Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (19)

Search Parameters:
Keywords = seedling stand inventorying

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 2835 KiB  
Article
A Study on the Growth Model of Natural Forests in Southern China Under Climate Change: Application of Transition Matrix Model
by Xiangjiang Meng, Zhengrui Ma, Ying Xia, Jinghui Meng, Yuhan Bai and Yuan Gao
Forests 2024, 15(11), 1947; https://doi.org/10.3390/f15111947 - 5 Nov 2024
Cited by 2 | Viewed by 1122
Abstract
This study establishes a climate-sensitive transition matrix growth model and predicts forest growth under different carbon emission scenarios (representative concentration pathways RCP2.6, RCP4.5, and RCP8.5) over the next 40 years. Data from the Eighth (2013) and Ninth (2019) National Forest Resource Inventories in [...] Read more.
This study establishes a climate-sensitive transition matrix growth model and predicts forest growth under different carbon emission scenarios (representative concentration pathways RCP2.6, RCP4.5, and RCP8.5) over the next 40 years. Data from the Eighth (2013) and Ninth (2019) National Forest Resource Inventories in Chongqing and climate data from Climate AP are utilized. The model is used to predict forest growth and compare the number of trees, basal area, and stock volume under different climate scenarios. The results show that the climate-sensitive transition matrix growth model has high accuracy. The relationships between the variables and forest growth, mortality, and recruitment correspond to natural succession and growth. Although the number of trees, basal area, and stock volume do not differ significantly for different climate scenarios, the forest has sufficient seedling regeneration and large-diameter trees. The growth process aligns with succession, with pioneer species being replaced by climax species. The proposed climate-sensitive transition matrix growth model fills the gap in growth models for natural secondary forests in Chongqing and is an accurate method for predicting forest growth. The model can be used for long-term prediction of forest stands to understand future forest growth trends and provide reliable references for forest management. Forest growth can be predicted for different harvesting intensities to determine the optimal intensity to guide natural forest management in Chongqing City. The results of this study can help formulate targeted forest management policies to deal more effectively with climate change and promote sustainable forest health. Full article
(This article belongs to the Special Issue Estimation and Monitoring of Forest Biomass and Fuel Load Components)
Show Figures

Figure 1

15 pages, 2621 KiB  
Article
Woody Species Composition, Stand Structure and Regeneration Status of Londiani Forest in Kenya
by Evalyne Kosgey Chepkoech, Humphrey Agevi, Henry Lung’ayia and Harrison Mugatsia Tsingalia
Forests 2024, 15(4), 653; https://doi.org/10.3390/f15040653 - 3 Apr 2024
Cited by 1 | Viewed by 1892
Abstract
Tropical forests provide habitats for diverse flora and fauna, in addition to playing a crucial role in climate regulation. They are being recognized for their roles as nature-based solutions to many sustainable development challenges, as shown by increased political commitment and global promises [...] Read more.
Tropical forests provide habitats for diverse flora and fauna, in addition to playing a crucial role in climate regulation. They are being recognized for their roles as nature-based solutions to many sustainable development challenges, as shown by increased political commitment and global promises to reduce the rates of deforestation and boost the restoration of degraded forest ecosystems. Understanding tropical forest dynamics and their conservation status is therefore important. This study analysed the forest stand structure, the tree species composition and the regeneration status of Londiani Forest. In the three blocks of Londiani Forest, which are Kedowa, Chebewor and Londiani, belt transects that were 25 m wide and 1 km long were established. At every 200 m along the transects, 25 m × 25 m quadrats were set up in which an inventory of all the tree species was determined. Diameter tape was used to measure the diameter at breast height (DBH) 1.3 m above the ground. With the use of a Suunto angular clinometer, the tree height was measured. A nested 5 m × 5 m quadrat within the 25 m × 25 m quadrat was used to sample the saplings, while a 1m × 1 m quadrat was used to sample the seedlings. The quantities of seedlings and saplings were used to determine the state of regeneration. The data were entered into Microsoft Excel. The total stem density, species density, basal area, species basal area, relative density and species diversity were determined and extrapolated per hectare. A total of 1308 distinct trees from 34 different species and 24 families were counted. Kedowa recorded the highest (27) species richness, followed by Chebewor (19) and then Londiani (14). There was a statistically significant difference in the species richness among the three forest blocks (p < 0.05). Within the three forest blocks, there were no statistically significant variations in the basal area distribution (p > 0.005) or in the mean DBH (F = 0.560; p = 0.729) or height class distribution (F = 0.821; p = 0.558). There was a statistically significant difference in the stem density (F = 12.22; p = 0.005) and woody species diversity (F = 0.32; p = 0.001) within the three forests blocks. The similarity index ranged from 0.34–0.47. The presence of substantial numbers of seedlings and saplings in all forest blocks was an indication that there was regeneration. Full article
(This article belongs to the Special Issue Ecological Forestry and Restoration)
Show Figures

Figure 1

27 pages, 5790 KiB  
Article
A New Approach for Feeding Multispectral Imagery into Convolutional Neural Networks Improved Classification of Seedlings
by Mohammad Imangholiloo, Ville Luoma, Markus Holopainen, Mikko Vastaranta, Antti Mäkeläinen, Niko Koivumäki, Eija Honkavaara and Ehsan Khoramshahi
Remote Sens. 2023, 15(21), 5233; https://doi.org/10.3390/rs15215233 - 3 Nov 2023
Cited by 2 | Viewed by 2225
Abstract
Tree species information is important for forest management, especially in seedling stands. To mitigate the spectral admixture of understory reflectance with small and lesser foliaged seedling canopies, we proposed an image pre-processing step based on the canopy threshold (Cth) applied on [...] Read more.
Tree species information is important for forest management, especially in seedling stands. To mitigate the spectral admixture of understory reflectance with small and lesser foliaged seedling canopies, we proposed an image pre-processing step based on the canopy threshold (Cth) applied on drone-based multispectral images prior to feeding classifiers. This study focused on (1) improving the classification of seedlings by applying the introduced technique; (2) comparing the classification accuracies of the convolutional neural network (CNN) and random forest (RF) methods; and (3) improving classification accuracy by fusing vegetation indices to multispectral data. A classification of 5417 field-located seedlings from 75 sample plots showed that applying the Cth technique improved the overall accuracy (OA) of species classification from 75.7% to 78.5% on the Cth-affected subset of the test dataset in CNN method (1). The OA was more accurate in CNN (79.9%) compared to RF (68.3%) (2). Moreover, fusing vegetation indices with multispectral data improved the OA from 75.1% to 79.3% in CNN (3). Further analysis revealed that shorter seedlings and tensors with a higher proportion of Cth-affected pixels have negative impacts on the OA in seedling forests. Based on the obtained results, the proposed method could be used to improve species classification of single-tree detected seedlings in operational forest inventory. Full article
(This article belongs to the Special Issue Novel Applications of UAV Imagery for Forest Science)
Show Figures

Graphical abstract

15 pages, 1801 KiB  
Article
Post-Fire Restoration and Deadwood Management: Microsite Dynamics and Their Impact on Natural Regeneration
by Emanuele Lingua, Gonçalo Marques, Niccolò Marchi, Matteo Garbarino, Davide Marangon, Flavio Taccaliti and Raffaella Marzano
Forests 2023, 14(9), 1820; https://doi.org/10.3390/f14091820 - 6 Sep 2023
Cited by 12 | Viewed by 2204
Abstract
After large and severe wildfires, the establishment of tree regeneration, particularly for species without specific fire-adaptive traits, can be challenging. Within harsh environments, the presence of favorable microsites, as those provided by deadwood, enhancing microclimatic conditions, is crucial to the re-establishment of forest [...] Read more.
After large and severe wildfires, the establishment of tree regeneration, particularly for species without specific fire-adaptive traits, can be challenging. Within harsh environments, the presence of favorable microsites, as those provided by deadwood, enhancing microclimatic conditions, is crucial to the re-establishment of forest cover and thus to foster recovery dynamics. Active restoration strategies can have an impact on these dynamics, altering or hindering them. The main hypothesis of this study is that manipulating deadwood in terms of quantity and spatial arrangement can result in differences in natural regeneration density and composition. Post-disturbance regeneration dynamics and the role played by deadwood over time in the creation of safe sites for seedling establishment were investigated in an area affected by a high-severity wildfire that underwent different post-fire restoration treatments along a gradient of increasing deadwood manipulation, spanning from salvage logging to non-intervention. Two inventories were performed 5 and 11 years after the fire. Ground cover proportion was significantly different among treatments, with lower values of lying deadwood in salvaged sites. A higher probability of regeneration establishment close to deadwood was found in both surveys, confirming the facilitating role of deadwood on post-fire forest regeneration. Microsite dynamics resulting from deadwood facilitation were highlighted, with establishment probability and anisotropic relationships between deadwood elements and seedlings changing over time, as recovery processes slowly improved environmental conditions. In dry mountain areas affected by stand-replacing wildfires, by removing deadwood, salvage logging reduces the number of safe sites for regeneration, further impairing the ecosystem recovery. Passive management should be the ecologically preferred management strategy in these conditions, although intermediate interventions (e.g., felling without delimbing, leaving deadwood on the ground) could be effective alternatives, accelerating snag fall dynamics and immediately increasing favorable microsite availability. Full article
(This article belongs to the Special Issue Management and Restoration of Post-disturbance Forests)
Show Figures

Figure 1

15 pages, 1967 KiB  
Article
Evaluation of the Current State of Preservation of Vaccinio uliginosi-Pinetum Kleist 1929 in Eastern Poland
by Katarzyna Masternak, Danuta Urban and Krzysztof Kowalczyk
Sustainability 2022, 14(9), 5387; https://doi.org/10.3390/su14095387 - 29 Apr 2022
Cited by 1 | Viewed by 1503
Abstract
The study assessed the genetic variability and the possibility of Scots pine regeneration in marshy forest. The genetic parameters were determined using the ISSR technique. The relationships between herbaceous plants, pine regeneration density, and their genetic variability were determined. On average, per 1 [...] Read more.
The study assessed the genetic variability and the possibility of Scots pine regeneration in marshy forest. The genetic parameters were determined using the ISSR technique. The relationships between herbaceous plants, pine regeneration density, and their genetic variability were determined. On average, per 1 m2, three regenerated pine seedlings with a mean height of 27.56 cm were inventoried. Based on genetic analysis, it was found that the proportion of polymorphic loci was 60.46%. The average number of alleles at the locus was 1.345, and the effective number of alleles at the locus was 1.345. The values of the expected heterozygosity and Shannon index were 0.200 and 0.301, respectively. No species competing with pine regeneration were found. A significantly negative correlation of the number of pine regenerations with the area covered with an herbaceous plant layer and tree canopy closure was found. There was a relation to the insufficient amount of light under the stand canopy. In conclusion, the condition of marshy forests was satisfactory and the genetic variability of pine seedlings was moderate. The vegetation was typical for this habitat, but the significant presence of dry habitat species could indicate the beginning of habitat drainage. It seemed that the amount of light under the stand canopy was insufficient. Nevertheless, more light probably reached the inside of the stand in the terminal stage, as a result of upper layer tree separation, which in turn may facilitate the effective regeneration of Scots pine in this habitat. Full article
Show Figures

Figure 1

19 pages, 9393 KiB  
Article
Forest Dynamics after Five Decades of Management in the Romanian Carpathians
by Gheorghe-Marian Tudoran, Avram Cicșa, Maria Boroeanu, Alexandru-Claudiu Dobre and Ionuț-Silviu Pascu
Forests 2021, 12(6), 783; https://doi.org/10.3390/f12060783 - 14 Jun 2021
Cited by 14 | Viewed by 2907
Abstract
Research Highlights: Management of the risks forests are exposed to is based on the dynamics of the composition and structure of the stands and the forest. Background and Objectives: This study aimed to document the dynamics of the composition and structure of stands [...] Read more.
Research Highlights: Management of the risks forests are exposed to is based on the dynamics of the composition and structure of the stands and the forest. Background and Objectives: This study aimed to document the dynamics of the composition and structure of stands and forest in the Romanian Carpathians over the last five decades, as well as estimate the forecast composition of the forest in the near future (i.e., 2070). Materials and Methods: The obtained results were based on long-term monitoring and analysis of the species and structures in the stands in long-term research areas (over five decades). We performed an inventory of all the trees (on 7.5 ha) in order to characterize the stand structure in sampling plots of 0.25–1.0 ha, located in representative stands of five forest formations. Bitterlich sampling was performed in order to determine the composition of each stand (on 2930.4 ha). The future composition was established in accordance with the characteristics of the natural forest types and was based on seedling dynamics and forest management plans. Results: In mixed beech–coniferous stands, over the last five decades, the area of beech has increased by 38%, while conifers have decreased proportionally—fir by 31% and spruce by 5%. The seedling area increased from 23% to 65%, with fir contributing 22% to the composition and beech 42%. Stand density decreased by an average of 14%, with the current increment decreasing by 3.8%. The slenderness index for fir decreased from 73 to 61. In the near future, there will be an increase in the proportion of fir, from 15 to 33%, and a reduction in beech, from 49 to 45%. The proportion of spruce will be reduced from 17 to 12%. Conclusions: Based on the forest dynamics, management adaptation strategies need to be developed to improve the stability of the forest ecosystems. Full article
(This article belongs to the Special Issue Long-Term Vegetation Dynamics and Forest Landscape Change)
Show Figures

Figure 1

20 pages, 3020 KiB  
Article
Using Leaf-Off and Leaf-On Multispectral Airborne Laser Scanning Data to Characterize Seedling Stands
by Mohammad Imangholiloo, Ninni Saarinen, Markus Holopainen, Xiaowei Yu, Juha Hyyppä and Mikko Vastaranta
Remote Sens. 2020, 12(20), 3328; https://doi.org/10.3390/rs12203328 - 13 Oct 2020
Cited by 10 | Viewed by 4483
Abstract
Information from seedling stands in time and space is essential for sustainable forest management. To fulfil these informational needs with limited resources, remote sensing is seen as an intriguing alternative for forest inventorying. The structure and tree species composition in seedling stands have [...] Read more.
Information from seedling stands in time and space is essential for sustainable forest management. To fulfil these informational needs with limited resources, remote sensing is seen as an intriguing alternative for forest inventorying. The structure and tree species composition in seedling stands have created challenges for capturing this information using sensors providing sparse point densities that do not have the ability to penetrate canopy gaps or provide spectral information. Therefore, multispectral airborne laser scanning (mALS) systems providing dense point clouds coupled with multispectral intensity data theoretically offer advantages for the characterization of seedling stands. The aim of this study was to investigate the capability of Optech Titan mALS data to characterize seedling stands in leaf-off and leaf-on conditions, as well as to retrieve the most important forest inventory attributes, such as distinguishing deciduous from coniferous trees, and estimating tree density and height. First, single-tree detection approaches were used to derive crown boundaries and tree heights from which forest structural attributes were aggregated for sample plots. To predict tree species, a random forests classifier was trained using features from two single-channel intensities (SCIs) with wavelengths of 1550 (SCI-Ch1) and 1064 nm (SCI-Ch2), and multichannel intensity (MCI) data composed of three mALS channels. The most important and uncorrelated features were analyzed and selected from 208 features. The highest overall accuracies in classification of Norway spruce, birch, and nontree class in leaf-off and leaf-on conditions obtained using SCI-Ch1 and SCI-Ch2 were 87.36% and 69.47%, respectively. The use of MCI data improved classification by up to 96.55% and 92.54% in leaf-off and leaf-on conditions, respectively. Overall, leaf-off data were favorable for distinguishing deciduous from coniferous trees and tree density estimation with a relative root mean square error (RMSE) of 37.9%, whereas leaf-on data provided more accurate height estimations, with a relative RMSE of 10.76%. Determining the canopy threshold for separating ground returns from vegetation returns was found to be critical, as mapped trees might have a height below one meter. The results showed that mALS data provided benefits for characterizing seedling stands compared to single-channel ALS systems. Full article
(This article belongs to the Special Issue Lidar Remote Sensing of Forest Structure, Biomass and Dynamics)
Show Figures

Graphical abstract

12 pages, 1660 KiB  
Article
Effects of Twenty Years of Ungulate Browsing on Forest Regeneration at Paneveggio Reserve, Italy
by Davide D’Aprile, Giorgio Vacchiano, Fabio Meloni, Matteo Garbarino, Renzo Motta, Vittorio Ducoli and Piergiovanni Partel
Forests 2020, 11(6), 612; https://doi.org/10.3390/f11060612 - 1 Jun 2020
Cited by 22 | Viewed by 4324
Abstract
Forest ecosystems are threatened by different natural disturbances. Among them, the irruption of large herbivores represents one of the most alarming issues. Several local-scale studies have been carried out to clarify the mechanisms governing ungulate–forest interactions, to understand the effect of wild ungulates [...] Read more.
Forest ecosystems are threatened by different natural disturbances. Among them, the irruption of large herbivores represents one of the most alarming issues. Several local-scale studies have been carried out to clarify the mechanisms governing ungulate–forest interactions, to understand the effect of wild ungulates overabundance, and to apply conservation plans. However, information at large scales, over long periods of observation and from unmanipulated conditions is still scarce. This study aims to improve our knowledge in this field by using repeated inventories to investigate: the types of damage produced by ungulate populations on young trees, the drivers that stimulate browsing activity and its consequences on the specific composition of seedlings and saplings. To reach these goals, we used data collected during a twenty-year monitoring program (1994–2014) in the forests of Paneveggio-Pale di San Martino Nature Park (Italy). We applied descriptive statistics to summarize the data, GLMs to identify the drivers of browsing activity and Non-Metric Multidimensional Scaling (nMDS) ordinations to investigate the changes in specific composition of young trees across 20 years. We detected increasing browsing activity from 1994 to 2008 and a decline in 2014. Ungulates browsed preferentially in mature stands, and fed mostly on seedlings and saplings under 150 cm of height. The analysis of the environmental drivers of browsing pressure on the smallest size classes of plants suggests that foraging behavior is influenced by snowpack conditions, ungulate density and seasonality. Moreover, results underline the fact that ungulates feed mostly on palatable species, especially European rowan, but can also use unpalatable plants as emergency food under high competition levels. nMDS results suggest that rowan seed dispersion might be promoted by deer movements, however, saplings of this species were not able to exceed 30 cm of height because of heavy browsing. This bottleneck effect led to the dominance of unpalatable species, mostly Norway spruce, reducing diversity during forest regeneration. If prolonged, this effect could lead to a reduction of tree species richness, with cascading effects on many parts of the ecosystem, and threatening the resilience of the forest to future disturbances. Full article
(This article belongs to the Special Issue Impacts of Herbivory on Plant Communities)
Show Figures

Figure 1

29 pages, 5190 KiB  
Article
Western Larch Regeneration Responds More Strongly to Site and Indirect Climate Factors Than to Direct Climate Factors
by James E. Steed and Sara A. Goeking
Forests 2020, 11(4), 482; https://doi.org/10.3390/f11040482 - 24 Apr 2020
Cited by 4 | Viewed by 3687
Abstract
Substantial shifts in the distribution of western larch (Larix occidentalis Nutt.) are predicted during the coming decades in response to changing climatic conditions. However, it is unclear how the interplay between direct climate effects, such as warmer, drier conditions, and indirect climate [...] Read more.
Substantial shifts in the distribution of western larch (Larix occidentalis Nutt.) are predicted during the coming decades in response to changing climatic conditions. However, it is unclear how the interplay between direct climate effects, such as warmer, drier conditions, and indirect climate effects, such as predicted increases in fire disturbance, will impact fire-adapted species such as western larch. The objectives of this study were (1) to compare the relative importance of stand, site, and indirect versus direct climatic factors in determining western larch seedling recruitment; (2) to determine whether seedling recruitment rates have changed in recent years in response to disturbance, post-fire weather, and/or climate; and (3) to determine whether seedlings and mature trees are experiencing niche differentiation based on recent climatic shifts. We addressed these objectives using data collected from 1286 national forest inventory plots in the US states of Idaho and Montana. We used statistical models to determine the relative importance of 35 stand, site, and climatic factors for larch seedling recruitment. Our results suggest that the most important predictors of larch seedling recruitment were indicative of early-seral stand conditions, and were often associated with recent fire disturbance and cutting. Despite indications of climatic niche compression, seedling recruitment rates have increased in recent decades, likely due to increased fire disturbance, and were unrelated to post-fire weather. Compared to sites occupied by mature trees, seedling recruitment was positively associated with cooler, drier climatic conditions, and particularly with cooler summer temperatures, but these climatic factors were generally less important than biotic stand variables such as stand age, basal area, and canopy cover. These results suggest that, for fire-dependent species such as western larch, increased heat and drought stress resulting from climatic change may be offset, at least in the near term, by an increase in early-seral stand conditions resulting from increased fire disturbance, although localized range contraction may occur at warm, dry extremes. Full article
(This article belongs to the Section Forest Ecology and Management)
Show Figures

Figure 1

16 pages, 5949 KiB  
Article
The Conservation Status and Population Mapping of the Endangered Dracaena serrulata in the Dhofar Mountains, Oman
by Petr Vahalík, Zdeněk Patočka, Karel Drápela, Hana Habrová, Lenka Ehrenbergerová, Klára Lengálová, Hana Kalivodová, Lucie Pompeiano Vaníčková, Ella Al-Shamahi, Darach Lupton, Ghudaina Al Issai, Abdulrahman Al Hinai, Saif Al Hatmi, Thomas Starnes and Petr Maděra
Forests 2020, 11(3), 322; https://doi.org/10.3390/f11030322 - 14 Mar 2020
Cited by 13 | Viewed by 5884
Abstract
Populations of Dracaena serrulata are disappearing at an alarming rate in the Arabian Peninsula. They are being destroyed by herders who use the leaves as fodder for camels, goats, and sheep during the dry season. Up until now, precise information about the current [...] Read more.
Populations of Dracaena serrulata are disappearing at an alarming rate in the Arabian Peninsula. They are being destroyed by herders who use the leaves as fodder for camels, goats, and sheep during the dry season. Up until now, precise information about the current distribution and population status of D. serrulata in Oman have not been published. To fill this gap, the main aim of this work was to map the species distribution in the Dhofar Mountains (Oman) and to define the conservation and health status of the populations. Three isolated sub-populations of the study species were defined and mapped: the Jabal Samhan, Jabal al Qara, and Jabal al Qamar sub-populations. Dracaena serrulata occupies an area of 227 km2 in the Dhofar Mountains. More than 43,000 trees were counted, and 2387 trees were inventoried in total. The Jabal Samhan sub-population is an example of an extensively damaged population with 59% of the trees recorded as dead and only 21% healthy trees. Populationsin the western portions of the Dhofar Mountains., Jabal al Qamar, and Jabal al Qara are comparatively abundant stands of healthy trees with a higher proportion of seedlings. The health of trees is strongly influenced by accessibility and precipitation provided by the southwest summer monsoon: the healthy individuals predominate on the steep terrain along the seaward facing cliffs. Full article
(This article belongs to the Special Issue Dragon Trees - Tertiary Relicts in Current Reality)
Show Figures

Figure 1

28 pages, 1146 KiB  
Article
Modelling Post-Disturbance Successional Dynamics of the Canadian Boreal Mixedwoods
by Kobra Maleki, Mohamadou Alpha Gueye, Benoit Lafleur, Alain Leduc and Yves Bergeron
Forests 2020, 11(1), 3; https://doi.org/10.3390/f11010003 - 18 Dec 2019
Cited by 13 | Viewed by 4075
Abstract
Natural disturbances, such as fire and insect outbreaks, play important roles in natural forest dynamics, which are characterized over long time scales by changes in stand composition and structure. Individual-based forest simulators could help explain and predict the response of forest ecosystems to [...] Read more.
Natural disturbances, such as fire and insect outbreaks, play important roles in natural forest dynamics, which are characterized over long time scales by changes in stand composition and structure. Individual-based forest simulators could help explain and predict the response of forest ecosystems to different disturbances, silvicultural treatments, or environmental stressors. This study evaluated the ability of the SORTIE-ND simulator to reproduce post-disturbance dynamics of the boreal mixedwoods of eastern Canada. In 1991 and 2009, we sampled all trees (including seedlings and saplings) in 431 (256 m2) plots located in the Lake Duparquet Research and Teaching Forest (western Quebec). These plots were distributed in stands originating from seven wildfires that occurred between 1760 and 1944, and which represented a chronosequence of post-disturbance stand development. We used the 1991 inventory data to parameterize the model, and simulated short- to long-term natural dynamics of post-fire stands in both the absence and presence of a spruce budworm outbreak. We compared short-term simulated stand composition and structure with those observed in 2009 using a chronosequence approach. The model successfully generated the composition and structure of empirical observations. In long-term simulations, species dominance of old-growth forests was not accurately estimated, due to possible differences in stand compositions following wildfires and to differences in stand disturbance histories. Mid- to long-term simulations showed that the secondary disturbance incurred by spruce budworm did not cause substantial changes in early successional stages while setting back the successional dynamics of middle-aged stands and accelerating the dominance of white cedar in late-successional post-fire stands. We conclude that constructing a model with appropriate information regarding stand composition and disturbance history considerably increases the strength and accuracy of the model to reproduce the natural dynamics of post-disturbance boreal mixedwoods. Full article
(This article belongs to the Special Issue Modeling of Forest Structure and Dynamics)
Show Figures

Figure 1

17 pages, 5560 KiB  
Article
Characterizing Seedling Stands Using Leaf-Off and Leaf-On Photogrammetric Point Clouds and Hyperspectral Imagery Acquired from Unmanned Aerial Vehicle
by Mohammad Imangholiloo, Ninni Saarinen, Lauri Markelin, Tomi Rosnell, Roope Näsi, Teemu Hakala, Eija Honkavaara, Markus Holopainen, Juha Hyyppä and Mikko Vastaranta
Forests 2019, 10(5), 415; https://doi.org/10.3390/f10050415 - 13 May 2019
Cited by 38 | Viewed by 5929
Abstract
Seedling stands are mainly inventoried through field measurements, which are typically laborious, expensive and time-consuming due to high tree density and small tree size. In addition, operationally used sparse density airborne laser scanning (ALS) and aerial imagery data are not sufficiently accurate for [...] Read more.
Seedling stands are mainly inventoried through field measurements, which are typically laborious, expensive and time-consuming due to high tree density and small tree size. In addition, operationally used sparse density airborne laser scanning (ALS) and aerial imagery data are not sufficiently accurate for inventorying seedling stands. The use of unmanned aerial vehicles (UAVs) for forestry applications is currently in high attention and in the midst of quick development and this technology could be used to make seedling stand management more efficient. This study was designed to investigate the use of UAV-based photogrammetric point clouds and hyperspectral imagery for characterizing seedling stands in leaf-off and leaf-on conditions. The focus was in retrieving tree density and the height in young seedling stands in the southern boreal forests of Finland. After creating the canopy height model from photogrammetric point clouds using national digital terrain model based on ALS, the watershed segmentation method was applied to delineate the tree canopy boundary at individual tree level. The segments were then used to extract tree heights and spectral information. Optimal bands for calculating vegetation indices were analysed and used for species classification using the random forest method. Tree density and the mean tree height of the total and spruce trees were then estimated at the plot level. The overall tree density was underestimated by 17.5% and 20.2% in leaf-off and leaf-on conditions with the relative root mean square error (relative RMSE) of 33.5% and 26.8%, respectively. Mean tree height was underestimated by 20.8% and 7.4% (relative RMSE of 23.0% and 11.5%, and RMSE of 0.57 m and 0.29 m) in leaf-off and leaf-on conditions, respectively. The leaf-on data outperformed the leaf-off data in the estimations. The results showed that UAV imagery hold potential for reliably characterizing seedling stands and to be used to supplement or replace the laborious field inventory methods. Full article
(This article belongs to the Special Issue Forestry Applications of Unmanned Aerial Vehicles (UAVs) 2019)
Show Figures

Graphical abstract

29 pages, 898 KiB  
Review
Acquisition of Forest Attributes for Decision Support at the Forest Enterprise Level Using Remote-Sensing Techniques—A Review
by Peter Surový and Karel Kuželka
Forests 2019, 10(3), 273; https://doi.org/10.3390/f10030273 - 19 Mar 2019
Cited by 38 | Viewed by 6822
Abstract
In recent decades, remote sensing techniques and the associated hardware and software have made substantial improvements. With satellite images that can obtain sub-meter spatial resolution, and new hardware, particularly unmanned aerial vehicles and systems, there are many emerging opportunities for improved data acquisition, [...] Read more.
In recent decades, remote sensing techniques and the associated hardware and software have made substantial improvements. With satellite images that can obtain sub-meter spatial resolution, and new hardware, particularly unmanned aerial vehicles and systems, there are many emerging opportunities for improved data acquisition, including variable temporal and spectral resolutions. Combined with the evolution of techniques for aerial remote sensing, such as full wave laser scanners, hyperspectral scanners, and aerial radar sensors, the potential to incorporate this new data in forest management is enormous. Here we provide an overview of the current state-of-the-art remote sensing techniques for large forest areas thousands or tens of thousands of hectares. We examined modern remote sensing techniques used to obtain forest data that are directly applicable to decision making issues, and we provided a general overview of the types of data that can be obtained using remote sensing. The most easily accessible forest variable described in many works is stand or tree height, followed by other inventory variables like basal area, tree number, diameters, and volume, which are crucial in decision making process, especially for thinning and harvest planning, and timber transport optimization. Information about zonation and species composition are often described as more difficult to assess; however, this information usually is not required on annual basis. Counts of studies on forest health show an increasing trend in the last years, mostly in context of availability of new sensors as well as increased forest vulnerability caused by climate change; by virtue to modern sensors interesting methods were developed for detection of stressed or damaged trees. Unexpectedly few works focus on regeneration and seedlings evaluation; though regenerated stands should be regularly monitored in order to maintain forest cover sustainability. Full article
(This article belongs to the Special Issue Forest Landscape Management: From Data to Decision)
24 pages, 4183 KiB  
Article
Whitebark and Foxtail Pine in Yosemite, Sequoia, and Kings Canyon National Parks: Initial Assessment of Stand Structure and Condition
by Jonathan C.B. Nesmith, Micah Wright, Erik S. Jules and Shawn T. McKinney
Forests 2019, 10(1), 35; https://doi.org/10.3390/f10010035 - 7 Jan 2019
Cited by 17 | Viewed by 6767
Abstract
The Inventory & Monitoring Division of the U.S. National Park Service conducts long-term monitoring to provide park managers information on the status and trends in biological and environmental attributes including white pines. White pines are foundational species in many subalpine ecosystems and are [...] Read more.
The Inventory & Monitoring Division of the U.S. National Park Service conducts long-term monitoring to provide park managers information on the status and trends in biological and environmental attributes including white pines. White pines are foundational species in many subalpine ecosystems and are currently experiencing population declines. Here we present results on the status of whitebark and foxtail pine in the southern Sierra Nevada of California, an area understudied relative to other parts of their ranges. We selected random plot locations in Yosemite, Sequoia, and Kings Canyon national parks using an equal probability spatially-balanced approach. Tree- and plot-level data were collected on forest structure, composition, demography, cone production, crown mortality, and incidence of white pine blister rust and mountain pine beetle. We measured 7899 whitebark pine, 1112 foxtail pine, and 6085 other trees from 2012–2017. All factors for both species were spatially highly variable. Whitebark pine occurred in nearly-pure krummholz stands at or near treeline and as a minor component of mixed species forests. Ovulate cones were observed on 25% of whitebark pine and 69% of foxtail pine. Whitebark pine seedlings were recorded in 58% of plots, and foxtail pine seedlings in only 21% of plots. Crown mortality (8% in whitebark, 6% in foxtail) was low and significantly higher in 2017 compared to previous years. Less than 1% of whitebark and zero foxtail pine were infected with white pine blister rust and <1% of whitebark and foxtail pine displayed symptoms of mountain pine beetle attack. High elevation white pines in the southern Sierra Nevada are healthy compared to other portions of their range where population declines are significant and well documented. However, increasing white pine blister rust and mountain pine beetle occurrence, coupled with climate change projections, portend future declines for these species, underscoring the need for broad-scale collaborative monitoring. Full article
(This article belongs to the Special Issue Ecology and Restoration of Whitebark Pine)
Show Figures

Figure 1

17 pages, 2042 KiB  
Article
What Governs Tree Harvesting in Community Forestry—Regulatory Instruments or Forest Bureaucrats’ Discretion?
by Sony Baral and Harald Vacik
Forests 2018, 9(10), 649; https://doi.org/10.3390/f9100649 - 18 Oct 2018
Cited by 15 | Viewed by 5030
Abstract
Community forestry is required to follow a forest management plan (FMP) to ensure sustainable tree harvesting. However, the role of FMPs or forest bureaucrats’ discretion in guiding harvesting decisions and the resultant effects has not been explored. This paper investigates tree harvesting practices [...] Read more.
Community forestry is required to follow a forest management plan (FMP) to ensure sustainable tree harvesting. However, the role of FMPs or forest bureaucrats’ discretion in guiding harvesting decisions and the resultant effects has not been explored. This paper investigates tree harvesting practices in community forests (CF) and its effects on forest sustainability, using the forest inventory panel dataset for three consecutive periods (2010, 2013 and 2016), together with qualitative information obtained by key informant interviews and a review of records of the community forest users’ group. Harvesting decisions in the CF are largely guided by the decrees or schematic instructions of forest bureaucrats, where the role of the FMP remains highly contested. Whether harvesting decisions should be guided by the prescriptions of the FMP or should be regulated through decrees is a matter of discourse. Forest bureaucrats are arbitrarily reducing harvesting quantities and rarely referring to the prescriptions of the FMP. Consequently, users are compelled to harvest less than half the quantity of trees prescribed in the FMP. Furthermore, they are only allowed to harvest poor quality and dead trees. As a result, the number of good quality trees has increased, while the number of seedlings and saplings has decreased significantly. Although harvesting of saplings and seedlings is a common practice, it is against the provisions of the FMP. Though the current bureaucratic discretion has shown quick short-term effects on the forest stand conditions, the long-term impacts should not be undermined. Our findings will be useful to implementors and policy makers in Nepal and other developing countries with similar circumstances for deciding the tree harvesting. We argue for a rational approach in designing harvesting prescriptions and complying with them rather than regulating harvesting practices through guidelines, circulars and bureaucratic discretion. Full article
(This article belongs to the Section Forest Economics, Policy, and Social Science)
Show Figures

Figure 1

Back to TopTop