H. The influence of complicated fluid-rock interactions on the geothermal exploitation in the co2 plume geothermal system. Appl. Energy. 2018, 227, 49–63. [Google Scholar] [CrossRef]
- Adams, B.M.; Kuehn, T.H.; Bielicki, J.M.; Randolph, J.B.; Saar, M.O. A comparison of electric power outlet of CO2 plume geothermal (CPG) and brine geothermal systems for varying reservoir conditions. Appl. Energy. 2015, 140, 365–377. [Google Scholar] [CrossRef]
- Wyllie, M.R.J.; Gregory, A.R.; Gardner, G.H.F. An experimental investigation of factors affecting elastic wave velocities in porous media. Geophysics 1958, 23, 459–493. [Google Scholar] [CrossRef]
- Prasad, M.; Manghnani, M.H. Effects of pore and differential pressure on compressional wave velocity and quality factor in berea and michigan sandstones. Geophysics 1997, 62, 1163–1176. [Google Scholar] [CrossRef]
- King, M.S. Recent developments in seismic rock physics. Int. J. Rock Mech. Min. Sci. 2009, 46, 1341–1348. [Google Scholar] [CrossRef]
- Darot, M.; Reuschlé, T. Acoustic wave velocity and permeability evolution during pressure cycles on a thermally cracked granite. Int. J. Rock Mech. Min. Sci. 2000, 37, 1019–1026. [Google Scholar] [CrossRef]
- Nur, A.; Simmons, G. The effect of saturation on velocity in low porosity rocks. Earth Planet. Sci. Lett. 1969, 7, 183–193. [Google Scholar] [CrossRef]
- Yu, G.; Vozoff, K.; Durney, D.W. The influence of confining pressure and water saturation on dynamics elastic properties of some permian coals. Geophysics 1993, 58, 30–38. [Google Scholar] [CrossRef]
- He, T.; Schmitt, D.R. Velocity measurements of conglomerates and pressure sensitivity analysis of AVA response. In Proceedings of the 76th SEG International Exposition and Annual Meeting, New Orleans, LA, USA, 1–6 October 2006. [Google Scholar]
- Kern, H. The effect of high temperature and high confining pressure on compressional wave velocities in quartz-bearing and quartz-free igneous and metamorphic rocks. Tectonophysics 1978, 44, 185–203. [Google Scholar] [CrossRef]
- Kern, H.; Popp, T.; Gorbatsevich, F.; Zharikov, A.; Lobanov, K.V.; Smirnov, Y.P. Pressure and temperature dependence of vp and vs in rocks from the superdeep well and from surface analogues at kola and the nature of velocity anisotropy. Tectonophysics 2001, 338, 113–134. [Google Scholar] [CrossRef]
- Punturo, R.; Kern, H.; Cirrincione, R.; Mazzoleni, P.; Pezzino, A. P- and S-wave velocities and densities in silicate and calcite rocks from the peloritani mountains sicily (Italy): The effect of pressure, temperature and the direction of wave propagation. Tectonophysics 2005, 409, 55–72. [Google Scholar] [CrossRef]
- Scheu, B.; Kern, H.; Spieler, O.; Dingwell, D.B. Temperature dependence of elastic P- and S-wave velocities in porous mt. unzen dacite. J. Volcanol. Geoth. Res. 2006, 153, 136–147. [Google Scholar] [CrossRef]
- Jaya, M.S.; Shapiro, S.A.; Kristinsdóttir, L.H.; Bruhn, D.; Milsch, H.; Spangenberg, E. Temperature dependence of seismic properties in geothermal rocks at reservoir conditions. Geothermics 2010, 39, 115–123. [Google Scholar] [CrossRef]
- Timur, A. Temperature dependence of compressional and shear wave velocities in rocks. Geophysics 1977, 42, 950–956. [Google Scholar] [CrossRef]
- Halaçoğlu, U.; Fishman, M.; Karaağaç, U.; Harvey, W. Four decades of service—Kızıldere reservoir, units and management. GRC Transactions 2018, 42. [Google Scholar]
- Şimşek, Ş.; Yıldırım, N.; Gülgör, A. Developmental and environmental effects of the kizildere geothermal power project, Turkey. Geothermics 2005, 34, 234–251. [Google Scholar] [CrossRef]
- Çiftçi, N.B. In-Situ stress field and mechanics of fault reactivation in the gediz graben, Western Turkey. J. Geodyn. 2013, 65, 136–147. [Google Scholar] [CrossRef]
- Garg, S.K.; Haizlip, J.; Bloomfield, K.K.; Kindap, A.; Haklidir, F.S.; Guney, A. A numerical model of the kizildere geothermal field, Turkey. In Proceedings of the World Geothermal Congress, Melbourne, Australia, 19–25 April 2015. [Google Scholar]
- Carman, P.C. Fluid flow through granular beds. Trans. Inst. Chem. Eng. 1937, 15, 150–166. [Google Scholar] [CrossRef]
- Kozeny, J. Ueber kapillare leitung der wassers im Boden. Sitzungsber Akad. Wiss. Wien. 1927, 136, 271–306. [Google Scholar]
- Hoek, E.; Franklin, J. Simple triaxial cell for field or laboratory testing of rock. Trans. Inst. Min. Metall. 1968, 77, A22–A26. [Google Scholar]
- Gassmann, F. Elastic waves through a packing of spheres. Geophysics 1951, 16, 673–685. [Google Scholar] [CrossRef]
- Fredrich, J.T.; Wong, T.F. Micromechanics of thermally induced cracking in three crustal rocks. J. Geophys. Res. 1986, 91, 12743–12764. [Google Scholar] [CrossRef]
- Weiss, T.; Siegesmund, S.; Kirchner, D.T.; Sippel, J. Insolation weathering and hygric dilatation: Two competitive factors in stone degradation. Environ. Geol. 2004, 46, 402–413. [Google Scholar] [CrossRef]
- Luque, A.; Leiss, B.; Alvarez-Lloret, P.; Cultrone, G.; Siegesmund, S.; Sebastian, E.; Cardell, C. Potential thermal expansion of calcitic and dolomitic marbles from andalusia (Spain). J. Appl. Crystallogr. 2011, 44, 1227–1237. [Google Scholar] [CrossRef] [Green Version]
- Johnson, W.H.; Parsons, W.H. Thermal Expansion of Concrete Aggregate Materials; US Government Printing Office: Washington, DC, USA, 1944.
- Griffith, J.H. Thermal expansion of typical american rocks. Iowa Eng. Exp. Sta. Bul. 1936, 128, 36. [Google Scholar]
- Njiekak, G.; Schmitt, D.R. Effective stress coefficient for seismic velocities in carbonate rocks: Effects of pore characteristics and fluid types. Pure Appl. Geophys. 2019, 176, 1467–1485. [Google Scholar] [CrossRef]
- Hefny, M.; Zappone, A.; Makhloufi, Y.; de Haller, A.; Moscariello, A. A laboratory approach for the calibration of seismic data in the western part of the swiss molasse basin: The case history of well Humilly-2 (France) in the Geneva area. Swiss J. Geosci. 2020, 113, 11. [Google Scholar] [CrossRef]
- Simmons, G. Single Crystal Elastic Constants and Calculated Aggregate Properties. Report; Southern Methodist University Press: Dallas, TX, USA, 1965. [Google Scholar]
- Bhimasenachar, J. Elastic constants of calcite and sodium nitrate. Proc. Indian Acad. Sci. 1945, 22, 199–208. [Google Scholar] [CrossRef]
- Peselnick, L.; Robie, R.A. Elastic constants of calcite. J. Appl. Phys. 1962, 33, 2889–2892. [Google Scholar] [CrossRef]
- Dandekar, D.P. Pressure dependence of the elastic constants of calcite. Phys. Rev. 1968, 172, 873. [Google Scholar] [CrossRef]
- Anderson, O.L.; Liebermann, R.C. Sound Velocities in Rocks and Minerals. Report, VESIAC State-of-the-Art Report No. 7885–4-x; University of Michigan: Ann Arbor, MI, USA, 1966. [Google Scholar]
- Sowers, T.; Boyd, O.S. Petrologic and Mineral Physics Database for use with the US Geological Survey National Crustal Model (No. 2019-1035); US Geological Survey: Reston, GA, USA, 2019.
- McSkimin, H.; Andreatch, P., Jr.; Thurston, R. Elastic moduli of quartz versus hydrostatic pressure at 25 and −195.8 °C. J. Appl. Phys. 1965, 36, 1624–1632. [Google Scholar] [CrossRef]
- Humbert, P.; Plicque, F. Propriétés élastiques de carbonates rhomboédriques monocristallins: Calcite, magnésite, dolomite. CR Acad. Sci. Paris 1972, 275, 291–304. [Google Scholar]
- Nur, A.; Simmons, G. The effect of viscosity of a fluid phase on velocity in low porosity rocks. Earth Planet. Sci. Lett. 1969, 7, 99–108. [Google Scholar] [CrossRef]
- Gupta, I.N. Seismic velocities in rock subjected to axial loading up to shear fracture. J. Geophys. Res. 1973, 78, 6936–6942. [Google Scholar] [CrossRef]
- Pellet, F.L.; Fabre, G. Damage evaluation with P-wave velocity measurements during uniaxial compression tests on argillaceous rocks. Int. J. Geomech. 2007, 7, 431–436. [Google Scholar] [CrossRef]
- Barnhoorn, A.; Cox, S.F.; Robinson, D.J.; Senden, T. Stress- and fluid-driven failure during fracture array growth: Implications for coupled deformation and fluid flow in the crust. Geology 2010, 38, 779–782. [Google Scholar] [CrossRef]
- Barnhoorn, A.; Verheij, J.; Frehner, M.; Zhubayev, A.; Houben, M. Experimental identification of the transition from elasticity to inelasticity from ultrasonic attenuation analyses and the onset of inelasticity. Geophysics 2018, 83, MR221–MR229. [Google Scholar] [CrossRef] [Green Version]
- Bonnelye, A.; Schubnel, A.; David, C.; Henry, P.; Guglielmi, Y.; Gout, C.; Fauchille, A.L.; Dick, P. Elastic wave velocity evolution of shales deformed under uppermost crustal conditions. J. Geophys. Res. 2017, 122, 130–141. [Google Scholar] [CrossRef]
- Wennberg, O.P.; Wall, B.G.; Saether, E.; Jounoud, S.; Rozhko, A.; Naumann, M. Fractures in chalks and marls of the shetland group in the gullfaks field, North Sea. In Proceedings of the 80th EAGE Conference and Exhibition, Copenhagen, Denmark, 11–14 June 2018. [Google Scholar]
- Bohren, C.F. Comment on “Newton’s law of cooling—A critical assessment” by Colm T. O’Sullivan. Am. J. Phys. 1991, 59, 1044–1046. [Google Scholar] [CrossRef]
- O’Sullivan, C.T. Newton’s law of cooling—A critical assessment. Am. J. Phys. 1990, 58, 956–960. [Google Scholar] [CrossRef]
- Kim, K.; Kemeny, J.; Nickerson, M. Effect of rapid thermal cooling on mechanical rock properties. Rock Mech. Rock Eng. 2014, 47, 2005–2019. [Google Scholar] [CrossRef]
- Merriman, J.D.; Hofmeister, A.M.; Roy, D.J.; Whittington, A.G. Temperature-dependent thermal transport properties of carbonate minerals and rocks. Geosphere 2018, 14, 1961–1987. [Google Scholar] [CrossRef] [Green Version]
- Dalfsen, W.V.; Mijnlieff, H.F.; Simmelink, H.J. Interval velocities of a triassic claystone: Key to burial history and velocity modelling. In Proceedings of the 67th EAGE Conference and Exhibition, Madrid, Spain, 13–16 June 2005. [Google Scholar]
- Sain, K. Seismic velocity-temperature relationships. In Encyclopedia of Solid Earth Geophysics. Encyclopedia of Earth Sciences Series; Gupta, H.K., Ed.; Springer: Dordrecht, The Netherlands, 2011. [Google Scholar] [CrossRef]
- Baechle, G.; Weger, R.; Eberli, G.; Massaferro, J.; Sun, Y.F. Changes of shear moduli in carbonate rocks: Implications for gassmann applicability. Lead. Edge 2005, 24, 507–510. [Google Scholar] [CrossRef]
- Baechle, G.; Eberli, G.; Weger, R.; Massaferro, J. Changes in dynamic shear moduli of carbonate rocks with fluid substitution. Geophysics 2009, 74, E135–E147. [Google Scholar] [CrossRef]
- Gegenhuber, N. Application of gassmann’s equation for laboratory data from carbonates from Austria. Austrian J. Earth Sci. 2015, 108, 239–244. [Google Scholar] [CrossRef]
Rock Type | Formation | Type |
---|---|---|
Limestone | Sazak | First reservoir |
Siltstone | Kızılburun | Regional caprock for second reservoir |
Mudstone | Kızılburun | Regional caprock for second reservoir |
Marble | Menderes Massive | Part of second reservoir |
Quartzite | Menderes Massive | Part of second reservoir |
Quartzschist | Menderes Massive | Part of second reservoir |
Micaschist | Menderes Massive | Local seal within second reservoir |
Calcschist | Menderes Massive | Part of second reservoir |
UCS | Experiment | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Type | Calcschist | Marble | Limestone | Quartzite | Siltstone | Quartzschist | Mudstone | |||||||
Code | TD12- CS4 | TD12- CS5 | TD1- M2 | TD1- M3 | TS2- SZL2 | TS2- SZL4 | TS2- SZL5 | TD20- QZ-1 | TD20- QZ-2 | TD20- QZ-4 | TK- B1-2 | TK- B1-3 | TD-23- QMS1 | TK-B2-1 |
Length (mm) | 61.6 ± 0.1 | 61.5 ± 0.1 | 62.9 ± 0.1 | 61.9 ± 0.1 | 58.9 ± 0.1 | 60.8 ± 0.1 | 61.4 ± 0.1 | 62.8 ± 0.1 | 62.5 ± 0.1 | 60.8 ± 0.1 | 62.7 ± 0.1 | 60.6 ± 0.1 | 62.5 ± 0.1 | 63.7 ± 0.1 |
Diameter (mm) | 29.8 ± 0.1 | 29.8 ± 0.1 | 29.8 ± 0.1 | 29.8 ± 0.1 | 29.1 ± 0.1 | 29.8 ± 0.1 | 29.0 ± 0.1 | 29.8 ± 0.1 | 29.8 ± 0.1 | 29.8 ± 0.1 | 29.8 ± 0.1 | 29.7 ± 0.1 | 29.6 ± 0.1 | 29.7 ± 0.1 |
Porosity (%) | 4.14 ± 0.10 | 2.42 ± 0.03 | 3.01 ± 0.13 | 2.27 ± 0.03 | 5.33 ± 0.13 | 10.48 ± 0.24 | 7.54 ± 0.16 | 2.77 ± 0.16 | 2.57 ± 0.03 | 3.65 ± 0.05 | 22.55 ± 0.01 | 25.08 ± 0.08 | 1.71 ± 0.29 | 16.60 ± 0.15 |
Porosity at failure point (%) a | 5.93 ± 0.10 | - | - | 4.20 ± 0.07 | - | - | - | - | - | 4.21 ± 0.03 | - | - | - | - |
Gas permeability (mD) b | - | - | - | - | - | - | - | - | - | - | 97 ± 6 | - | - | - |
Pore Volume (mm3) | 1779 ± 58 | 1038 ± 22 | 1321 ± 68 | 980 ± 21 | 2088 ± 69 | 4444 ± 140 | 3058 ± 92 | 1213 ± 81 | 1120 ± 23 | 1548 ± 34 | 9861 ± 87 | 10529 ± 123 | 735 ± 132 | 7326 ± 127 |
Matrix density (g/cm3) | 2.78 ± 0.01 | 2.75 ± 0.01 | 2.76 ± 0.01 | 2.75 ± 0.01 | 2.73 ± 0.01 | 2.75 ± 0.01 | 2.75 ± 0.01 | 2.89 ± 0.01 | 2.90 ± 0.01 | 2.92 ± 0.01 | 2.78 ± 0.01 | 2.79 ± 0.01 | 2.80 ± 0.01 | 2.82 ± 0.01 |
Bulk density (g/cm3) | 2.67 ± 0.02 | 2.68 ± 0.02 | 2.68 ± 0.02 | 2.69 ± 0.03 | 2.59 ± 0.03 | 2.47 ± 0.03 | 2.55 ± 0.03 | 2.81 ± 0.02 | 2.82 ± 0.02 | 2.82 ± 0.03 | 2.15 ± 0.01 | 2.09 ± 0.02 | 2.76 ± 0.03 | 2.36 ± 0.02 |
CCS (σ1 = σ2) | Experiment | |||||||
---|---|---|---|---|---|---|---|---|
Type | Calcschist | Marble | Limestone | Quartzite | Siltstone | Quartzschist | Mudstone | Micaschist |
Code | TD12-CS5 | TD1-M1 | TS2-SZL4 | TD20-QZ-1 | TK-B1-2 | TD-23-QMS1 | TK-B2-1 | TD-25-MS-1 |
Length (mm) | 61.5 ± 0.1 | 60.5 ± 0.1 | 60.8 ± 0.1 | 62.8 ± 0.1 | 62.7 ± 0.1 | 62.5 ± 0.1 | 63.7 ± 0.1 | 41.0 ± 0.1 |
Diameter (mm) | 29.8 ± 0.1 | 29.8 ± 0.1 | 29.8 ± 0.1 | 29.8 ± 0.1 | 29.8 ± 0.1 | 29.6 ± 0.1 | 29.7 ± 0.1 | 29.7 ± 0.1 |
Porosity (%) | 2.42 ± 0.03 | 2.67 ± 0.06 | 10.48 ± 0.24 | 2.77 ± 0.16 | 22.55 ± 0.01 | 1.71 ± 0.29 | 16.60 ± 0.15 | 8.52 ± 0.37 |
Permeability (mD) | - | - | - | - | 97 ± 6 | - | - | - |
Pore Volume (mm3) | 1038 ± 22 | 1127 ± 35 | 4444 ± 140 | 1213 ± 81 | 9861 ± 87 | 735 ± 132 | 7326 ± 127 | 2420 ± 128 |
Matrix density (g/cm3) | 2.75 ± 0.01 | 2.74 ± 0.01 | 2.75 ± 0.01 | 2.89 ± 0.01 | 2.78 ± 0.01 | 2.80 ± 0.01 | 2.82 ± 0.01 | 2.92 ± 0.01 |
Bulk density (g/cm3) | 2.68 ± 0.02 | 2.67 ± 0.02 | 2.47 ± 0.03 | 2.81 ± 0.02 | 2.15 ± 0.01 | 2.76 ± 0.03 | 2.36 ± 0.02 | 2.67 ± 0.02 |
σ1= σ2 (MPa) | 5–60 | 5–60 | 5–60 | 5–60 | 5–60 | 5–60 | 5–60 | 5–60 |
CCS (Fixed σdiff) | Experiment | ||||||
---|---|---|---|---|---|---|---|
Type | Calcschist | Marble | Limestone | Quartzite | Siltstone | Quartzschist | Mudstone |
Code | TD12-CS5 | TD1-M4 | TS2-SZL4 | TD20-QZ-2 | TK-B1-1 | TD-23-QMS1 | TK-B2-1 |
Length (mm) | 61.5 ± 0.1 | 62.5 ± 0.1 | 60.8 ± 0.1 | 62.5 ± 0.1 | 65.0 ± 0.1 | 62.5 ± 0.1 | 63.7 ± 0.1 |
Diameter (mm) | 29.8 ± 0.1 | 29.8 ± 0.1 | 29.8 ± 0.1 | 29.8 ± 0.1 | 29.8 ± 0.1 | 29.6 ± 0.1 | 29.7 ± 0.1 |
Porosity (%) | 2.42 ± 0.03 | 2.15 ± 0.09 | 10.48 ± 0.24 | 2.57 ± 0.03 | 25.10 ± 0.05 | 1.71 ± 0.29 | 16.60 ± 0.15 |
Permeability (mD) | - | - | - | - | - | - | - |
Pore Volume (mm3) | 1038 ± 22 | 937 ± 47 | 4444 ± 140 | 1120 ± 23 | 11370 ± 117 | 735 ± 132 | 7326 ± 127 |
Matrix density (g/cm3) | 2.75 ± 0.01 | 2.75 ± 0.01 | 2.75 ± 0.01 | 2.90 ± 0.01 | 2.77 ± 0.01 | 2.80 ± 0.01 | 2.82 ± 0.01 |
Bulk density (g/cm3) | 2.68 ± 0.02 | 2.69 ± 0.02 | 2.47 ± 0.03 | 2.82 ± 0.02 | 2.07 ± 0.01 | 2.76 ± 0.03 | 2.36 ± 0.02 |
σdiff (MPa) | 45 | 45 | 45 | 45 | 10 | 45 | 10 |
CCS (Vary σ1) | Experiment | |||||||
---|---|---|---|---|---|---|---|---|
Type | Calcschist | Marble | Limestone | Quartzite | Siltstone | Quartzschist | Mudstone | Micaschist |
Code | TD12-CS5 | TD1-M4 | TS2-SZL4 | TD20-QZ-1 | TK-B1-2 | TD-23-QMS1 | TK-B2-1 | TD25-MS-1 |
Length (mm) | 61.5 ± 0.1 | 62.5 ± 0.1 | 60.8 ± 0.1 | 62.8 ± 0.1 | 62.7 ± 0.1 | 62.5 ± 0.1 | 63.7 ± 0.1 | 41.0 ± 0.1 |
Diameter (mm) | 29.8 ± 0.1 | 29.8 ± 0.1 | 29.8 ± 0.1 | 29.8 ± 0.1 | 29.8 ± 0.1 | 29.6 ± 0.1 | 29.7 ± 0.1 | 29.7 ± 0.1 |
Porosity (%) | 2.42 ± 0.03 | 2.15 ± 0.09 | 10.48 ± 0.24 | 2.77 ± 0.16 | 22.55 ± 0.01 | 1.71 ± 0.29 | 16.60 ± 0.15 | 8.52 ± 0.37 |
Permeability (mD) | - | - | - | - | 97 ± 6 | - | - | - |
Pore Volume (mm3) | 1038 ± 22 | 937 ± 47 | 4444 ± 140 | 1213 ± 81 | 9861 ± 87 | 735 ± 132 | 7326 ± 127 | 2420 ± 128 |
Matrix density (g/cm3) | 2.75 ± 0.01 | 2.75 ± 0.01 | 2.75 ± 0.01 | 2.89 ± 0.01 | 2.78 ± 0.01 | 2.80 ± 0.01 | 2.82 ± 0.01 | 2.92 ± 0.01 |
Bulk density (g/cm3) | 2.68 ± 0.02 | 2.69 ± 0.02 | 2.47 ± 0.03 | 2.81 ± 0.02 | 2.15 ± 0.01 | 2.76 ± 0.03 | 2.36 ± 0.02 | 2.67 ± 0.02 |
σ2 (MPa) | 17 | 17 | 9 | 33 | 12 | 31 | 12 | 31 |
σ1 (MPa) | 17–40 | 17–40 | 9–30 | 33–70 | 12–20 | 31–70 | 12–17 | 31–68 |
Temp. Effect | Experiment | |||||||
---|---|---|---|---|---|---|---|---|
Type | Calcschist | Marble | Limestone | Quartzite | Siltstone | Quartzschist | Mudstone | Micaschist |
Code | TD12-CS6 | TD1-M7 | TS2-SZL3 | TD20-QZ-3 | TK-B1-1 | TD-23-QMS2 | TK-B2-2 | TD25-MS-2 |
Length (mm) | 60.1 ± 0.1 | 61.3 ± 0.1 | 60.4 ± 0.1 | 61.2 ± 0.1 | 65.0 ± 0.1 | 61.8 ± 0.1 | 42.0 ± 0.1 | 36.1 ± 0.1 |
Diameter (mm) | 29.5 ± 0.1 | 29.8 ± 0.1 | 29.0 ± 0.1 | 29.8 ± 0.1 | 29.8 ± 0.1 | 29.6 ± 0.1 | 29.1 ± 0.1 | 29.8 ± 0.1 |
Porosity (%) | 3.10 ± 0.16 | 2.34 ± 0.19 | 3.97 ± 0.21 | 4.46 ± 0.10 | 25.10 ± 0.05 | 2.99 ± 0.15 | 17.89 ± 0.17 | 7.78 ± 0.08 |
Matrix density (g/cm3) | 2.76 ± 0.01 | 2.75 ± 0.01 | 2.72 ± 0.01 | 2.89 ± 0.01 | 2.77 ± 0.01 | 2.84 ± 0.01 | 2.85 ± 0.01 | 2.91 ± 0.01 |
Bulk density (g/cm3) | 2.67 ± 0.02 | 2.69 ± 0.02 | 2.61 ± 0.02 | 2.76 ± 0.03 | 2.07 ± 0.01 | 2.75 ± 0.02 | 2.34 ± 0.03 | 2.69 ± 0.03 |
Additional σ1 (MPa) | 0.070 ± 0.001 | 0.068 ± 0.001 | 0.072 ± 0.001 | 0.068 ± 0.001 | 0.068 ± 0.001 | 0.069 ± 0.001 | 0.072 ± 0.001 | 0.068 ± 0.001 |
Temperature (°C) | 40–240 | 40–240 | 40–240 | 40–240 | 40–240 | 40–240 | 40–240 | 40–240 |
Type | Calcschist | Marble | Limestone | Micaschist | Quartzschist | |||||
---|---|---|---|---|---|---|---|---|---|---|
Code | TD11-B | TD1-B | TS1-B5 | TD24-B | TD23-B | |||||
Area porosity (%) | Incl. fracture: 1.3 Excl. fracture: 0.4 | Total d: 1.6 Effective d: 0.4 | Effective: 1.5 | Total: 8 Effective: 2.3 | Incl. fracture: 16.7 Excl. fracture: 10.5 | |||||
2D Carman-Kozeny permeability (D) Incl. fracture a Matrix only b | 2.5 0.3 | 2.2 0.1 | 12.4 - | 2.6 - | 24.1 5.7 | |||||
Mineralogy (area%) c | -Calcite and dolomite (recrystallised) -Muscovite and sericite -Quartz or feldspar | 98 1 <1 | -Calcite and dolomite (recrystallised) -Smectite (haloysite?) | 99 1 | -Calcite and dolomite -Organic matter and oxides | 99 1 | -Calcite and dolomite (with organic matter) -Angular quartz and feldspar -Smectite (vermiculite?) -Biotite remnants | 89 8 2 <1 | -Calcite, dolomite and ankerite -Muscovite and sericite -Quartz and feldspar | 30 25 45 |
UCS | Experiment | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Type | Calcschist | Marble | Limestone | Quartzite | Siltstone | Quartzschist | Mudstone | |||||||
Code | TD12-CS4 | TD12-CS5 | TD1-M2 | TD1-M3 | TS2-SZL2 | TS2-SZL4 | TS2-SZL5 | TD20-QZ-1 | TD20-QZ-2 a | TD20-QZ-4 | TK-B1-2 | TK-B1-3 | TD-23-QMS1 | TK-B2-1 |
Ultimate strength (MPa) | 44.4 | 45.6 | 57.0 | 51.1 | 145.4 | 72.5 | 43.7 | 82.0 | 48.3 | 88.8 | 15.5 | 14.5 | 75.4 | 22.2 |
Static Young modulus (GPa) | 22.2 | 26.5 | 40.1 | 29.5 | 52.9 | 33.9 | 27.9 | 35.0 | 38.5 | 38.0 | 3.8 | 3.8 | 43.1 | 10.5 |
Static Poisson ratio (-) | 0.14 | 0.14 | 0.17 | 0.14 | 0.39 | 0.19 | 0.09 | 0.11 | - | 0.17 | 0.27 | 0.23 | 0.18 | 0.16 |
Bulk modulus (GPa) | 10.3 | 12.3 | 20.3 | 13.7 | 80.2 | 18.2 | 11.3 | 15.0 | - | 19.2 | 2.8 | 2.3 | 22.4 | 5.1 |
Shear modulus (GPa) | 9.7 | 11.6 | 17.1 | 12.9 | 19.0 | 14.2 | 12.8 | 15.8 | - | 16.2 | 1.5 | 1.5 | 18.3 | 4.5 |
CCS (σ1 = σ2) Brine-Saturated vs. Dry | Experiment | |
---|---|---|
Type | Calcschist | Calcschist |
Code | TD12-CS4 | TD12-CS4 |
Pore fluid | Air (dry) | Brine |
Length (mm) | 61.5 ± 0.1 | 61.5 ± 0.1 |
Diameter (mm) | 30.1 ± 0.1 | 30.1 ± 0.1 |
Porosity (%) | 5.93 ± 0.10 | 5.93 ± 0.10 |
Pore Volume (mm3) | 2595 ± 66 | 2595 ± 66 |
Matrix density (g/cm3) | 2.78 ± 0.01 | 2.78 ± 0.01 |
Bulk density (g/cm3) | 2.62 ± 0.02 | 2.63 ± 0.02 |
Water saturation (%) | 0 | 25 ± 2 |
σ1 = σ2 (MPa) | 10–50 | 10–50 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Janssen, M.T.G.; Barnhoorn, A.; Draganov, D.; Wolf, K.-H.A.A.; Durucan, S. Seismic Velocity Characterisation of Geothermal Reservoir Rocks for CO2 Storage Performance Assessment. Appl. Sci. 2021, 11, 3641. https://doi.org/10.3390/app11083641
Janssen MTG, Barnhoorn A, Draganov D, Wolf K-HAA, Durucan S. Seismic Velocity Characterisation of Geothermal Reservoir Rocks for CO2 Storage Performance Assessment. Applied Sciences. 2021; 11(8):3641. https://doi.org/10.3390/app11083641
Chicago/Turabian StyleJanssen, Martijn T. G., Auke Barnhoorn, Deyan Draganov, Karl-Heinz A. A. Wolf, and Sevket Durucan. 2021. "Seismic Velocity Characterisation of Geothermal Reservoir Rocks for CO2 Storage Performance Assessment" Applied Sciences 11, no. 8: 3641. https://doi.org/10.3390/app11083641
APA StyleJanssen, M. T. G., Barnhoorn, A., Draganov, D., Wolf, K.-H. A. A., & Durucan, S. (2021). Seismic Velocity Characterisation of Geothermal Reservoir Rocks for CO2 Storage Performance Assessment. Applied Sciences, 11(8), 3641. https://doi.org/10.3390/app11083641