Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,111)

Search Parameters:
Keywords = seed strategy

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 4784 KiB  
Article
Optimization of Anaerobic Co-Digestion Parameters for Vinegar Residue and Cattle Manure via Orthogonal Experimental Design
by Yuan Lu, Gaoyuan Huang, Jiaxing Zhang, Tingting Han, Peiyu Tian, Guoxue Li and Yangyang Li
Fermentation 2025, 11(9), 493; https://doi.org/10.3390/fermentation11090493 - 23 Aug 2025
Abstract
The anaerobic co-digestion of agricultural residues emerges as a promising strategy for energy recovery and nutrient recycling within circular agricultural systems. This study aimed to optimize co-digestion parameters for vinegar residue (VR) and cattle manure (CM) using an orthogonal experimental design. Three key [...] Read more.
The anaerobic co-digestion of agricultural residues emerges as a promising strategy for energy recovery and nutrient recycling within circular agricultural systems. This study aimed to optimize co-digestion parameters for vinegar residue (VR) and cattle manure (CM) using an orthogonal experimental design. Three key variables were investigated which are the co-substrate ratio (VR to CM), feedstock-to-inoculum (F/I) ratio, and total solids (TS) content. Nine experimental combinations were tested to evaluate methane yield, feedstock degradation, and digestate characteristics. Results showed that the optimal condition for methane yield comprised a 2:3 co-substrate ratio, 1:2 F/I ratio, and 20% TS, achieving the highest methane yield of 267.84 mL/g volatile solids (VS) and a vs. degradation rate of 58.65%. Digestate analysis indicated this condition generated the most nutrient-rich liquid digestate and solid digestate, featuring elevated N, P, and K concentrations, acceptable seed germination indices (GI), and moderate humification levels. While total nutrient content did not meet commercial organic fertilizer standards, the digestate is suitable for direct land application in rural settings. This study underscores the need to balance energy recovery and fertilizer quality in anaerobic co-digestion systems, providing practical guidance for decentralized biogas plants seeking to integrate waste treatment with agricultural productivity. Full article
(This article belongs to the Section Industrial Fermentation)
24 pages, 10538 KiB  
Article
Burned Area Mapping and Fire Severity Assessment of Forest–Grassland Ecosystems Using Time-Series Landsat Imagery (1985–2023): A Case Study of Daxing’anling Region, China
by Lulu Chen, Baocheng Wei, Xu Jia, Mengna Liu and Yiming Zhao
Fire 2025, 8(9), 337; https://doi.org/10.3390/fire8090337 - 23 Aug 2025
Abstract
Burned area (BA) mapping and fire severity assessment are essential for understanding fire occurrence patterns, formulating post-fire restoration strategies and evaluating vegetation recovery processes. However, existing BA datasets are primarily derived from coarse-resolution satellite imagery and often lack sufficient consideration of fire severity. [...] Read more.
Burned area (BA) mapping and fire severity assessment are essential for understanding fire occurrence patterns, formulating post-fire restoration strategies and evaluating vegetation recovery processes. However, existing BA datasets are primarily derived from coarse-resolution satellite imagery and often lack sufficient consideration of fire severity. To address these limitations, this study utilized dense time-series Landsat imagery available on the Google Earth Engine, applying the qualityMosaic method to generate annual composites of minimum normalized burn ratio values. These composites imagery enabled the rapid identification of fire sample points, which were subsequently used to train a random forest classifier for estimating per-pixel burn probability. Pixels with a burned probability greater than 0.9 were selected as the core of the BA, and used as candidate seeds for region growing to further expand the core and extract complete BA. This two-stage extraction method effectively balances omission and commission errors. To avoid the repeated detection of unrecovered BA, this study developed distinct correction rules based on the differing post-fire recovery characteristics of forests and grasslands. The extracted BA were further categorized into four fire severity levels using the delta normalized burn ratio. In addition, we conducted a quantitative validation of the BA mapping accuracy based on Sentinel-2 data between 2015 and 2023. The results indicated that the BA mapping achieved an overall accuracy of 93.90%, with a Dice coefficient of 82.04%, and omission and commission error rates of 26.32% and 5.25%, respectively. The BA dataset generated in this study exhibited good spatiotemporal consistency with existing products, including MCD64A1, FireCCI51, and GABAM. The BA fluctuated significantly between 1985 and 2010, with the highest value recorded in 1987 (13,315 km2). The overall trend of BA showed a decline, with annual burned areas remaining below 2000 km2 after 2010 and reaching a minimum of 92.8 km2 in 2020. There was no significant temporal variation across different fire severity levels. The area of high-severity burns showed a positive correlation with the annual total BA. High-severity fire-prone zones were primarily concentrated in the northeastern, southeastern, and western parts of the study area, predominantly within grasslands and forest–grassland ecotone regions. Full article
(This article belongs to the Section Fire Science Models, Remote Sensing, and Data)
25 pages, 1498 KiB  
Article
Metschnikowia pulcherrima as a Tool for Sulphite Reduction and Enhanced Volatile Retention in Noble Rot Wine Fermentation
by Zsuzsanna Bene, Ádám István Hegyi, Hannes Weninger and Kálmán Zoltán Váczy
Fermentation 2025, 11(9), 491; https://doi.org/10.3390/fermentation11090491 - 23 Aug 2025
Abstract
The use of non-Saccharomyces species is gaining momentum in modern winemaking as part of broader efforts to reduce chemical inputs and adapt to climate-driven challenges. In this study, Furmint grapes were harvested at two distinct ripeness levels: an early harvest with healthy [...] Read more.
The use of non-Saccharomyces species is gaining momentum in modern winemaking as part of broader efforts to reduce chemical inputs and adapt to climate-driven challenges. In this study, Furmint grapes were harvested at two distinct ripeness levels: an early harvest with healthy berries and a late harvest that included botrytized fruit. Two oenological protocols were compared: a conventional sulphur dioxide-based protocol and an alternative bioprotection-oriented approach that minimized SO2 additions. Bioprotection was carried out using Metschnikowia pulcherrima, followed by sequential inoculation with Torulaspora delbrueckii and Saccharomyces cerevisiae. Grape-derived tannins (from skin and seed) were also added to inhibit oxidative enzymes such as laccase. Fermentation was monitored using standard analytical techniques, with volatile aroma profiles characterized by HS-SPME-GC-MS. Results showed that harvest timing and botrytization strongly influenced the chemical composition of the wines. Moreover, the treatment protocol had a marked effect on the final sensory profile. Wines produced with the bioprotection-oriented protocol displayed enhanced aromatic complexity, particularly through higher concentrations of esters and higher alcohols. Overall, the alternative protocol involving M. pulcherrima-based bioprotection resulted in wines with more pronounced floral and fruity notes, supporting its potential as a viable strategy for producing expressive wines under evolving climatic conditions. Full article
(This article belongs to the Section Fermentation for Food and Beverages)
29 pages, 2178 KiB  
Article
Emerging Invasive Weeds in Iran: Occurrence, Ecological Impacts, and Sustainable Management
by Ali Reza Yousefi, Sirwan Babaei, Iraj Nosratti, Ehsan Zeidali, Masoumeh Babaei, Ebrahim Asadi Oskouei, Hesan Saberi, Mandeep Redhu and Amir Sadeghpour
Plants 2025, 14(17), 2611; https://doi.org/10.3390/plants14172611 - 22 Aug 2025
Viewed by 36
Abstract
Invasive weeds pose a growing threat to global biodiversity, ecosystem stability, and agricultural productivity with significant ecological and economic consequences. In Iran, the rapid spread of invasive species such as Boreava orientalis, Azolla spp., Ibicella lutea, Physalis divaricata, Picnomon acarna [...] Read more.
Invasive weeds pose a growing threat to global biodiversity, ecosystem stability, and agricultural productivity with significant ecological and economic consequences. In Iran, the rapid spread of invasive species such as Boreava orientalis, Azolla spp., Ibicella lutea, Physalis divaricata, Picnomon acarna, Cynanchum acutum, Vicia hyrcanica, Eichhornia crassipes, and Ambrosia psilostachya has severely affected native ecosystems, disrupted ecological processes, and threatened food security. These species exhibit aggressive traits such as rapid maturity, high reproductive rates, seed dormancy, and allelopathy that enable them to outcompete native species and successfully invade and dominate delicate habitats. Despite their documented impacts, a critical gap remains in understanding their biology, ecology, and management, particularly in understudied regions like Iran. This review synthesizes current knowledge on major invasive weeds affecting Iranian agroecosystems, with a focus on their ecological impacts and the urgent need for sustainable management strategies. It presents an integrated framework that combines ecological, biological, and management perspectives to address invasiveness, particularly in highly adaptable species like B. orientalis and A. psilostachya. This review highlights the critical role of interdisciplinary collaboration, advanced technology, and community involvement in developing effective strategies. It offers practical guidance for researchers, policymakers, and agricultural stakeholders, serving as a model for managing invasive species in other vulnerable regions. Ultimately, it supports global efforts to safeguard biodiversity, improve crop productivity, and strengthen ecological resilience against the growing threat of invasive species. Full article
(This article belongs to the Topic Plant Invasion)
Show Figures

Figure 1

20 pages, 343 KiB  
Review
Valorization of Avocado (Persea americana) Peel and Seed: Functional Potential for Food and Health Applications
by Amanda Priscila Silva Nascimento, Maria Elita Martins Duarte, Ana Paula Trindade Rocha and Ana Novo Barros
Antioxidants 2025, 14(9), 1032; https://doi.org/10.3390/antiox14091032 - 22 Aug 2025
Viewed by 28
Abstract
The growing emphasis on sustainability and circular economy strategies has driven increasing interest in the valorization of agro-industrial by-products. Among these, the peel and seed of avocado (Persea americana), typically discarded during processing, have emerged as promising sources of bioactive compounds, [...] Read more.
The growing emphasis on sustainability and circular economy strategies has driven increasing interest in the valorization of agro-industrial by-products. Among these, the peel and seed of avocado (Persea americana), typically discarded during processing, have emerged as promising sources of bioactive compounds, particularly phenolic constituents with recognized antioxidant capacity. This review critically examines the current scientific literature on the phytochemical composition, antioxidant activity, and potential health benefits associated with avocado peel and seed. In addition, it explores recent technological advances in extraction methods and highlights the applicability of these by-products in the formulation of functional foods, nutraceuticals, and other health-related products. Challenges related to safety, bioavailability, and regulatory aspects are also discussed. By consolidating available evidence, this work supports the potential of avocado peel and seed as valuable functional ingredients and contributes to sustainable innovation in the food and health industries. Full article
Show Figures

Graphical abstract

18 pages, 2794 KiB  
Article
Predicting Heterosis and Selecting Superior Families and Individuals in Fraxinus spp. Based on Growth Traits and Genetic Distance Coupling
by Liping Yan, Chengcheng Gao, Chenggong Liu, Yinhua Wang, Ning Liu, Xueli Zhang and Fenfen Liu
Plants 2025, 14(16), 2601; https://doi.org/10.3390/plants14162601 - 21 Aug 2025
Viewed by 212
Abstract
Fraxinus spp. is one of the most important salt-alkali resistant tree species in the Yellow River region of China. However, the limited number of superior families and individuals, as well as the lack of a well-established parent selection system for hybrid breeding, have [...] Read more.
Fraxinus spp. is one of the most important salt-alkali resistant tree species in the Yellow River region of China. However, the limited number of superior families and individuals, as well as the lack of a well-established parent selection system for hybrid breeding, have seriously constrained the improvement of seed orchards and the construction of advanced breeding populations. To address these issues, this study investigated 22 full-sib families of Fraxinus spp., using SSR molecular markers to calculate the genetic distance (GD) between parents. Combined with combining ability analysis, the study aimed to predict heterosis in offspring growth traits and select superior families and individuals through multi-trait comprehensive evaluation. The results showed the following: (1) Tree height (TH), diameter at breast height (DBH), and volume index (VI) exhibited extremely significant differences among families, indicating rich variation and strong selection potential. (2) The phenotypic and genotypic coefficients of variation for TH, DBH, and VI ranged from 4.34% to 16.04% and 5.10% to 17.73%, respectively. Family heritability was relatively high, ranging from 0.724 to 0.818, suggesting that growth is under strong genetic control. (3) The observed and expected heterozygosity of 15 parents were 0.557 and 0.410, respectively, indicating a moderate level of heterozygosity. Nei’s genetic diversity index and Shannon’s information index were 0.488 and 0.670, respectively, indicating relatively high genetic diversity. GD between parents ranged from 0.155 to 0.723. (4) Correlation analysis revealed significant or highly significant positive correlations between family heterosis and growth traits, combining ability, and GD, with specific combining ability (SCA) showing the strongest predictive power. Regression analysis further demonstrated significant linear correlations between GD and heterosis of TH and VI, and between SCA and heterosis of TH, DBH, and VI, establishing a GD threshold (≤0.723) and SCA-based co-selection strategy. In addition, four superior Fraxinus families and 11 elite individuals were selected. Their genetic gains for TH, DBH, and VI reached 2.28%, 3.30%, and 9.96% (family selection), and 1.98%, 2.11%, and 4.00% (individual selection), respectively. By integrating genetic distance (GD) and quantitative genetic combining ability (SCA), this study established a quantifiable prediction model and proposed the “GDSCA dual-index parent selection method”, offering a new paradigm for genetic improvement in tree breeding. Full article
(This article belongs to the Special Issue Research on Genetic Breeding and Biotechnology of Forest Trees)
Show Figures

Figure 1

17 pages, 1193 KiB  
Review
Tissue-Resident Memory T Cells in Cancer Metastasis Control
by Tyler H. Montgomery, Anuj P. Master, Zeng Jin, Qiongyu Shi, Qin Lai, Rohan Desai, Weizhou Zhang, Chandra K. Maharjan and Ryan Kolb
Cells 2025, 14(16), 1297; https://doi.org/10.3390/cells14161297 - 21 Aug 2025
Viewed by 192
Abstract
Tissue-resident memory T (TRM) cells have emerged as critical sentinels in the control of cancer metastasis, yet their precise roles across different tumor types and tissues remain underappreciated. Here, we review current insights into the mechanisms governing TRM cell seeding and retention in [...] Read more.
Tissue-resident memory T (TRM) cells have emerged as critical sentinels in the control of cancer metastasis, yet their precise roles across different tumor types and tissues remain underappreciated. Here, we review current insights into the mechanisms governing TRM cell seeding and retention in pre-metastatic niches, their effector functions in eliminating disseminated tumor cells, and their dynamic crosstalk with local stromal and myeloid populations. Here, we highlight evidence for organ-specific variability in TRM cell-mediated immunity, discuss strategies for therapeutically harnessing these cells—ranging from vaccination and checkpoint modulation to chemokine axis manipulation—and explore their promise as prognostic biomarkers. Finally, we outline key knowledge gaps and future directions aimed at translating TRM cell biology into targeted interventions to prevent and treat metastatic disease. Full article
(This article belongs to the Special Issue Cellular and Molecular Mechanisms in Immune Regulation)
Show Figures

Figure 1

28 pages, 1805 KiB  
Article
Maize Crops Under Rising Temperatures: Bacterial Influence on Biochemical and Lipidomic Changes Induced by Heat
by Ricardo Pinto, Paulo Cardoso, Bruno Carneiro, Glória Pinto, Carmen Bedia and Etelvina Figueira
Plants 2025, 14(16), 2593; https://doi.org/10.3390/plants14162593 - 20 Aug 2025
Viewed by 174
Abstract
Rising global temperatures are increasingly affecting plant performance, leading to reduced growth, altered metabolism, and compromised membrane integrity. Although plant growth-promoting bacteria (PGPB) show promise in enhancing thermotolerance, the underlying mechanisms remain insufficiently explored. Therefore, this study investigated the effects of PGPB inoculation [...] Read more.
Rising global temperatures are increasingly affecting plant performance, leading to reduced growth, altered metabolism, and compromised membrane integrity. Although plant growth-promoting bacteria (PGPB) show promise in enhancing thermotolerance, the underlying mechanisms remain insufficiently explored. Therefore, this study investigated the effects of PGPB inoculation on Zea mays under control (26 °C) and heat stress (36 °C) conditions. Maize plants were inoculated with two thermotolerant bacterial strains and their effects were compared to non-inoculated plants through morphometric, biochemical, and lipidomic analyses. Heat stress negatively affected germination (−35.9%), increased oxidative stress (+46% for LPO, +57% for SOD, +68% for GPx), and altered leaf lipid composition, particularly fatty acids, glycerolipids, and sphingolipids. Inoculation with Pantoea sp. improved germination by 15% for seeds exposed to heat stress, increased growth (+28% shoot and +17% root), enhanced antioxidant defenses (+35% for CAT and +38% for APx), and reduced membrane damage by 65% compared with the control. Lipidomic profiling revealed that inoculation mitigated temperature-induced lipid alterations by reducing triacylglycerol accumulation and preserving the levels of polyunsaturated galactolipids and hexosylceramides. Notably, Pantoea sp.-inoculated plants under heat stress exhibited lipid profiles that were more similar to those of control plants, suggesting enhanced heat resilience. These results underscore the importance of specific plant–microbe interactions in mitigating heat stress and highlight PGPB inoculation as a promising strategy to enhance crop performance and resilience under projected climate warming scenarios. Full article
(This article belongs to the Special Issue Beneficial Effects of Bacteria on Plants)
Show Figures

Figure 1

15 pages, 4584 KiB  
Article
Effect of Cutting Age on Seed Production of Flemingia Macrophylla for the Optimisation of Cropping Systems, Cotopaxi-Ecuador
by Ricardo Luna-Murillo, Joselyne Solórzano, Idalia Pacheco-Tigselema, Jairo Dueñas-Tovar, Lady Bravo-Montero and María Jaya-Montalvo
Agriculture 2025, 15(16), 1781; https://doi.org/10.3390/agriculture15161781 - 20 Aug 2025
Viewed by 208
Abstract
The tropical shrub legume Flemingia macrophylla is a specie that influences higher forage production, increases protein content, and reduces nitrogen fertiliser and animal protein supplement use. However, there is little scientific literature on the influence of the cutting age of Flemingia macrophylla on [...] Read more.
The tropical shrub legume Flemingia macrophylla is a specie that influences higher forage production, increases protein content, and reduces nitrogen fertiliser and animal protein supplement use. However, there is little scientific literature on the influence of the cutting age of Flemingia macrophylla on the nutritional-productive behaviour of the plant and soil microbiology. Therefore, this study addresses the interaction between high-value forages and coffee cropping systems under agroecological management. The study aims to evaluate the seed production of Flemingia macrophylla and its association with the crops of “Geisha Coffee” and “Sarchimor Coffee” at the Sacha Wiwa Experimental Centre (Cotopaxi-Ecuador) through the analysis of growth and bromatology of the seeds at cutting ages of 30, 45, 60, and 75 days for their potential use in the local agro-industry. The methodology was composed of three phases: (i) crop experimental design, (ii) crop sampling, and (iii) agroecological management strategies. The results suggest that Flemingia macrophylla can be integrated into agroforestry systems with coffee, reducing dependence on chemical fertilisers and improving seed productivity. Seed production peaked at 60 days, with the highest levels of protein (31.44%), nitrogen (5.03%), potassium (1.17%), and calcium (0.78%), making it an excellent forage source. Fibre content, however, was highest at 75 days (11.20%), making this cycle preferable when higher fibre is required. Notably, soil organic matter depletion in plots associated with Sarchimor coffee suggested higher nutrient demands. This study demonstrated the potential of Flemingia macrophylla to diversify agroecological systems with improved productivity and nutritional quality. Full article
(This article belongs to the Special Issue Strategies for Resilient and Sustainable Agri-Food Systems)
Show Figures

Figure 1

42 pages, 1850 KiB  
Review
Date Palm (Phoenix dactylifera L.) Fruit: Strategic Crop for Food Security, Nutritional Benefits, Postharvest Quality, and Valorization into Emerging Functional Products
by Nasser Al-Habsi
Sustainability 2025, 17(16), 7491; https://doi.org/10.3390/su17167491 - 19 Aug 2025
Viewed by 470
Abstract
Date palm (Phoenix dactylifera L.) is a vital crop cultivated primarily in developing regions, playing a strategic role in global food security through its significant contribution to nutrition, economy, and livelihoods. Global and regional production trends revealed increasing demand and expanded cultivation [...] Read more.
Date palm (Phoenix dactylifera L.) is a vital crop cultivated primarily in developing regions, playing a strategic role in global food security through its significant contribution to nutrition, economy, and livelihoods. Global and regional production trends revealed increasing demand and expanded cultivation areas, underpinning the fruit’s importance in national food security policies and economic frameworks. The date fruit’s rich nutritional profile, encompassing carbohydrates, dietary fiber, minerals, and bioactive compounds, supports its status as a functional food with health benefits. Postharvest technologies and quality preservation strategies, including temperature-controlled storage, advanced drying, edible coatings, and emerging AI-driven monitoring systems, are critical to reducing losses and maintaining quality across diverse cultivars and maturity stages. Processing techniques such as drying, irradiation, and cold plasma distinctly influence sugar composition, texture, polyphenol retention, and sensory acceptance, with cultivar- and stage-specific responses guiding optimization efforts. The cold chain and innovative packaging solutions, including vacuum and modified atmosphere packaging, along with biopolymer-based edible coatings, enhance storage efficiency and microbial safety, though economic and practical constraints remain, especially for smallholders. Microbial contamination, a major challenge in date fruit storage and export, is addressed through integrated preservation approaches combining thermal, non-thermal, and biopreservative treatment. However, gaps in microbial safety data, mycotoxin evaluation, and regulatory harmonization hinder broader application. Date fruit derivatives such as flesh, syrup, seeds, press cake, pomace, and vinegar offer versatile functional roles across food systems. They improve nutritional value, sensory qualities, and shelf life in bakery, dairy, meat, and beverage products while supporting sustainable waste valorization. Emerging secondary derivatives like powders and extracts further expand the potential for clean-label, health-promoting applications. This comprehensive review underscores the need for multidisciplinary research and development to advance sustainable production, postharvest management, and value-added utilization of date palm fruits, fostering enhanced food security, economic benefits, and consumer health worldwide. Full article
Show Figures

Graphical abstract

25 pages, 3969 KiB  
Article
Geographical Variation in Cover Crop Management and Outcomes in Continuous Corn Farming System in Nebraska
by Andualem Shiferaw, Girma Birru, Tsegaye Tadesse, Brian Wardlow, Tala Awada, Virginia Jin, Marty Schmer, Ariel Freidenreich and Javed Iqbal
Agriculture 2025, 15(16), 1776; https://doi.org/10.3390/agriculture15161776 - 19 Aug 2025
Viewed by 270
Abstract
Cover crops (CCs) are widely recognized for their numerous benefits, including enhancing soil health, mitigating erosion, and promoting nutrient cycling, among many others. However, their outcomes vary significantly depending on site-specific biophysical conditions and agronomic management practices. This study investigates the geographic variations [...] Read more.
Cover crops (CCs) are widely recognized for their numerous benefits, including enhancing soil health, mitigating erosion, and promoting nutrient cycling, among many others. However, their outcomes vary significantly depending on site-specific biophysical conditions and agronomic management practices. This study investigates the geographic variations in cover crop outcomes across Nebraska, focusing on three critical management factors: seeding rate, termination timing, and termination-to-corn planting intervals. Using Decision Support System for Agrotechnology Transfer (DSSAT) simulations, we evaluated the effects of these practices on cover crop biomass, growth stages, and subsequent corn yield across seven sites. The results revealed that corn yield remained resilient across all sites, with no statistically significant differences (p > 0.05) across termination timings, seeding rates, or termination-to-planting intervals. A CC seeding rate analysis showed that biomass tended to increase with higher seeding densities, particularly from 200 to 250 plants m−2, but the gains diminished beyond that, and few pairwise comparisons reached statistical significance. Termination timing had a significant effect on biomass and growth stages, with delayed termination resulting in greater biomass accumulation and advanced phenological development (e.g., Zadoks > 45), which may complicate termination efficacy. Increasing termination-to-planting intervals led to reduced biomass due to shorter growing periods, though these reductions were not associated with significant corn yield penalties. This study highlights the importance of tailoring CC management strategies to local environmental conditions and agronomic objectives. By addressing these site-specific factors, the findings offer actionable insights for farmers and land managers to optimize both ecological benefits and productivity in Nebraska’s no-till systems. Full article
Show Figures

Figure 1

17 pages, 904 KiB  
Review
Sunflower Seed Hulls and Meal—A Waste with Diverse Biotechnological Benefits
by Flora Tsvetanova, Greta Naydenova and Stanislava Boyadzhieva
Biomass 2025, 5(3), 47; https://doi.org/10.3390/biomass5030047 - 19 Aug 2025
Viewed by 171
Abstract
Sunflower seed hulls and meal are among the most abundant by-products of the food industry. They are an example of waste and, at the same time, a plentiful biomass that cannot be utilized directly in human and animal diets due to their hard [...] Read more.
Sunflower seed hulls and meal are among the most abundant by-products of the food industry. They are an example of waste and, at the same time, a plentiful biomass that cannot be utilized directly in human and animal diets due to their hard digestibility and low nutritional value. Besides their main compounds—carbohydrates, lipids, and proteins—they possess valuable constituents such as vitamins, minerals, and especially phenolics that contribute to their antioxidant capacity. Numerous benefits can be retrieved from such by-products. Since sunflower meal and seed hulls are cheap renewable sources of beneficial substances, their potential in relation to the improvement in our daily life needs to be studied. This is the reason why, in recent years, there has been such a serious interest in their utilization and valorization towards the concept of a circular bio-based economy and process sustainability. This review aims to trace the potential applications and implementation of sunflower meal and hulls in the different fields of industry and environmental protection strategies. Full article
Show Figures

Graphical abstract

20 pages, 8352 KiB  
Article
Ecological Pest Control in Alpine Ecosystems: Monitoring Asteraceae Phytophages and Developing Integrated Management Protocols in the Three River Source Region
by Li-Jun Zhang, Yu-Shou Ma, Ying Liu and Jun-Ling Wang
Insects 2025, 16(8), 861; https://doi.org/10.3390/insects16080861 - 19 Aug 2025
Viewed by 431
Abstract
Aster spp., a key grass species for the ecological restoration of alpine degraded grasslands on the Qinghai–Tibet Plateau, often suffers from pest damage during its flowering and seed maturation stages, severely limiting the effectiveness of ecological restoration and the sustainable utilization of germplasm [...] Read more.
Aster spp., a key grass species for the ecological restoration of alpine degraded grasslands on the Qinghai–Tibet Plateau, often suffers from pest damage during its flowering and seed maturation stages, severely limiting the effectiveness of ecological restoration and the sustainable utilization of germplasm resources. This study focused on nine widely distributed species of Aster in the Three River Source Region of Qinghai Province, systematically investigated the structure of arthropod communities and the spatiotemporal dynamics of pests, and developed an integrated pest management (IPM) strategy. Through systematic surveys at multiple sites, a total of 109 arthropod species were identified (57 families of insects, 96 species; 7 families of spiders, 13 species). The Diptera (Tephritidae) and Hemiptera (Miridae) were identified as dominant groups. Tephritis angustipennis was determined to be the key pest, with its population density reaching a peak in mid-to-late August (p < 0.05). Based on the occurrence patterns of the pest, an IPM strategy integrating physical, chemical, and biological control methods was proposed: flower head bagging as a physical barrier significantly reduced plant damage but required balancing the risk of seed sterility. A combination lure (broad-spectrum fruit fly lure + a mixture of sugar and vinegar) showed a significant effect in attracting and killing adult flies. In chemical control, spraying a combination of insecticides (DB: 10% β-Cypermethrin aqueous emulsion (9 mL/acre) + 5% avermectin (20 mL/acre)) during the leaf expansion stage to early flowering stage achieved approximately 80% pest mortality within 24 h; additionally, supplementary spraying of 5% broflanilide (30 mL/acre) during the full flowering stage prolonged the efficacy and delayed the development of insecticide resistance. In terms of natural enemy utilization, Lycosidae and Thomisidae demonstrated significant potential for naturally regulating pest populations. Physiological mechanism studies showed that the difference in responses between plant catalase (CAT) activity and insect glutathione S-transferase (GST) activity was a key factor driving control efficacy (the cumulative explanation rate reached 94%). This IPM strategy, by integrating physical barriers, dynamic trapping, targeted spraying, and natural enemy control, significantly enhances control efficiency and ecological compatibility, providing a theoretical basis and technical paradigm for the ecological restoration of degraded alpine grasslands and the sustainable management of medicinal plants in cold regions. Full article
Show Figures

Graphical abstract

15 pages, 6088 KiB  
Article
Phytoplasma Transmission by Seeds in Alfalfa: A Risk for Agricultural Crops and Environment
by Assunta Bertaccini, Reena Reddy Gandra, Sritej Mateeti and Francesco Pacini
Seeds 2025, 4(3), 39; https://doi.org/10.3390/seeds4030039 - 19 Aug 2025
Viewed by 157
Abstract
Recent research has demonstrated a presence inside the seeds of several plant species of endophytic bacteria that can directly or indirectly interact with germination and seedling growth. Phytoplasmas are plant-pathogenic bacteria that severely impact the agricultural productivity of several crops, including alfalfa, a [...] Read more.
Recent research has demonstrated a presence inside the seeds of several plant species of endophytic bacteria that can directly or indirectly interact with germination and seedling growth. Phytoplasmas are plant-pathogenic bacteria that severely impact the agricultural productivity of several crops, including alfalfa, a crucial forage crop in which seed transmission was reported. Therefore, understanding the transmission pathways of phytoplasmas is essential for developing effective control strategies. This study investigates the seed transmission of phytoplasmas in alfalfa using seeds collected in Oman in 2002 and kept in a dry environment in a laboratory for 20 years. The sterilized seeds were germinated and grown in agar medium under sterile conditions and transplanted in soil under greenhouse-controlled insect-proof conditions. Utilizing polymerase chain reaction (PCR) and nested PCR followed by RFLP and sequencing analyses, the alfalfa seedlings were screened for the phytoplasma presence. The detection of phytoplasmas in 16SrIII, 16SrV, 16SrX, and 16SrXII groups was achieved, confirming the preliminary results obtained in the 2002 testing of the same seed batches. This finding indicates that seed transmission could be a critical pathway for the spread of these pathogens in alfalfa, considering their survival in seeds for more than 20 years. Further investigations into the mechanisms of seed transmission and the development of resistant alfalfa varieties are essential to enhance the sustainability and productivity of alfalfa cultivation, thereby supporting the agricultural sector’s efforts to meet the growing demand for high-quality forages. Full article
Show Figures

Figure 1

14 pages, 2110 KiB  
Article
Environmental Drivers of Regeneration in Scyphiphora hydrophyllacea: Thresholds for Seed Germination and Seedling Establishment in Hainan’s Intertidal Zones
by Haijie Yang, Bingjie Zheng, Jiayi Li, Xu Chen, Xiaobo Lv, Cairong Zhong and He Bai
Forests 2025, 16(8), 1346; https://doi.org/10.3390/f16081346 - 19 Aug 2025
Viewed by 265
Abstract
The endangered mangrove Scyphiphora hydrophyllacea is found in China only in Hainan’s intertidal zones. Its populations are declining severely due to anthropogenic disturbances and regeneration failure. To clarify its environmental adaptation mechanisms, we investigated the effects of temperature, light intensity, photoperiod, salinity, soil, [...] Read more.
The endangered mangrove Scyphiphora hydrophyllacea is found in China only in Hainan’s intertidal zones. Its populations are declining severely due to anthropogenic disturbances and regeneration failure. To clarify its environmental adaptation mechanisms, we investigated the effects of temperature, light intensity, photoperiod, salinity, soil, and flooding cycle on seed germination, seedling growth, and physiological traits, revealing that (1) the optimal germination conditions for seeds were 30–35 °C, 24 h continuous illumination at 25,000 lux, and 0‰ salinity, with soil type showing no significant effect (p > 0.05); (2) seedlings at 1–2 months post-germination achieve maximal growth at 30 °C in non-saline conditions, with salinity suppressing growth and light intensity affecting only crown expansion; and (3) flooding responses are age-dependent: seedlings at 1–2 months post-germination show optimal growth at 8 h per day (100% survival), while 12 h (h) per day reduces survival by 13.3%. One-year-old seedlings exhibit distinct strategies: 4 h per day flooding induces escape responses (peak growth, chlorophyll, sugars), 8 h per day shows photosynthetic compensation despite metabolic trade-offs, and 12 h per day triggers tolerance mechanisms (biomass maximization via structural reinforcement). These findings demonstrate S. hydrophyllacea’s multifactorial adaptation to intertidal conditions, providing critical physiological benchmarks for conservation strategies targeting this threatened ecosystem engineer. Full article
Show Figures

Figure 1

Back to TopTop