Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (59)

Search Parameters:
Keywords = secondary phloem

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 1770 KiB  
Article
Postfire Alterations of the Resin Secretory System in Protium heptaphyllum (Aubl.) Marchand (Burseraceae)
by Thalissa Cagnin Pereira, Aline Redondo Martins, Adriana da Silva Santos de Oliveira, Adilson Sartoratto and Tatiane Maria Rodrigues
Forests 2025, 16(6), 923; https://doi.org/10.3390/f16060923 - 31 May 2025
Viewed by 483
Abstract
Fire is a natural disturbance in the Brazilian Cerrado that modulates the vegetation structure. Protium heptaphyllum, a woody species of the family Burseraceae, is common in this biome. The resin produced in secretory canals immersed in the phloem of the stem and [...] Read more.
Fire is a natural disturbance in the Brazilian Cerrado that modulates the vegetation structure. Protium heptaphyllum, a woody species of the family Burseraceae, is common in this biome. The resin produced in secretory canals immersed in the phloem of the stem and leaves of this species plays important ecological and industrial roles. The aim of this study was to investigate the influence of fire on the development of resin canals in the leaves and stem of P. heptaphyllum and on the chemical profile of substances produced in the leaves. Young plants were subjected to controlled fire experiments. Leaf and stem portions were analyzed using light microscopy; the chemical compounds in the leaves were identified through gas chromatography–mass spectrometry. The percentage area occupied by secretory canals in the leaf midrib was higher in fire-treated plants than in control plants. Similarly, the density of secretory canals and their lumen area were higher in young stems (primary growth) of fire-treated plants. By contrast, although the canal density in the secondary phloem was lower in older stem portions (secondary growth) in fire-treated plants, their lumens were larger, resulting in similar data regarding the total lumen area of the secretory canals in fire-treated and control plants. The main chemical compounds identified in the leaves were vitamin E, sitosterol, α-amyrin, squalene, and β-amyrin. Three compounds showed significant increases in fire-treated plants, with vitamin E being the only one reduced by fire. Our findings reveal the plasticity of the secretory system and of the biochemical properties of the leaves of P. heptaphyllum in response to fire. These results are important when considering the current increase in fires caused by climate change and human activity in different ecosystems around the world. Full article
(This article belongs to the Section Forest Ecophysiology and Biology)
Show Figures

Figure 1

13 pages, 6578 KiB  
Review
Regulating the Vascular Cambium: Do Not Forget the Vascular Ray Initials and Their Derivatives
by Simcha Lev-Yadun
Plants 2025, 14(6), 971; https://doi.org/10.3390/plants14060971 - 19 Mar 2025
Viewed by 749
Abstract
The secondary lateral meristem—the vascular cambium (hereafter cambium)—is the largest meristem of the plant kingdom. It is almost always composed of two types of stem cells: (1) the axial (fusiform) initials, the most common and better known and studied, and (2) the ray [...] Read more.
The secondary lateral meristem—the vascular cambium (hereafter cambium)—is the largest meristem of the plant kingdom. It is almost always composed of two types of stem cells: (1) the axial (fusiform) initials, the most common and better known and studied, and (2) the ray initials that give rise to the vascular rays (hereafter rays), i.e., the radial component of the secondary xylem and phloem, which are less common and much less studied, and in many studies ignored. There is great flexibility in switching from axial initials to ray initials and vice versa. Ray initials commonly compose ca. 10–40% of the cambium of mature tree trunks, but nothing or very little in typical young model plants used for molecular cambial studies, such as Arabidopsis thaliana and young internodes of Populus spp. cuttings. I suggest paying more attention to the regulation of the differentiation of ray initials and their derivatives, and to the little-known complicated relations between the axial and ray cambial initials when they contact each other, as well as the special development of pits in their derivatives in cambial molecular studies by using mature trunks of various large woody plants rather than studying A. thaliana or young internodes of Populus cuttings. Full article
(This article belongs to the Section Plant Structural Biology)
Show Figures

Figure 1

16 pages, 3576 KiB  
Article
Insights into Molecular Mechanism of Secondary Xylem Rapid Growth in Salix psammophila
by Hongxia Qiao, Yunhan Wang, Lin Shi, Ruiping Wang, Yeru Yang, Dongshan Wei, Yingjie Li, Kairui Chao, Li Jia, Guiming Liu, Fengqiang Yu, Jiewei Zhang and Haifeng Yang
Plants 2025, 14(3), 459; https://doi.org/10.3390/plants14030459 - 5 Feb 2025
Viewed by 835
Abstract
Salix psammophila C. Wang & C. Y. Yang is an important windbreak and sand-fixing shrub species in Northwest China, with excellent characteristics such as resistance to drought, wind, and sand. S. psammophila needs to be stubbed flat after several years of growth to [...] Read more.
Salix psammophila C. Wang & C. Y. Yang is an important windbreak and sand-fixing shrub species in Northwest China, with excellent characteristics such as resistance to drought, wind, and sand. S. psammophila needs to be stubbed flat after several years of growth to continue to grow, otherwise, its growth rate will slow down and even begin to die. To understand the genetic regulatory mechanism of secondary growth in S. psammophila, cell structure and transcriptome analysis were performed on the secondary xylem and secondary phloem of stems. The results showed that the secondary xylem and the secondary phloem of S. psammophila were well developed at 1, 2, and 3-year-old stages, and the secondary growth changes mainly occurred in the secondary xylem at the 2 to 3-year-old stage, with a faster growth rate. The CSE2 and CSE1 genes that regulate CSE (caffeoyl shikimate esterase) have high sequence similarity (92% and 93%) with the CSE2 and CSE1 genes of the genus Populus, respectively, and regulate lignin biosynthesis. Notably, the expression levels of these two genes decreased in the secondary xylem of 3-year-old S. psammophila, indicating that the rapid growth of S. psammophila may be related to lignin biosynthesis. Weighted gene co-expression network analysis (WGCNA) was utilized to screen candidate TFs and genes involved in the secondary growth processes of S. psammophila, which were categorized into six co-expression modules. A total of 79 genes were selected from these co-expression modules, and co-expression network maps of the genes were constructed. The results indicate that the secondary growth of S. psammophila was regulated by a TF regulatory network. Interestingly, PLATZ TFs were involved in the rapid secondary growth and stress tolerance in S. psammophila. This hints that S. psammophila may promote secondary growth by increasing stress tolerance. Full article
Show Figures

Figure 1

18 pages, 9790 KiB  
Article
Exploring Hidden Connections: Endophytic System and Flower Meristem Development of Pilostyles berteroi (Apodanthaceae) and Interaction with Its Host Adesmia trijuga (Fabaceae)
by Ana Maria Gonzalez, María Florencia Romero and Héctor A. Sato
Plants 2024, 13(21), 3010; https://doi.org/10.3390/plants13213010 - 28 Oct 2024
Cited by 2 | Viewed by 1230
Abstract
Pilostyles, an endoparasitic genus within the Apodanthaceae family, grows inside host stems with flowers and fruits being the only external manifestations. Previous studies of P. berteroi growing on Adesmia trijuga provided limited details of the endophyte and omitted the origin of flowers [...] Read more.
Pilostyles, an endoparasitic genus within the Apodanthaceae family, grows inside host stems with flowers and fruits being the only external manifestations. Previous studies of P. berteroi growing on Adesmia trijuga provided limited details of the endophyte and omitted the origin of flowers and sinker structure. This study, using classical methods of optical microscopy applied to the analysis with scanning electron microscopy and confocal laser scanning microscopy, expands the understanding of the P. berteroi/A. trijuga complex. We find that P. berteroi develops isophasically with its host, forming endophytic patches between the host’s secondary phloem cells. The parasitized Adesmia stem’s cambium primarily produces xylem parenchyma, with limited vessel production and halting fiber formation. The radial polarization of endophytic patches led to the formation of floral meristems. Flowers develop endogenously and emerge by the breakthrough of the host stem. Flowers are connected to the host cambium via chimeric sinkers, combining P. berteroi parenchyma and tracheoids with Adesmia vessels. Unlike previous studies that show uniformity among Pilostyles species, our analysis reveals new insights into the structural interaction between P. berteroi and A. trijuga. Full article
(This article belongs to the Special Issue Advances in Plant Anatomy and Cell Biology)
Show Figures

Graphical abstract

23 pages, 11367 KiB  
Article
Quality Studies on Cynometra iripa Leaf and Bark as Herbal Medicines
by Shabnam Sabiha, Kamrul Hasan, Katelene Lima, Maryam Malmir, Rita Serrano, Isabel Moreira da Silva, João Rocha, Nurul Islam and Olga Silva
Molecules 2024, 29(11), 2629; https://doi.org/10.3390/molecules29112629 - 3 Jun 2024
Cited by 1 | Viewed by 1465
Abstract
Cynometra iripa Kostel. is a Fabaceae species of mangrove used in traditional Ayurvedic medicine for treating inflammatory conditions. The present study aims to establish monographic botanical and chemical quality criteria for C. iripa leaf and bark as herbal substances and to evaluate their [...] Read more.
Cynometra iripa Kostel. is a Fabaceae species of mangrove used in traditional Ayurvedic medicine for treating inflammatory conditions. The present study aims to establish monographic botanical and chemical quality criteria for C. iripa leaf and bark as herbal substances and to evaluate their in vitro antioxidant potential. Macroscopic and microscopic qualitative and quantitative analyses, chemical LC-UV/DAD-ESI/MS profiling, and the quantification of key chemical classes were performed. Antioxidant activity was evaluated by DPPH and FRAP assays. Macroscopically, the leaf is asymmetrical with an emarginated apex and cuneate base. Microscopically, it shows features such as two-layered adaxial palisade parenchyma, vascular bundles surrounded by 3–6 layers of sclerenchyma, prismatic calcium oxalate crystals (5.89 ± 1.32 μm) along the fibers, paracytic stomata only on the abaxial epidermis (stomatal index–20.15), and non-glandular trichomes only on petiolules. The microscopic features of the bark include a broad cortex with large lignified sclereids, prismatic calcium oxalate crystals (8.24 ± 1.57 μm), and secondary phloem with distinct 2–5 seriated medullary rays without crystals. Chemical profile analysis revealed that phenolic derivatives, mainly condensed tannins and flavonoids, are the main classes identified. A total of 22 marker compounds were tentatively identified in both plant parts. The major compounds identified in the leaf were quercetin-3-O-glucoside and taxifolin pentoside and in the bark were B-type dimeric proanthocyanidins and taxifolin 3-O-rhamnoside. The total phenolics content was higher in the leaf (1521 ± 4.71 mg GAE/g dry weight), while the total flavonoids and condensed tannins content were higher in the bark (82 ± 0.58 mg CE/g and 1021 ± 5.51 mg CCE/g dry weight, respectively). A total of 70% of the hydroethanolic extracts of leaf and bark showed higher antioxidant activity than the ascorbic acid and concentration-dependent scavenging activity in the DPPH assay (IC50 23.95 ± 0.93 and 23.63 ± 1.37 µg/mL, respectively). A positive and statistically significant (p < 0.05) correlation between the phenol content and antioxidant activity was found. The results obtained will provide important clues for the quality control criteria of C. iripa leaf and bark, as well as for the knowledge of their pharmacological potential as possible anti-inflammatory agents with antioxidant activity. Full article
Show Figures

Graphical abstract

14 pages, 11524 KiB  
Article
Untargeted Metabolomics Based on UPLC-Q-Exactive-Orbitrap-MS/MS Revealed the Differences and Correlations between Different Parts of the Root of Paeonia lactiflora Pall
by Jiahui Lv, Qianqian Du, Suying Shi, Mengzhen Ma, Wei Zhang, Dezhu Ge, Lihua Xing and Nianjun Yu
Molecules 2024, 29(5), 992; https://doi.org/10.3390/molecules29050992 - 24 Feb 2024
Cited by 2 | Viewed by 2778
Abstract
Background: Paeonia lactiflora Pall. (PLP) is a plant with excellent ornamental and therapeutic value that can be utilized in traditional Chinese medicine as Paeoniae Radix Alba (PRA) and Paeoniae Radix Rubra (PRR). PRA must undergo the “peeling” process, which involves removing the cork [...] Read more.
Background: Paeonia lactiflora Pall. (PLP) is a plant with excellent ornamental and therapeutic value that can be utilized in traditional Chinese medicine as Paeoniae Radix Alba (PRA) and Paeoniae Radix Rubra (PRR). PRA must undergo the “peeling” process, which involves removing the cork and a portion of the phloem. PLP’s biological function is strongly linked to its secondary metabolites, and the distribution of metabolites in different regions of the PLP rhizome causes changes in efficacy when PLP is processed into various therapeutic compounds. Methods: The metabolites of the cork (cor), phloem (phl), and xylem (xyl) were examined in the roots of PLP using a metabolomics approach based on UPLC-Q-Exactive-Orbitrap-MS/MS (UPLC-MS/MS), and the differential metabolites were evaluated using multivariate analysis. Results: Significant changes were observed among the cor, phl, and xyl samples. In both positive and negative ion modes, a total of 15,429 peaks were detected and 7366 metabolites were identified. A total of 525 cor-phl differential metabolites, 452 cor-xyl differential metabolites, and 328 phl-xyl differential metabolites were evaluated. Flavonoids, monoterpene glycosides, fatty acids, sugar derivatives, and carbohydrates were among the top 50 dissimilar chemicals. The key divergent metabolic pathways include linoleic acid metabolism, galactose metabolism, ABC transporters, arginine biosynthesis, and flavonoid biosynthesis. Conclusion: The cor, phl, and xyl of PLP roots exhibit significantly different metabolite types and metabolic pathways; therefore, “peeling” may impact the pharmaceutical effect of PLP. This study represents the first metabolomics analysis of the PLP rhizome, laying the groundwork for the isolation and identification of PLP pharmacological activity, as well as the quality evaluation and efficacy exploration of PLP. Full article
Show Figures

Graphical abstract

19 pages, 7065 KiB  
Article
Ectopic Expression of PtrLBD39 Retarded Primary and Secondary Growth in Populus trichocarpa
by Jing Yu, Boyuan Gao, Danning Li, Shuang Li, Vincent L. Chiang, Wei Li and Chenguang Zhou
Int. J. Mol. Sci. 2024, 25(4), 2205; https://doi.org/10.3390/ijms25042205 - 12 Feb 2024
Cited by 5 | Viewed by 1763
Abstract
Primary and secondary growth of trees are needed for increments in plant height and stem diameter, respectively, affecting the production of woody biomass for applications in timber, pulp/paper, and related biomaterials. These two types of growth are believed to be both regulated by [...] Read more.
Primary and secondary growth of trees are needed for increments in plant height and stem diameter, respectively, affecting the production of woody biomass for applications in timber, pulp/paper, and related biomaterials. These two types of growth are believed to be both regulated by distinct transcription factor (TF)-mediated regulatory pathways. Notably, we identified PtrLBD39, a highly stem phloem-specific TF in Populus trichocarpa and found that the ectopic expression of PtrLBD39 in P. trichocarpa markedly retarded both primary and secondary growth. In these overexpressing plants, the RNA-seq, ChIP-seq, and weighted gene co-expression network analysis (WGCNA) revealed that PtrLBD39 directly or indirectly regulates TFs governing vascular tissue development, wood formation, hormonal signaling pathways, and enzymes responsible for wood components. This regulation led to growth inhibition, decreased fibrocyte secondary cell wall thickness, and reduced wood production. Therefore, our study indicates that, following ectopic expression in P. trichocarpa, PtrLBD39 functions as a repressor influencing both primary and secondary growth. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

12 pages, 1470 KiB  
Article
An Optimized and Cost-Effective RNA Extraction Method for Secondary Metabolite-Enriched Tissues of Norway Spruce (Picea abies)
by Vivek Vikram Singh, Aisha Naseer, Gothandapani Sellamuthu and Rastislav Jakuš
Plants 2024, 13(3), 389; https://doi.org/10.3390/plants13030389 - 28 Jan 2024
Cited by 5 | Viewed by 4957
Abstract
Since the development of next-generation sequencing techniques and with the growing interest in transcriptomic studies, there is a demand for high-throughput RNA extraction techniques. General RNA extraction protocols are unreliable when it comes to the quality and quantity of isolated RNA obtained from [...] Read more.
Since the development of next-generation sequencing techniques and with the growing interest in transcriptomic studies, there is a demand for high-throughput RNA extraction techniques. General RNA extraction protocols are unreliable when it comes to the quality and quantity of isolated RNA obtained from different tissue types of different plant species. Despite Norway spruce (Picea abies) being one of the most significant and commercially valuable tree species in European forests, only limited genetic research is available. In this study, we developed a cetyltrimethylammonium bromide (CTAB) protocol by modifying the original method. We compared this CTAB protocol with other widely used methods for extracting RNA from different tissues (needle, phloem, and root) of Norway spruce, known for its richness in polyphenols, polysaccharides, and secondary metabolites. The modified CTAB method proves to be superior to the kit-based and TRIzol-based methods for extracting RNA from the metabolite-rich tissues of Norway spruce, resulting in high RNA quality and integrity values (RIN~7–9). The modified CTAB RNA extraction method is rapid, cost-effective, and relatively simple in yielding the desired RNA quality from Norway spruce tissues. It is optimal for RNA sequencing and other downstream molecular applications. Full article
Show Figures

Graphical abstract

33 pages, 23892 KiB  
Article
Bacillus subtilis 26D Triggers Induced Systemic Resistance against Rhopalosiphum padi L. by Regulating the Expression of Genes AGO, DCL and microRNA in Bread Spring Wheat
by Sergey D. Rumyantsev, Svetlana V. Veselova, Guzel F. Burkhanova, Valentin Y. Alekseev and Igor V. Maksimov
Microorganisms 2023, 11(12), 2983; https://doi.org/10.3390/microorganisms11122983 - 14 Dec 2023
Cited by 11 | Viewed by 2908
Abstract
Bacillus subtilis 26D is a plant growth-promoting endophytic bacteria capable of inducing systemic resistance through the priming mechanism, which includes plant genome reprogramming and the phenomenon of RNA interference (RNAi) and microRNA (miRNAs). The phloem-feeding insect bird cherry-oat aphid Rhopalosiphum padi L. is [...] Read more.
Bacillus subtilis 26D is a plant growth-promoting endophytic bacteria capable of inducing systemic resistance through the priming mechanism, which includes plant genome reprogramming and the phenomenon of RNA interference (RNAi) and microRNA (miRNAs). The phloem-feeding insect bird cherry-oat aphid Rhopalosiphum padi L. is a serious pest that causes significant damage to crops throughout the world. However, the function of plant miRNAs in the response to aphid infestation remains unclear. The results of this work showed that B. subtilis 26D stimulated aphid resistance in wheat plants, inducing the expression of genes of hormonal signaling pathways ICS, WRKY13, PR1, ACS, EIN3, PR3, and ABI5. In addition, B. subtilis 26D activated the RNAi mechanism and regulated the expression of nine conserved miRNAs through activation of the ethylene, salicylic acid (SA), and abscisic acid (ABA) signaling pathways, which was demonstrated by using treatments with phytohormones. Treatment of plants with SA, ethylene, and ABA acted in a similar manner to B. subtilis 26D on induction of the expression of the AGO4, AGO5 and DCL2, DCL4 genes, as well as the expression of nine conserved miRNAs. Different patterns of miRNA expression were found in aphid-infested plants and in plants treated with B. subtilis 26D or SA, ethylene, and ABA and infested by aphids, suggesting that miRNAs play multiple roles in the plant response to phloem-feeding insects, associated with effects on hormonal signaling pathways, redox metabolism, and the synthesis of secondary metabolites. Our study provides new data to further elucidate the fine mechanisms of bacterial-induced priming. However, further extensive work is needed to fully unravel these mechanisms. Full article
(This article belongs to the Special Issue Advances in Microbial and Plant Biotechnology)
Show Figures

Figure 1

17 pages, 66176 KiB  
Article
Variations in the Vascular Bundle and Fiber Structure during the Stem Development of Rattan (Calamus caesius Blume)
by Linpeng Yu, Kangjian Zhang, Fukuan Dai, Zehui Jiang, Yuxuan Chen, Youhong Wang and Genlin Tian
Forests 2023, 14(12), 2288; https://doi.org/10.3390/f14122288 - 22 Nov 2023
Cited by 3 | Viewed by 2185
Abstract
Calamus caesius is one of the most well-known commercial climbing palm species across the world. A comprehensive understanding of the growth-dependent variation in microstructure and polymer distribution can provide fundamental information to guide its end-use applications. In this study, we investigated the age-wise [...] Read more.
Calamus caesius is one of the most well-known commercial climbing palm species across the world. A comprehensive understanding of the growth-dependent variation in microstructure and polymer distribution can provide fundamental information to guide its end-use applications. In this study, we investigated the age-wise characteristics of rattan stems and the ultrastructure of fibers using electron microscopy, light microscopy, and FTIR. The results showed that the frequency of vascular bundles with a diameter of 0.55∼0.62 mm in C. caesius was 3.49∼3.97 pieces/mm2. The diameter and length of the metaxylem vessel were 0.32∼0.34 mm and 2.86∼3.00 mm, respectively. Cellulose, lignin, xylan, and HCA are mainly concentrated in the fiber sheath of vascular bundles. The distribution of major polymers in positions other than the top was relatively stable. The tissue proportion of parenchyma, xylem, and phloem did not differ significantly at different positions. The proportion of fibers from 22.27%∼25.33% showed significant differences. The fiber length was 1.43∼1.76 mm, and the diameter was 10.78∼12.63 μm. During the growth process of the rattan stem, the secondary wall of fiber cells continued to accumulate inward towards the cell cavity from 2 to 6 layers. The unique fiber properties and stable vascular bundle composition of C. caesius may have potential in fields such as composite materials or renewable energy. Full article
(This article belongs to the Section Wood Science and Forest Products)
Show Figures

Figure 1

18 pages, 9866 KiB  
Article
Tissue-Specific Transcriptomes in the Secondary Cell Wall Provide an Understanding of Stem Growth Enhancement in Solidago canadensis during Invasion
by Yu Zhang, Zhongsai Tian, Jiaqi Shi, Ruoyu Yu, Shuxin Zhang and Sheng Qiang
Biology 2023, 12(10), 1347; https://doi.org/10.3390/biology12101347 - 20 Oct 2023
Viewed by 1843
Abstract
Invasive plants generally present a significant enhancement in aboveground vegetative growth, which is mainly caused by variation in secondary cell wall (SCW) deposition and vascular tissue development. However, the coordination of the transcriptional regulators of SCW biosynthesis is complex, and a comprehensive regulation [...] Read more.
Invasive plants generally present a significant enhancement in aboveground vegetative growth, which is mainly caused by variation in secondary cell wall (SCW) deposition and vascular tissue development. However, the coordination of the transcriptional regulators of SCW biosynthesis is complex, and a comprehensive regulation map has not yet been clarified at a transcriptional level to explain the invasive mechanism of S. canadensis. Here, RNA sequencing was performed in the phloem and xylem of two typical native (US01) and invasive (CN25) S. canadensis populations with different stem morphologies. A total of 296.14 million high-quality clean reads were generated; 438,605 transcripts and 156,968 unigenes were assembled; and 66,648 and 19,510 differential expression genes (DEGs) were identified in the phloem and xylem, respectively. Bioinformatics analysis indicated that the SCW transcriptional network was dramatically altered during the successful invasion of S.canadensis. Based on a comprehensive analysis of SCW deposition gene expression profiles, we revealed that the invasive population is dedicated to synthesizing cellulose and reducing lignification, leading to an SCW with high cellulose content and low lignin content. A hypothesis thus has been proposed to explain the enhanced stem growth of S. canadensis through the modification of the SCW composition. Full article
(This article belongs to the Special Issue Current Advances in Weed Biology, Ecology and Management)
Show Figures

Figure 1

16 pages, 3026 KiB  
Article
Bottom-Up Effects of Drought-Stressed Cotton Plants on Performance and Feeding Behavior of Aphis gossypii
by Jinping Liu, Chen Wang, Huatong Li, Yu Gao, Yizhong Yang and Yanhui Lu
Plants 2023, 12(15), 2886; https://doi.org/10.3390/plants12152886 - 7 Aug 2023
Cited by 10 | Viewed by 2328
Abstract
Drought, a major stress for crop plants, is expected to increase in frequency due to climate change. Drought can alter crop growth and levels of secondary plant metabolites, which in turn can affect herbivores, but this latter point is still controversial. This study [...] Read more.
Drought, a major stress for crop plants, is expected to increase in frequency due to climate change. Drought can alter crop growth and levels of secondary plant metabolites, which in turn can affect herbivores, but this latter point is still controversial. This study used three different polyethylene glycol (PEG-6000) levels (0%, 1%, and 3%) to simulate drought stress and evaluated their effects on cotton plants and the impacts on the performance of the cotton aphid Aphis gossypii. Cotton plants under drought stress showed decreased water content, above-ground biomass, and nitrogen content and increased soluble protein, soluble sugar, and tannin contents. Based on analysis of the developmental time and fecundity data from individuals and at the population level, a significantly lower fecundity and population abundance of A. gossypii were detected on cotton plants with drought stress, which supports the “plant vigor hypothesis”. The poor development of A. gossypii is possibly related to lower xylem sap and phloem ingestion under drought stress. In addition, the increased tannin content of cotton plants induced by drought and lower detoxification enzyme activities of A. gossypii may have affected the responses of aphids to drought-stressed plants. Overall, the results showed that drought stress altered the physiological characteristics of the cotton plants, resulting in adverse bottom-up effects on cotton aphid performances. This implies that the adoption of drip irrigation under plastic film that can help alleviate drought stress may favor the population growth of cotton aphids. Full article
(This article belongs to the Special Issue Embracing Systems Thinking in Crop Protection Science)
Show Figures

Figure 1

12 pages, 6895 KiB  
Article
PagSWEET17a Mediates Sugar Transport in Root and Affects Drought Tolerance in Populus alba × P. glandulosa
by Jifu Li, Xinyi Hao, Zheshu Wang and Lijuan Wang
Forests 2023, 14(7), 1445; https://doi.org/10.3390/f14071445 - 14 Jul 2023
Cited by 1 | Viewed by 1682
Abstract
Sugars are the principal carbon and energy sources and serve as osmotic regulators and radical scavengers, thus playing an important role in plant responses to drought. Sugar transporters steering the distribution of sugar are vital players involved in tolerance to drought. Sugars Will [...] Read more.
Sugars are the principal carbon and energy sources and serve as osmotic regulators and radical scavengers, thus playing an important role in plant responses to drought. Sugar transporters steering the distribution of sugar are vital players involved in tolerance to drought. Sugars Will Eventually be Exported Transporters (SWEETs) facilitate both the influx and efflux of mono- and/or disaccharides and control both inter and intracellular distribution of sugars. PagSWEET17a in Populus alba × P. glandulosa is one of four orthologous genes of AtSWEET17 in Arabidopsis. Unlike AtSWEET17, which is a vacuolar localized transporter, PagSWEET17a is localized to the endoplasmic reticulum (ER). Here, the role of PagSWEET17a in poplar responses to drought stress was investigated. PagSWEET17a was specifically expressed in cambium cells in younger root but mainly located in phloem fibers, and xylem vessels and fiber cells in the root undergoing secondary growth. Loss of PagSWEET17a inhibited the growth of roots in poplar seedlings and led to a decreased tolerance to drought. Analysis of sugar profiles revealed that accumulations of predominant sugars were significantly suppressed in both knockout (KO) mutant lines under drought. PagSWEET17a might contribute to poplar tolerance to drought by promoting drought-induced root expansion and diminishing oxidative damages caused by the stress. Full article
(This article belongs to the Section Genetics and Molecular Biology)
Show Figures

Figure 1

14 pages, 9029 KiB  
Article
A Pectate Lyase Gene Plays a Critical Role in Xylem Vascular Development in Arabidopsis
by Yun Bai, Dongdong Tian, Peng Chen, Dan Wu, Kebing Du, Bo Zheng and Xueping Shi
Int. J. Mol. Sci. 2023, 24(13), 10883; https://doi.org/10.3390/ijms241310883 - 29 Jun 2023
Cited by 8 | Viewed by 2719
Abstract
As a major component of the plant primary cell wall, structure changes in pectin may affect the formation of the secondary cell wall and lead to serious consequences on plant growth and development. Pectin-modifying enzymes including pectate lyase-like proteins (PLLs) participate in the [...] Read more.
As a major component of the plant primary cell wall, structure changes in pectin may affect the formation of the secondary cell wall and lead to serious consequences on plant growth and development. Pectin-modifying enzymes including pectate lyase-like proteins (PLLs) participate in the remodeling of pectin during organogenesis, especially during fruit ripening. In this study, we used Arabidopsis as a model system to identify critical PLL genes that are of particular importance for vascular development. Four PLL genes, named AtPLL15, AtPLL16, AtPLL19, and AtPLL26, were identified for xylem-specific expression. A knock-out T-DNA mutant of AtPLL16 displayed an increased amount of pectin, soluble sugar, and acid-soluble lignin (ASL). Interestingly, the atpll16 mutant exhibited an irregular xylem phenotype, accompanied by disordered xylem ray cells and an absence of interfascicular phloem fibers. The xylem fiber cell walls in the atpll16 mutant were thicker than those of the wild type. On the contrary, AtPLL16 overexpression resulted in expansion of the phloem and a dramatic change in the xylem-to-phloem ratios. Altogether, our data suggest that AtPLL16 as a pectate lyase plays an important role during vascular development in Arabidopsis. Full article
Show Figures

Figure 1

14 pages, 4759 KiB  
Article
Development of the Vascular Cambium of Taxodium ascendens and Its Seasonal Activities in Subtropical China
by Youming Xu, Cong Liu, Han Lin, Kunxi Wang and Zhuang Han
Forests 2023, 14(6), 1071; https://doi.org/10.3390/f14061071 - 23 May 2023
Cited by 2 | Viewed by 2392
Abstract
The vascular cambium is an extensive and permanent secondary meristem with wood cells products of periclinal divisions commonly contributed to two directions and arranged in radial files of trees. Cambium activity is the origin of timber production. Taxodium ascendens Brongn is an exotic [...] Read more.
The vascular cambium is an extensive and permanent secondary meristem with wood cells products of periclinal divisions commonly contributed to two directions and arranged in radial files of trees. Cambium activity is the origin of timber production. Taxodium ascendens Brongn is an exotic species in China, and its apical meristem and cambial activity are still elusive, resulting in a lack of understanding about its wood formation and improvement. We thus addressed this knowledge gap by studying Cambium activity. For studying, twigs from five 30-year-old healthy trees were collected between February-2017 and March-2018. Anatomy deciphered its apical meristem with a Cryptomeria–Abies type. The procambium appeared after leaf primordium and initially presented five lobes as observed transversely from a one-year-old shoot. The procambium under the apical differentiated into protophloem first and then protoxylem toward the inside. It means that protoxylem differentiated later than protophloem did. After dormancy, the vascular cambium began to be active, starting in early April 2017, which was later than shoot differentiation. On 25 July 2017, the cambial zone had 9–10 immature xylem cell layers. Both initiation and cessation of the xylem preceded that of the phloem. Until 10 October 2017, few immature elements were found, indicating the translation of cells from activity to dormancy. On 15 November 2017, the cambium contained 3–4 cells in radial rows, which demonstrated the dormancy of the cambium until next spring. Furthermore, immature xylem elements increased as cell layers in the cambium zone and cell fission increased. The growth pattern of T. ascendens revealed that cambial activity is highly seasonal and dependent on changes in abiotic conditions. Thus, the wood formation in the species will be significantly altered in a changing climatic pattern. These enhance our understanding of tree growth science, wood formation, wood structure, wood properties variation and wood improvement in tree breeding. Full article
(This article belongs to the Special Issue Advances in Tree Germplasm Innovation and High-Efficiency Propagation)
Show Figures

Figure 1

Back to TopTop