Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (128)

Search Parameters:
Keywords = secretion tags

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 7912 KB  
Article
Pectate Lyase FvePL1 Is Required for Pollen Fertility and Mediates Drought Response in Woodland Strawberry
by Xiaolong Huang, Na Li, Guilian Sun, Linfang Zhang, Yuqian Wang, Yu Jiang and Huiqing Yan
Plants 2025, 14(23), 3583; https://doi.org/10.3390/plants14233583 - 24 Nov 2025
Viewed by 357
Abstract
Successful fertilization is essential for fruit bearing and yield enhancement, relying on male gametophyte which facilitates sexual reproduction by transferring the sperm cell to the ovule. To accomplish this task, pectate lyase is secreted to lubricate the sperm cell towards the female partner [...] Read more.
Successful fertilization is essential for fruit bearing and yield enhancement, relying on male gametophyte which facilitates sexual reproduction by transferring the sperm cell to the ovule. To accomplish this task, pectate lyase is secreted to lubricate the sperm cell towards the female partner by different strategies. However, the specific impact of strawberry PL in male sterility and achene development remained elusive. Here, we systematically investigated the functions of diploid strawberry Fragaria vesca pectate lyase 1 (FvePL1), determining its localization in the cell wall and membrane. In situ hybridization presented its maximum expression in the anther, particularly the endothecium, connective tissue, and septum. Analysis of RNAi mutants and green fluorescent protein (GFP)-tagged overexpression lines demonstrated that the failure of FvePL1 significantly inhibited the fruit set due to stunted achenes. In addition, the deficiency of FvePL1 expression resulted in a 68.29% reduction in the number of pollen grains, a 73.27% decrease in pollen viability, morphological alterations of exine and intine, impaired pollen tube, and the inability of the sperm nucleus to reach its target due to the delayed and incomplete tapetal degeneration. In addition, the suppression of FvePL1 resulted in a 65.02% increase in survival rate withholding irrigation for 30 days, conferring enhanced drought tolerance by negatively influencing cell wall structure. Therefore, this study identified FvePL1 as a crucial regulator of pollen development, fertilization, and achene maturation and abiotic stress. These findings provide a framework for advancing research on the development of the male gametophyte in strawberry and even yield optimization in Rosaceous crops. Full article
Show Figures

Figure 1

18 pages, 3832 KB  
Article
Human Hepatocytes in Experimental Steatosis: Influence of Donor Sex and Sex Hormones
by Lena Seidemann, Carolin Marie Rohm, Anna Stilkerich, René Hänsel, Christina Götz, Daniel Seehofer and Georg Damm
Biomedicines 2025, 13(11), 2770; https://doi.org/10.3390/biomedicines13112770 - 12 Nov 2025
Viewed by 437
Abstract
Background/Objectives: Metabolic dysfunction-associated steatotic liver disease (MASLD) is a sexually dimorphic condition, with higher prevalence in men than in women. Sex differences in hepatic lipid metabolism and the modulatory role of sex hormones have been described but are still insufficiently understood. The [...] Read more.
Background/Objectives: Metabolic dysfunction-associated steatotic liver disease (MASLD) is a sexually dimorphic condition, with higher prevalence in men than in women. Sex differences in hepatic lipid metabolism and the modulatory role of sex hormones have been described but are still insufficiently understood. The aim of this study was to introduce the variables sex and sex hormones into a human in vitro model of hepatic steatosis. Methods: Primary human hepatocytes (PHHs) were isolated from male and female donors, treated with free fatty acids (FFA) to induce steatosis, and further exposed to physiological concentrations of estrogen, progesterone, or testosterone. Intracellular triacylglyceride (TAG) content, lipid droplet (LD) formation, FFA uptake, and very-low-density lipoprotein (VLDL) excretion were assessed. In parallel, the expression of lipid metabolism-related genes was quantified by qPCR. Results: FFA treatment induced comparable uptake and intracellular TAG storage in both sexes. However, female PHHs secreted approximately twice as many VLDL particles as male cells. Steatosis significantly increased expression of LDLR, CPT2, and PLA1A only in male PHHs. Sex hormones exerted distinct, sex-specific effects: estrogen reduced TAG accumulation in female PHHs; whereas testosterone reduced TAG in male but increased it in female PHHs after prolonged treatment. LD characterization confirmed sex- and hormone-dependent differences in lipid storage patterns. In male PHHs, progesterone promoted lipid storage and increased apoB-100 secretion, accompanied by reduced LDLR and APOA5 expression, and testosterone increased the FFA-mediated CPT2 even further. Conclusions: Sex and sex hormones distinctly shape hepatocellular lipid handling under steatotic conditions. While female PHHs demonstrated greater lipid excretion capacity, male PHHs exhibited stronger transcriptional responses. Sex-specific responses to estrogen and testosterone resembled clinical observations on sex hormone effects. These findings highlight the need to account for sex-specific differences in MASLD pathophysiology and therapeutic strategies. Full article
(This article belongs to the Special Issue State-of-the-Art Hepatic and Gastrointestinal Diseases in Germany)
Show Figures

Graphical abstract

19 pages, 4023 KB  
Article
Hacking Extracellular Vesicles: Using Vesicle-Related Tags to Engineer Mesenchymal Stromal Cell-Derived Extracellular Vesicles
by Gabriele Scattini, Giulia Pianigiani, Stefano Capomaccio, Maria Rachele Ceccarini, Samanta Mecocci, Laura Musa, Luca Avellini, Olimpia Barbato, Antonello Bufalari, Patrizia Casagrande Proietti, Rodolfo Gialletti, Alessia Sulla, Tommaso Beccari and Luisa Pascucci
Pharmaceutics 2025, 17(11), 1435; https://doi.org/10.3390/pharmaceutics17111435 - 6 Nov 2025
Viewed by 573
Abstract
Background/Objectives: Extracellular Vesicles (EVs) have shown great promise as diagnostic and therapeutic tools, as well as pharmacological nanocarriers. Various strategies are being explored to develop EVs for monitoring, imaging, loading with pharmacological agents, and surface decoration with tissue-specific ligands. EVs derived from [...] Read more.
Background/Objectives: Extracellular Vesicles (EVs) have shown great promise as diagnostic and therapeutic tools, as well as pharmacological nanocarriers. Various strategies are being explored to develop EVs for monitoring, imaging, loading with pharmacological agents, and surface decoration with tissue-specific ligands. EVs derived from Mesenchymal Stromal Cells (MSC-EVs) are of particular interest both as therapeutics per se and as natural nanocarriers for the targeted delivery of biotherapeutics. Methods: In this study, we investigated the ability of different tags to deliver a reporter protein into canine MSC-EVs with the aim of identifying the most effective endogenous loading mechanism. To this aim, canine MSCs were engineered to express the Green Fluorescent Protein (GFP) fused to CD63, Syntenin-1, TSG101, and the palmitoylation signal of Lck, which were expected to promote GFP incorporation into EVs. Overexpression of tagged GFP in canine MSCs was confirmed by Western blotting and examined by confocal microscopy and transmission electron microscopy to map intracellular localization. Results: All tags were able to deliver GFP into EVs. Syntenin-1 showed relatively high loading efficiency and secretion index but exhibited a diffuse localization pattern in the transfected cells. The palmitoylation signal showed low loading efficiency and localization specificity. TSG101 displayed a morphological pattern consistent with specific localization in endosomal structures, but its low expression level prevented further evaluations. Finally, CD63 showed the highest expression efficiency, as GFP-CD63 levels were approximately 5-fold higher than untagged GFP. Conclusions: In conclusion, CD63 emerged as the most suitable tag for canine MSC-EV engineering. Indeed, even if the secretion index favours Syntenin-1, CD63’s higher abundance in the lysate suggests its substantial post-secretion uptake. Further studies aimed at elucidating CD63’s specific contribution and identifying the domains involved in vesicle trafficking could provide valuable insights into EV bioengineering. Full article
(This article belongs to the Special Issue Extracellular Vesicles for Targeted Delivery)
Show Figures

Graphical abstract

23 pages, 1776 KB  
Article
Cannabinoid Receptor Type 2 Agonist JWH-133 Stimulates Antiviral Factors and Decreases Proviral, Inflammatory, and Neurotoxic Proteins in HIV-Infected Macrophage Secretome
by Lester J. Rosario-Rodríguez, Yadira M. Cantres-Rosario, Ana E. Rodríguez De Jesús, Alana M. Mera-Pérez, Eduardo L. Tosado-Rodríguez, Abiel Roche Lima and Loyda M. Meléndez
Int. J. Mol. Sci. 2025, 26(21), 10596; https://doi.org/10.3390/ijms262110596 - 30 Oct 2025
Viewed by 711
Abstract
Although antiviral therapy has improved quality of life, around 50% of people with HIV (PWH) experience neurodegeneration and cognitive decline. This is prompted in part by the migration of HIV-infected monocyte-derived macrophages (MDMs) to the brain, leading to neuronal death. Previous studies in [...] Read more.
Although antiviral therapy has improved quality of life, around 50% of people with HIV (PWH) experience neurodegeneration and cognitive decline. This is prompted in part by the migration of HIV-infected monocyte-derived macrophages (MDMs) to the brain, leading to neuronal death. Previous studies in our lab have shown that HIV-infected MDMs secrete cathepsin B (CATB), which is a pro-inflammatory neurotoxic enzyme that is reduced by the addition of cannabinoid receptor-2 (CB2R) agonist JWH-133 to cell cultures. In this study, we aimed to identify the proteins secreted (secretome) by HIV-infected macrophages exposed to JWH-133 and quantify them using tandem mass tag (TMT) mass spectrometry. Frozen 13-day MDM supernatants from (1) an MDM negative control; (2) HIV+MDM, and (3) HIV+MDM-JWH-133 were compared in triplicate by mass spectrometry (LC/MS/MS) and analyzed for protein identification. Subsequently, the same samples were labeled by TMT labeling and quantified by LC/MS/MS. After a database search, 528 proteins were identified from all groups. Thereafter, proteins with more than three unique peptides and more than 10% coverage were selected for protein identification. Venn diagrams revealed one unique protein secreted by MDM-HIV, 10 unique proteins in HIV+MDM-JWH-133, and 15 common proteins in the three groups. CATB was unique to HIV+MDM. HIV+MDM exposed to JWH-133 showed proteins related to metabolism, cell organization, antiviral activity, and stress response. TMT analysis revealed 1454 proteins with abundance for statistical analysis based on FC ≥ |1.5| and p-value ≤ 0.05, of which Ruvb-like 1 and Hornerin decreased significantly with JWH-133 treatment. Both proteins stimulate HIV replication. In addition, HIV infection upregulated proteins associated with pathways of viral latency that were inhibited by JWH-133. In conclusion, JWH-133 treatment in HIV-infected macrophages leads to the secretion of antiviral host factors and decreases the secretion of proviral, inflammatory, and neurotoxic host factors. Full article
Show Figures

Figure 1

27 pages, 6020 KB  
Article
Engineered Nanobody-Bearing Extracellular Vesicles Enable Precision Trop2 Knockdown in Resistant Breast Cancer
by Jassy Mary S. Lazarte, Mounika Aare, Sandeep Chary Padakanti, Arvind Bagde, Aakash Nathani, Zachary Meeks, Li Sun, Yan Li and Mandip Singh
Pharmaceutics 2025, 17(10), 1318; https://doi.org/10.3390/pharmaceutics17101318 - 11 Oct 2025
Viewed by 1100
Abstract
Background/Objectives: Trophoblast cell surface antigen 2 (Trop2), a transmembrane glycoprotein overexpressed in a broad spectrum of epithelial malignancies but minimally expressed in normal tissues, has emerged as a clinically relevant prognostic biomarker and therapeutic target, particularly in breast cancer. This study aims [...] Read more.
Background/Objectives: Trophoblast cell surface antigen 2 (Trop2), a transmembrane glycoprotein overexpressed in a broad spectrum of epithelial malignancies but minimally expressed in normal tissues, has emerged as a clinically relevant prognostic biomarker and therapeutic target, particularly in breast cancer. This study aims to develop an enhanced way of targeting Trop2 expression in tumors and blocking it using extracellular vesicles (EVs) bioengineered to express a nanobody sequence against Trop2 (NB60 E). Methods: Here, a plasmid construct was designed to express the Trop2 sequence, NB60, flanked with HA tag and myc epitope and a PDGFR transmembrane domain in the C-terminal region, and was transfected into HEK293T cells for EVs isolation. The potency of NB60 E to knock down Trop2 in letrozole-resistant breast cancer cells (LTLT-Ca and MDA-MB-468 cells) was initially investigated. Thereafter, the effects of NB60 E on the cell viability and downstream signaling pathway of Trop2 via MTT assay and Western blotting were determined. Lastly, we also examined whether NB60 E treatment in Jurkat T cells affects IL-6, TNF-α, and IL-2 cytokine production by enzyme-linked immunosorbent assay (ELISA). Results: Results revealed treatment with NB60 E significantly reduced surface Trop2 expression across both cell lines by 23.5 ± 1.5% in MDA-MB-468, and 61.5 ± 1.5% in LTLT-Ca, relative to the HEK293T-derived control EVs (HEK293T E). NB60 E treatment resulted in a marked reduction in LTLT-Ca cell viability by 52.8 ± 0.9% at 48 h post-treatment. This was accompanied by downregulation of key oncogenic signaling molecules: phosphorylated ERK1/2 (p-ERK 1/2) decreased by 30 ± 4%, cyclin D1 by 67 ± 11%, phosphorylated STAT3 (p-STAT3) by 71.8 ± 1.6%, and vimentin by 40.8 ± 1.4%. ELISA analysis revealed significant decreases in IL-6 (−57.5 ± 1.5%, 7.4 ± 0.35 pg/mL) and TNF-α (−32.1 ± 0.3%, 6.1 ± 1.2 pg/mL) levels, coordinated by an increase in IL-2 secretion (22.1 ± 2.7%, 49.2 ± 1.1 pg/mL). Quantitative analysis showed marked reductions in the number of nodes (−45 ± 4.4%), junctions (−55 ± 3.5%), and branch points (−38 ± 1.2%), indicating suppression of angiogenic capacity. In vivo experiment using near-infrared Cy7 imaging demonstrated rapid and tumor-selective accumulation of NB60 E within 4 h post-administration, followed by efficient systemic clearance by 24 h. The in vivo results demonstrate the effectiveness of NB60 E in targeting Trop2-enriched tumors while being efficiently cleared from the system, thus minimizing off-target interactions with normal cells. Lastly, Trop2 expression in LTLT-Ca tumor xenografts revealed a significant reduction of 41.0 ± 4% following NB60 E treatment, confirming efficient targeted delivery. Conclusions: We present a first-in-field NB60 E-grafted EV therapy that precisely homes to Trop2-enriched breast cancers, silences multiple growth-and-invasion pathways, blocks angiogenesis, and rewires cytokine crosstalk, achieving potent antitumor effects with self-clearing, biomimetic carriers. Our results here show promising potential for the use of NB60 E as anti-cancer agents, not only for letrozole-resistant breast cancer but also for other Trop2-expressing cancers. Full article
(This article belongs to the Special Issue Extracellular Vesicles for Targeted Delivery)
Show Figures

Graphical abstract

16 pages, 3293 KB  
Article
CRISPR/Cas9-Mediated TARDBP Knockout Reduces Triacylglycerol Content and Key Milk Fat Metabolism Gene Expression in MAC-T Cells
by Yaran Zhang, Qinglan Zhang, Yaping Gao, Yao Xiao, Jinpeng Wang, Chunhong Yang, Zhihua Ju, Xiaochao Wei, Xiuge Wang, Qiang Jiang and Jinming Huang
Animals 2025, 15(17), 2607; https://doi.org/10.3390/ani15172607 - 5 Sep 2025
Cited by 1 | Viewed by 914
Abstract
TARDBP mediates milk fat secretion in mice by binding to UG-rich sequences in the 3′ untranslated region (UTR) of BTN1A1 and XDH mRNA and enhancing their mRNA stability. However, its role in bovine milk lipid metabolism remains unclear. To investigate this, we generated [...] Read more.
TARDBP mediates milk fat secretion in mice by binding to UG-rich sequences in the 3′ untranslated region (UTR) of BTN1A1 and XDH mRNA and enhancing their mRNA stability. However, its role in bovine milk lipid metabolism remains unclear. To investigate this, we generated TARDBP knockout (KO) MAC-T cells using CRISPR/Cas9 technology, quantified triacylglycerol (TAG) levels in both cells and culture supernatant, and examined the impact of TARDBP on mRNA levels in MAC-T cells through transcriptome sequencing. We found that deletion of TARDBP reduced TAG content in both MAC-T cells and the supernatant, as well as decreased mRNA levels of CD36, FABP4, DGAT1, PPARG, and PPARGC1A. However, the expression of BTN1A1 and XDH was unaffected in bovine MAC-T cells. Sequence analysis further revealed TG-rich sequences within bovine PPARG and PPARGC1A but not in FABP4, DGAT1, CD36, or BTN1A1 and XDH. These findings suggest that TARDBP may regulate bovine lipid metabolism through a mechanism distinct from that described in mice. This study provides new insights into the molecular role of TARDBP in bovine milk fat metabolism and establishes a foundation for understanding its contribution to dairy cattle breeding and milk quality improvement. Full article
Show Figures

Figure 1

18 pages, 6007 KB  
Article
The Antiangiogenic Effect of VEGF-A siRNA-FAM-Loaded Exosomes
by Woojune Hur, Basanta Bhujel, Seheon Oh, Seorin Lee, Ho Seok Chung, Jin Hyoung Park and Jae Yong Kim
Bioengineering 2025, 12(9), 919; https://doi.org/10.3390/bioengineering12090919 - 26 Aug 2025
Viewed by 1203
Abstract
Neovascular ocular diseases are caused by vascular endothelial growth factor A (VEGFA) overexpression. Thus, VEGFA inhibition is considered the main strategy for treating ocular neovascularization. However, existing anti-VEGF therapies have several limitations in stability and delivery efficiency. To overcome the limitations, exosome-based VEGF [...] Read more.
Neovascular ocular diseases are caused by vascular endothelial growth factor A (VEGFA) overexpression. Thus, VEGFA inhibition is considered the main strategy for treating ocular neovascularization. However, existing anti-VEGF therapies have several limitations in stability and delivery efficiency. To overcome the limitations, exosome-based VEGF siRNA delivery technology has attracted attention since exosomes have the advantages of high in vivo stability and excellent intracellular delivery efficiency. Additionally, loading VEGFA siRNA into exosomes not only allows for targeting specific cells or tissues but can also improve therapeutic efficacy. Our research team purified and concentrated exosomes using chromatography techniques, added fluorescein amidite (FAM)-labeled VEGFA siRNA into exosomes, and observed the novel effect of drug delivery in vitro. This study successfully introduced hVEGFA siRNA-FAM into target cells, with high efficacy particularly at 48 h after treatment. Furthermore, the enhanced inhibition of VEGFA expression at 48 h post-treatment was confirmed. FACS analysis was performed using the apoptosis markers Annexin V-FITC (green) and PI-PE (red) to confirm the presence or absence of apoptosis. Both groups treated with hVEGFA siRNA-FAM-EXO (1) and hVEGFA siRNA-FAM-EXO (2) showed increased apoptosis as the exposure time passed compared to the untreated group (0 h). hVEGFA siRNA-FAM-EXO treatment effectively induced apoptosis. After 24 h, early apoptosis was 12.9% and 13.9% and late apoptosis was 1.5% and 3.7% in hVEGFA siRNA-FAM-EXO groups (1) and (2), respectively. After 48 h, early apoptosis was 23.9% and late apoptosis was 39.4% and 17.8% in hVEGFA siRNA-FAM-EXO groups (1) and (2), respectively, indicating a time-dependent pattern of apoptosis progression. Additionally, tube formation of human vascular endothelial cells (HUVECs) was induced to confirm the effect of VEGFA siRNA-loaded exosomes on the angiogenesis assay in vitro. Compared with controls, angiogenesis became significantly weakened in hVEGFA siRNA-FAM-EXO (1)- and hVEGFA siRNA-FAM-EXO (2)-treated groups at 48 h post-treatment and completely disappeared at 72 h, probably occurring due to decreased VEGFA, PIGF, and VEGFC in the intracellular cytosol and conditioned media secreted by VEGFA siRNA-FAM in HUVECs. In conclusions, FAM-tagged VEGFA siRNA was packed into exosomes and degraded over time after tube formation, leading to cell death due to a decrease in VEGFA, PIGF, and VEGFC levels. This study is expected to support the development of in vivo neovascularization models (keratitis, conjunctivitis, or diabetic retinopathy models) in the future. Full article
(This article belongs to the Special Issue Recent Advances and Trends in Ophthalmic Diseases Treatment)
Show Figures

Figure 1

12 pages, 793 KB  
Article
Protein Translocation Control in E. coli via Temperature-Dependent Aggregation: Application to a Conditionally Lethal Enzyme, Levansucrase
by Young Kee Chae
Biomolecules 2025, 15(8), 1199; https://doi.org/10.3390/biom15081199 - 20 Aug 2025
Viewed by 1060
Abstract
Precise control of protein translocation is essential for synthetic biology and protein engineering. Here, we present a temperature-responsive system using elastin-like polypeptides (ELPs) to regulate the translocation of a conditionally lethal enzyme in Escherichia coli. The enzyme, levansucrase, whose activity becomes lethal [...] Read more.
Precise control of protein translocation is essential for synthetic biology and protein engineering. Here, we present a temperature-responsive system using elastin-like polypeptides (ELPs) to regulate the translocation of a conditionally lethal enzyme in Escherichia coli. The enzyme, levansucrase, whose activity becomes lethal in the presence of sucrose, was engineered with an N-terminal signal peptide and a C-terminal ELP tag. At 37 °C, the ELP tag induced intracellular aggregation of the fusion protein, preventing its secretion and allowing cell survival, as indicated by translucent colony formation. In contrast, at 16 °C, the ELP remained soluble, permitting levansucrase secretion into the medium. The resulting conversion of sucrose into levan by the secreted enzyme led to host cell death. These findings highlight ELP-mediated aggregation as a reversible and tunable strategy for regulating protein localization and secretion in E. coli, with potential applications in synthetic biology, metabolic engineering, and biocontainment systems. Full article
(This article belongs to the Section Biomacromolecules: Proteins, Nucleic Acids and Carbohydrates)
Show Figures

Figure 1

18 pages, 1010 KB  
Review
Engineering IsPETase and Its Homologues: Advances in Enzyme Discovery and Host Optimisation
by Tolu Sunday Ogunlusi, Sylvester Sapele Ikoyo, Mohammad Dadashipour and Hong Gao
Int. J. Mol. Sci. 2025, 26(14), 6797; https://doi.org/10.3390/ijms26146797 - 16 Jul 2025
Cited by 1 | Viewed by 2301
Abstract
Polyethylene terephthalate (PET) pollution represents a significant environmental challenge due to its widespread use and recalcitrant nature. PET-degrading enzymes, particularly Ideonella sakaiensis PETases (IsPETase), have emerged as promising biocatalysts for mitigating this problem. This review provides a comprehensive overview of recent [...] Read more.
Polyethylene terephthalate (PET) pollution represents a significant environmental challenge due to its widespread use and recalcitrant nature. PET-degrading enzymes, particularly Ideonella sakaiensis PETases (IsPETase), have emerged as promising biocatalysts for mitigating this problem. This review provides a comprehensive overview of recent advancements in the discovery and heterologous expression of IsPETase and closely related enzymes. We highlight innovative approaches, such as in silico and AI-based enzyme screening and advanced screening assays. Strategies to enhance enzyme secretion and solubility, such as using signal peptides, fusion tags, chaperone co-expression, cell surface display systems, and membrane permeability modulation, are critically evaluated. Despite considerable progress, challenges remain in achieving industrial-scale production and application. Future research must focus on integrating cutting-edge molecular biology techniques with host-specific optimisation to achieve sustainable and cost-effective solutions for PET biodegradation and recycling. This review aims to provide a foundation for further exploration and innovation in the field of enzymatic plastic degradation. Full article
(This article belongs to the Special Issue The Characterization and Application of Enzymes in Bioprocesses)
Show Figures

Figure 1

20 pages, 2451 KB  
Article
The Proteomic and Peptidomic Response of Wheat (Triticum aestivum L.) to Drought Stress
by Regina Azarkina, Arina Makeeva, Anna Mamaeva, Sergey Kovalchuk, Daria Ganaeva, Igor Tikhonovich and Igor Fesenko
Plants 2025, 14(14), 2168; https://doi.org/10.3390/plants14142168 - 14 Jul 2025
Cited by 1 | Viewed by 1672
Abstract
Drought conditions impact plants at the morphological, physiological, and molecular levels. Plant tolerance to drought conditions is frequently associated with maintaining proteome stability, highlighting the significance of proteomic analysis in understanding the mechanisms underlying plant resilience. Here, we performed proteomic and peptidomic analysis [...] Read more.
Drought conditions impact plants at the morphological, physiological, and molecular levels. Plant tolerance to drought conditions is frequently associated with maintaining proteome stability, highlighting the significance of proteomic analysis in understanding the mechanisms underlying plant resilience. Here, we performed proteomic and peptidomic analysis of spring wheat (Triticum aestivum L.) under drought stress conditions. Using isobaric tags for relative and absolute quantitation (iTRAQ), we identified 497 and 157 differentially abundant protein (DAP) groups in leaves and roots, respectively. The upregulated DAP groups in leaves were primarily involved in stress responses, such as oxidative stress and heat response, whereas those in roots were associated with responses to water deprivation and sulfur compound metabolic processes. The analysis of the extracellular root peptidome revealed 2294 native peptides, including members of small secreted peptide (SSP) families. In the peptidomes of stress-induced plants, we identified 16 SSPs as well as peptides derived from proteins involved in cell wall catabolism, intercellular signaling, and stress response. These peptides represent potential candidates as regulators of drought responses. Our results help us to understand adaptation mechanisms and develop new agricultural technologies to increase productivity. Full article
Show Figures

Figure 1

24 pages, 3042 KB  
Article
Integrated Transcriptomic and Proteomic Analyses Reveal CsrA-Mediated Regulation of Virulence and Metabolism in Vibrio alginolyticus
by Bing Liu, Huizhen Chen, Kai Sheng, Jianxiang Fang, Ying Zhang and Chang Chen
Microorganisms 2025, 13(7), 1516; https://doi.org/10.3390/microorganisms13071516 - 28 Jun 2025
Viewed by 1159
Abstract
Vibrio alginolyticus, a common Gram-negative opportunistic pathogen of marine animals and humans, is known for its rapid growth in organic-matter-rich environments. However, it remains unclear how it incorporates metabolic pathways in response to diverse carbon and nitrogen sources and rapidly alters gene [...] Read more.
Vibrio alginolyticus, a common Gram-negative opportunistic pathogen of marine animals and humans, is known for its rapid growth in organic-matter-rich environments. However, it remains unclear how it incorporates metabolic pathways in response to diverse carbon and nitrogen sources and rapidly alters gene expression. Increasing evidence suggests that post-transcriptional regulation by RNA-binding proteins and small RNAs (sRNAs) plays a crucial role in bacterial adaptation and metabolism. CsrA (carbon storage regulator A), a conserved post-transcriptional regulator in Gammaproteobacteria, is poorly characterized in Vibrio species. Using integrated transcriptomic and proteomic analyses, we found that CsrA alters the expression of 661 transcripts and 765 protein transcripts in V. alginolyticus, influencing key pathways including central carbon metabolism, amino acid metabolism and transport, quorum sensing, and bacterial secretion systems. Through directed CsrA-RNA EMSAs, we identified several direct mRNA targets of CsrA, including gltB, gcvP, aceE, and tdh, as well as secretion system components (tagH, tssL, yopD, and sctC). Notably, CsrA also directly regulates rraA, a key modulator of ribonuclease activity, suggesting a broader role in RNA metabolism. Our findings establish CsrA as a global regulator in V. alginolyticus, expanding the known targets of CsrA and providing new insights into its regulatory roles. Full article
(This article belongs to the Special Issue Transcriptional Regulation in Bacteria, 2nd Edition)
Show Figures

Figure 1

13 pages, 14235 KB  
Article
Expression and Biological Activity Analysis of Recombinant Fibronectin3 Protein in Bacillus subtilis
by Chaozheng Lu, Guangxin Xu, Yin Tian, Zhiwei Yi and Xixiang Tang
BioTech 2025, 14(3), 51; https://doi.org/10.3390/biotech14030051 - 23 Jun 2025
Viewed by 1770
Abstract
Fibronectin (FN), a primary component of the extracellular matrix (ECM), features multiple structural domains closely linked to various cellular behaviors, including migration, spreading, adhesion, and proliferation. The FN3 domain, which contains the RGD sequence, is critical in tissue repair because it enables interaction [...] Read more.
Fibronectin (FN), a primary component of the extracellular matrix (ECM), features multiple structural domains closely linked to various cellular behaviors, including migration, spreading, adhesion, and proliferation. The FN3 domain, which contains the RGD sequence, is critical in tissue repair because it enables interaction with integrin receptors on the cell surface. However, the large molecular weight of wild-type FN presents challenges for its large-scale production through heterologous expression. Therefore, this study focused on cloning the FN3 functional domain of full-length FN for expression and validation. This study selected Bacillus subtilis as the expression host due to its prominent advantages, including efficient protein secretion, absence of endotoxins, and minimal codon bias. The recombinant vector pHT43-FN3 was successfully constructed through homologous recombination technology and transformed into Bacillus subtilis WB800N. The FN3 protein was successfully expressed after induction with IPTG. Following purification of the recombinant FN protein using a His-tag nickel column, SDS-PAGE analysis showed that the molecular weight of FN3 was approximately 27.3 kDa. Western blot analysis confirmed the correct expression of FN3, and the BCA protein assay kit determined a protein yield of 5.4 mg/L. CCK8 testing demonstrated the good biocompatibility of FN3. In vitro cell experiments showed that FN3 significantly promoted cell migration at a 20 μg/mL concentration and enhanced cell adhesion at 10 μg/mL. In summary, this study successfully utilized Bacillus subtilis to express the FN3 functional domain peptide from FN protein and has validated its ability to promote cell migration and adhesion. These findings not only provide a strategy for the expression of FN protein in B. subtilis, but also establish an experimental foundation for the potential application of FN3 protein in tissue repair fields such as cutaneous wound healing and cartilage regeneration. Full article
Show Figures

Graphical abstract

15 pages, 49911 KB  
Article
Quantification of Wnt3a, Wnt5a and Wnt16 Binding to Multiple Frizzleds Under Physiological Conditions Using NanoBit/BRET
by Janine Wesslowski, Sadia Safi, Michelle Rottmann, Melanie Rothley and Gary Davidson
Cells 2025, 14(11), 810; https://doi.org/10.3390/cells14110810 - 30 May 2025
Viewed by 1703
Abstract
Upon engagement of one of the nineteen secreted Wnt signaling proteins with one of the ten Frizzled transmembrane Wnt receptors (FZD1–10), a wide variety of cellular Wnt signaling responses can be elicited, the selectivity of which depends on the following: (1) [...] Read more.
Upon engagement of one of the nineteen secreted Wnt signaling proteins with one of the ten Frizzled transmembrane Wnt receptors (FZD1–10), a wide variety of cellular Wnt signaling responses can be elicited, the selectivity of which depends on the following: (1) the specific Wnt-FZD pairing, (2) the participation of Wnt co-receptors and (3) the cellular context. Co-receptors play a pivotal role in guiding the specificity of Wnt signaling, most notably between β-catenin-dependent and -independent pathways, where co-receptors such as LRP5/6 and ROR1/2/PTK7 play major roles, respectively. It remains less understood how specific Wnt/FZD combinations contribute to the selectivity of downstream Wnt signaling, and we lack accurate comparative data on their binding properties under physiological conditions. Here, using fluorescently tagged Wnt3a, Wnt5a and Wnt16 proteins and cell lines expressing HiBiT-tagged Frizzled, we build on our ongoing efforts to provide a complete overview of the biophysical properties of all Wnt/FZD interactions using full-length proteins. Our real-time NanoBRET analysis using living cells expressing low receptor levels provides more accurate quantification of binding and will help us understand how these binary engagements control Wnt signaling outputs. We also provide evidence that LRP6 regulates the binding affinity of Wnt/FZD interactions in the trimeric Wnt-FZD-LRP6 complex. Full article
(This article belongs to the Section Cell Signaling)
Show Figures

Figure 1

12 pages, 2921 KB  
Article
Fenofibrate Treatment Inhibits Very-Low-Density Lipoprotein Transport Vesicle Formation by Reducing Sar1b Protein Expression
by Kayli Winterfeldt, Fahim Rejanur Tasin, Vandana Sekhar and Shadab A. Siddiqi
Int. J. Mol. Sci. 2025, 26(10), 4720; https://doi.org/10.3390/ijms26104720 - 15 May 2025
Viewed by 1540
Abstract
Dyslipidemia is a well-known risk factor in the development and progression of atherosclerosis. VLDL plays a crucial role in maintaining lipid homeostasis; however, even minor fluctuations in its production, intracellular trafficking, and secretion can contribute to the progression of atherosclerosis. Fenofibrate is an [...] Read more.
Dyslipidemia is a well-known risk factor in the development and progression of atherosclerosis. VLDL plays a crucial role in maintaining lipid homeostasis; however, even minor fluctuations in its production, intracellular trafficking, and secretion can contribute to the progression of atherosclerosis. Fenofibrate is an FDA-approved drug that effectively lowers plasma triglycerides and VLDL-associated cholesterol while simultaneously increasing HDL levels. Although fenofibrate is a known PPARα agonist with several proposed mechanisms for its lipid-altering effects, its impact on the intracellular trafficking of VLDL has not yet been investigated. We observed that treatment of HepG2 cells with 50 µM of fenofibrate resulted in a significant reduction in VLDL secretion, as evidenced by a significant decrease in the secretion of 3H-labeled TAG, fluorescent TAG, and ApoB100 protein into the media. Using confocal microscopy to monitor VLDL intracellular trafficking, we observed a distinct change in VLDL triglyceride localization, suggesting delayed transport through the endoplasmic reticulum and Golgi. An immunoblot analysis revealed a decrease in Sar1B protein expression, a key regulator of COPII protein recruitment, which is essential for VTV formation and intracellular VLDL trafficking, the rate-limiting step in VLDL secretion. Our data reveal a novel mechanism by which fenofibrate alters the lipid profile by interfering with intracellular VLDL trafficking in hepatocytes. Full article
(This article belongs to the Special Issue The Role of Lipids in Human Health)
Show Figures

Figure 1

23 pages, 443 KB  
Article
Revocable Attribute-Based Encryption with Efficient and Secure Verification in Smart Health Systems
by Zhou Chen, Lidong Han and Baokun Hu
Mathematics 2025, 13(9), 1541; https://doi.org/10.3390/math13091541 - 7 May 2025
Viewed by 1492
Abstract
By leveraging Internet of Things (IoT) technology, patients can utilize medical devices to upload their collected personal health records (PHRs) to the cloud for analytical processing or transmission to doctors, which embodies smart health systems and greatly enhances the efficiency and accessibility of [...] Read more.
By leveraging Internet of Things (IoT) technology, patients can utilize medical devices to upload their collected personal health records (PHRs) to the cloud for analytical processing or transmission to doctors, which embodies smart health systems and greatly enhances the efficiency and accessibility of healthcare management. However, the highly sensitive nature of PHRs necessitates efficient and secure transmission mechanisms. Revocable and verifiable attribute-based encryption (ABE) enables dynamic fine-grained access control and can verify the integrity of outsourced computation results via a verification tag. However, most existing schemes have two vital issues. First, in order to achieve the verifiable function, they need to execute the secret sharing operation twice during the encryption process, which significantly increases the computational overhead. Second, during the revocation operation, the verification tag is not updated simultaneously, so revoked users can infer plaintext through the unchanged tag. To address these challenges, we propose a revocable ABE scheme with efficient and secure verification, which not only reduces local computational load by optimizing the encryption algorithm and outsourcing complex operations to the cloud server, but also updates the tag when revocation operation occurs. We present a rigorous security analysis of our proposed scheme, and show that the verification tag retains its verifiability even after being dynamically updated. Experimental results demonstrate that local encryption and decryption costs are stable and low, which fully meets the real-time and security requirements of smart health systems. Full article
Show Figures

Figure 1

Back to TopTop