Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (122)

Search Parameters:
Keywords = secondary and primary organic carbon

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 11338 KiB  
Article
Genesis of Clastic Reservoirs in the First Member of Yaojia Formation, Northern Songliao Basin
by Junhui Li, Qiang Zheng, Yu Cai, Huaye Liu, Tianxin Hu and Haiguang Wu
Minerals 2025, 15(8), 795; https://doi.org/10.3390/min15080795 - 29 Jul 2025
Viewed by 196
Abstract
This study focuses on the clastic reservoir in the first member of Yaojia Formation within Qijia-Gulong Sag, Songliao Basin. The results indicate that the reservoir in the study area develops within a shallow-water delta sedimentary system. The dominant sedimentary microfacies comprise underwater distributary [...] Read more.
This study focuses on the clastic reservoir in the first member of Yaojia Formation within Qijia-Gulong Sag, Songliao Basin. The results indicate that the reservoir in the study area develops within a shallow-water delta sedimentary system. The dominant sedimentary microfacies comprise underwater distributary channels, mouth bars, and sheet sands. Among these, the underwater distributary channel microfacies exhibits primary porosity ranging from 15.97% to 17.71%, showing the optimal reservoir quality, whereas the sheet sand microfacies has a porosity of only 7.45% to 12.08%, indicating inferior physical properties. During diagenesis, compaction notably decreases primary porosity via particle rearrangement and elastic deformation, while calcite cementation and quartz overgrowth further occlude pore throats. Although dissolution can generate secondary porosity (locally up to 40%), the precipitation of clay minerals tends to block pore throats, leading to “ineffective porosity” (permeability generally < 5 mD) and overall low-porosity and low-permeability characteristics. Carbon–oxygen isotope analysis reveals a deficiency in organic acid supply in the study area, restricting the intensity of dissolution alteration. Reservoir quality evolution is dominantly governed by the combined controls of sedimentary microfacies and diagenesis. This study emphasizes that, within shallow-water delta sedimentary settings, the material composition of sedimentary microfacies and the dynamic equilibrium of diagenetic processes jointly govern reservoir property variations. This insight provides critical theoretical support for understanding diagenetic evolution mechanisms in clastic reservoirs and enabling precise prediction of high-quality reservoir distribution. Full article
(This article belongs to the Section Mineral Exploration Methods and Applications)
Show Figures

Figure 1

18 pages, 1606 KiB  
Article
Tree Clearing for Coffee Production Threatens the Tropical Cloud Montane Forests of the Dominican Republic and Haiti, with Implications for Soil Fertility
by Luis G. García-Montero, Marisol Fragela, Stervins Alexis and Gonzalo Almendros
Agriculture 2025, 15(13), 1402; https://doi.org/10.3390/agriculture15131402 - 29 Jun 2025
Viewed by 384
Abstract
Tropical montane cloud forests (TMCFs) are biodiversity hotspots that have been increasingly cleared to cultivate coffee under full sun exposure, replacing traditional shaded agroforestry systems. This study evaluated the impact of TMCF clearing on soil quality by analyzing 108 samples from undisturbed primary [...] Read more.
Tropical montane cloud forests (TMCFs) are biodiversity hotspots that have been increasingly cleared to cultivate coffee under full sun exposure, replacing traditional shaded agroforestry systems. This study evaluated the impact of TMCF clearing on soil quality by analyzing 108 samples from undisturbed primary and secondary forests and deforested coffee plantations in the Dominican Republic and Haiti. Our findings indicate that forest clearing has a substantial adverse impact on soil nutrient status. Soils from undisturbed plots had total organic carbon (TOC) concentrations 4.83 units higher than those from cleared plots. Nitrogen levels were reduced by 28–61%, and available potassium declined by 23–51% in soils that had been cleared. Conversely, the available phosphorus levels exhibited a modest increase (ranging from 23% to 27%) following the clearing process, presumably attributable to diminished plant uptake and augmented mineralization in conditions characterized by diminished organic matter. However, given that phosphorus is not a limiting factor for coffee growth, this marginal gain does not compensate for the broader degradation of soil fertility. The study emphasizes that allowing TMCFs to be used for sun-grown coffee results in long-term nutrient depletion through erosion and leaching, which poses a threat to both the productivity of the soil and the ecological integrity of these valuable forest systems. Full article
(This article belongs to the Section Agricultural Soils)
Show Figures

Figure 1

18 pages, 6440 KiB  
Article
Identification of Key Genes Controlling Flavor Changes During Jujube Fruit Development by Integrating Transcriptome and Metabolome Analysis
by Xin Zhang, Xurui Wen, Wendi Xu, Yufeng Ren, Tianjun Wei, Hui Li, Jun Zhou and Zhanlin Bei
Agronomy 2025, 15(6), 1337; https://doi.org/10.3390/agronomy15061337 - 29 May 2025
Viewed by 441
Abstract
To elucidate the molecular mechanisms that underlie jujube (Ziziphus jujuba) flavor synthesis, we integrated transcriptomic and metabolomic analyses on the ‘Lingwuchangzao’ cultivar across seven developmental stages. Our multi-omics approach detected 750 metabolites, categorized into 11 primary and 35 secondary classes, with [...] Read more.
To elucidate the molecular mechanisms that underlie jujube (Ziziphus jujuba) flavor synthesis, we integrated transcriptomic and metabolomic analyses on the ‘Lingwuchangzao’ cultivar across seven developmental stages. Our multi-omics approach detected 750 metabolites, categorized into 11 primary and 35 secondary classes, with K-means clustering revealing significant stage-specific variations in sugars, alcohols, and organic acids. KEGG enrichment analysis identified differentially expressed genes (DEGs) in key metabolic pathways, including carbohydrate metabolism and plant hormone signal transduction, showing dynamic changes during development. Weighted gene co-expression network analysis (WGCNA) further pinpointed gene networks related to starch/sucrose and carbon metabolism, and eight novel genes linked to starch and fatty acid metabolism. Notably, the white ripening stage (BS) emerged as the critical phase for flavor compound accumulation, offering new molecular insights and targets for quality improvement. Full article
Show Figures

Figure 1

20 pages, 2087 KiB  
Article
Analysis of Chemical Composition and Sources of PM10 in the Southern Gateway of Beijing
by Yu Qu, Juan Yang, Xingang Liu, Yong Chen, Haiyan Ran, Junling An and Fanyeqi Yang
Atmosphere 2025, 16(6), 656; https://doi.org/10.3390/atmos16060656 - 29 May 2025
Viewed by 546
Abstract
PM10 samples were collected at an urban site of Zhuozhou, the southern gateway of Beijing, from 28 December 2021 to 29 January 2022, in order to explore the chemical composition, sources and physical and chemical formation processes of prominent components. The results [...] Read more.
PM10 samples were collected at an urban site of Zhuozhou, the southern gateway of Beijing, from 28 December 2021 to 29 January 2022, in order to explore the chemical composition, sources and physical and chemical formation processes of prominent components. The results showed that five trace elements (Mn, Cu, As, Zn and Pb) had high enrichment in PM10 and were closely related with anthropogenic combustion and vehicle emissions; organic and element carbon had a high correlation due to the same primary sources and similar evolution; nitrate dominated SNA (sulfate, nitrate, ammonium) and nitrate/sulfate ratios reached 2.35 on the polluted days owing to the significant contribution of motor vehicle emissions. Positive matrix factorization analysis indicated that secondary source, traffic, biomass burning, industry, coal combustion and crustal dust were the main sources of PM10, contributing 32.5%, 20.9%, 15.0%, 13.9%, 9.4% and 8.3%, respectively; backward trajectories and potential source contribution function analysis showed that short-distance airflow was the dominant cluster and accounted for nearly 50% of total trajectories. The Weather Research and Forecasting model with Chemistry, with integrated process rate analysis, showed that dominant gas-phase reactions (heterogeneous reaction) during daytime (nighttime) in presence of ammonia led to a significant enhancement of nitrate in Zhuozhou, contributing 12.6 μg/m3 in episode 1 and 22.9 μg/m3 in episode 2. Full article
(This article belongs to the Section Aerosols)
Show Figures

Figure 1

19 pages, 14125 KiB  
Article
Spatio-Temporal Dynamics of Particulate Organic Carbon and Its Response to Climate Change: Evidence of the East China Sea from 2003 to 2022
by Zhenghan Liu, Yingfeng Chen, Xiaofeng Lin and Wei Yang
J. Mar. Sci. Eng. 2025, 13(5), 963; https://doi.org/10.3390/jmse13050963 - 15 May 2025
Viewed by 564
Abstract
Particulate organic carbon (POC) plays a crucial role in oceanic climate change. However, existing research is limited by several factors, including the scarcity of long-term data, extensive datasets, and a comprehensive understanding of POC dynamics. This study utilizes monthly average POC remote sensing [...] Read more.
Particulate organic carbon (POC) plays a crucial role in oceanic climate change. However, existing research is limited by several factors, including the scarcity of long-term data, extensive datasets, and a comprehensive understanding of POC dynamics. This study utilizes monthly average POC remote sensing data from the MODIS/AQUA satellite to analyze the spatiotemporal variations of POC in the East China Sea from 2003 to 2022. Employing correlation analysis, spatial autocorrelation models, and the Geodetector model, we explore responses to key influencing factors such as climatic elements. The results indicate that POC concentrations are higher in the western nearshore areas and lower in the eastern offshore regions of the East China Sea (ECS). Additionally, concentrations are observed to be lower in southern regions compared to northern ones. From 2003 to 2022, POC concentrations exhibited a fluctuating downward trend with an average annual concentration of 121.05 ± 4.57 mg/m3. Seasonally, monthly average POC concentrations ranged from 105.48 mg/m3 to 158.36 mg/m3; notably higher concentrations were recorded during spring while summer showed comparatively lower levels. Specifically, POC concentrations peaked in April before rapidly declining from May to June—reaching a minimum—and then gradually increasing again from June through December. Correlation analysis revealed significant influences on POC levels by particulate inorganic carbon (PIC), sea surface temperature (SST), chlorophyll (Chl), and photosynthetically active radiation (PAR). The Geodetector model further elucidated that these factors vary in their impact: Chl was identified as having the strongest influence (q = 0.84), followed by PIC (q = 0.75) and SST (q = 0.64) as primary influencing factors; PAR was recognized as a secondary factor with q = 0.30. This study provides new insights into marine carbon cycling dynamics within the context of climate change. Full article
(This article belongs to the Section Marine Ecology)
Show Figures

Figure 1

36 pages, 1542 KiB  
Review
Volatile Organic Compounds in Indoor Air: Sampling, Determination, Sources, Health Risk, and Regulatory Insights
by Tajana Horvat, Gordana Pehnec and Ivana Jakovljević
Toxics 2025, 13(5), 344; https://doi.org/10.3390/toxics13050344 - 26 Apr 2025
Cited by 1 | Viewed by 3111
Abstract
Indoor air pollution is a serious public health issue caused by the accumulation of numerous toxic contaminants within enclosed spaces. Particulate matter (PM2.5 and PM10), biological contaminants (mould, bacteria, and allergies), inorganic gases (carbon monoxide, carbon dioxide, ozone, and nitrogen [...] Read more.
Indoor air pollution is a serious public health issue caused by the accumulation of numerous toxic contaminants within enclosed spaces. Particulate matter (PM2.5 and PM10), biological contaminants (mould, bacteria, and allergies), inorganic gases (carbon monoxide, carbon dioxide, ozone, and nitrogen dioxide), and a variety of volatile organic compounds (VOCs) are examples of common indoor air pollutants. VOCs are one of the chief indoor contaminants, and their effects on human health have made indoor air quality a serious concern. Indoor VOC concentrations are frequently higher than outdoor levels, according to studies, which raises the danger of exposure, particularly for young people and those with respiratory disorders. VOCs originate from both biogenic and anthropogenic sources, and they can create secondary pollutants like ozone and aerosols, which can lead to cardiovascular and pulmonary problems. Prolonged exposure to VOCs has been associated with respiratory irritation, neurological effects, and an increased risk of chronic diseases. This review examines the primary sources, sampling and analysis approach, and health impact of VOCs in indoor air. Additionally, we compared worldwide regulatory guidelines for VOC exposure limits, emphasizing the need for strict exposure limits to protect human health. Full article
Show Figures

Figure 1

17 pages, 7857 KiB  
Article
Geochemical Characteristics and Hydrocarbon Accumulation Model of Natural Gas in the Third Member of the Oligocene Lingshui Formation in the Baodao Sag, Qiongdongnan Basin, South China Sea
by Xue Yan, Nan Wu, Jun Gan, Yang Tian, Xiaofeng Xiong, Yong Feng and Gaokun Zuo
J. Mar. Sci. Eng. 2025, 13(4), 774; https://doi.org/10.3390/jmse13040774 - 14 Apr 2025
Viewed by 451
Abstract
The deep-water area of the Qiongdongnan basin is currently a hot topic for exploration. The discovery of gas fields in the Baodao sag confirms its abundant oil and gas resources and potential, making it of significant economic and strategic importance. The complexity of [...] Read more.
The deep-water area of the Qiongdongnan basin is currently a hot topic for exploration. The discovery of gas fields in the Baodao sag confirms its abundant oil and gas resources and potential, making it of significant economic and strategic importance. The complexity of sedimentary structural evolution within the Baodao sag makes the process of oil and gas accumulation in the area extremely complex, and the law of natural gas enrichment is difficult to grasp, resulting in unclear exploration directions. Therefore, this study focuses on the third member of the Lingshui Formation in the Paleogene of the Baodao sag. Based on the abundant thin section, scanning electron microscopy, 3D seismic and geochemical analysis data in the area, through analyzing the density of natural gas, the proportion of hydrocarbon and non-hydrocarbon components, the dryness coefficient carbon, and the isotopic characteristics, combined with the deep natural gas genesis discrimination chart, the types and genesis types of natural gas and organic matter in the sag are clarified. In addition, combined with the package and BasinMod 2009 software, the filling period and reservoir-filling process were clarified and restored. At the same time, the reservoir formation characteristics of the different fault-step zones inside the sag were dissected and the primary and secondary migration of natural gas were analyzed in order to clarify the types and characteristics of different fault-step zone transport systems. Finally, the research findings indicate that there are two reservoir formation modes developed within the depression, as follows: “multiple hydrocarbon generation and control sources—continuous vertical control of large faults—lateral sand body convergence (T + Z-type transport)—multiple cap layer closure” and “mixed-source hydrocarbon supply—continuous vertical control of large faults—short lateral sand body convergence (Z-type transport)—multiple cap layer closure”, providing an important basis for the next exploration of the basin. Full article
Show Figures

Figure 1

20 pages, 8608 KiB  
Article
Effective Combination of MOF and MoS2 Layers: A Novel Composite Material Capable of Rapidly Degrading Dyes
by Shengyang Zheng, Zhixiu Yuan, Haitao Zhao, Yaping Xu, Nan Jiang and Lijun Meng
Water 2025, 17(7), 980; https://doi.org/10.3390/w17070980 - 27 Mar 2025
Cited by 1 | Viewed by 601
Abstract
This study successfully prepared MIL-101(Fe)@MoS2 composite photocatalysts via hydrothermal methods to address the efficient removal of refractory organic dyes in dye wastewater. Characterization using X-ray diffraction (XRD), Fourier transform infrared (FT-IR), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDS) confirmed that [...] Read more.
This study successfully prepared MIL-101(Fe)@MoS2 composite photocatalysts via hydrothermal methods to address the efficient removal of refractory organic dyes in dye wastewater. Characterization using X-ray diffraction (XRD), Fourier transform infrared (FT-IR), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDS) confirmed that molybdenum disulfide (MoS2) was uniformly loaded onto the surface of MIL-101(Fe), forming a heterojunction that significantly enhanced light absorption capacity and charge separation efficiency. In a visible-light-driven photo-Fenton system, this material exhibited excellent degradation performance for Congo red (CR). At an initial CR concentration of 50 mg/L, a catalyst dosage of 0.2 g/L, 4 mL of added H2O2, and pH 7, CR was completely degraded within 30 min, with the total organic carbon (TOC) removal reaching 72.5%. The material maintained high degradation efficiency (>90%) across a pH range of 3–9, overcoming the traditional Fenton system’s dependency on acidic media. Radical-trapping experiments indicated that superoxide radicals (·O2) and photogenerated holes (·h+) were the primary active species responsible for degradation, revealing a synergistic catalytic mechanism at the heterojunction interface. Recyclability tests showed that the material retained 90.8% degradation efficiency after five cycles, and an X-ray photoelectron spectroscopy (XPS) analysis demonstrated the stable binding of Fe and Mo, preventing secondary pollution. This study provides a scientific basis for developing efficient, stable, and wide-pH adaptable photo-Fenton catalytic systems, contributing significantly to the advancement of green water treatment technologies. Full article
(This article belongs to the Section Wastewater Treatment and Reuse)
Show Figures

Figure 1

34 pages, 13993 KiB  
Article
Multi-Scale Pore Structure of Terrestrial, Transitional, and Marine Shales from China: Insights into Porosity Evolution with Increasing Thermal Maturity
by Zhongrui Wu, Ralf Littke, Shuo Qin, Yahao Huang, Sheng He, Gangyi Zhai, Zhengqing Huang and Kaiming Wang
J. Mar. Sci. Eng. 2025, 13(3), 609; https://doi.org/10.3390/jmse13030609 - 19 Mar 2025
Cited by 2 | Viewed by 493
Abstract
Organic matter (OM)-hosted pores play a crucial role in unconventional shale reservoirs, with their development influenced by OM type and thermal maturity across terrestrial, transitional, and marine deposits. In this study, a comparative analysis of porosity and pore structures is presented using organic [...] Read more.
Organic matter (OM)-hosted pores play a crucial role in unconventional shale reservoirs, with their development influenced by OM type and thermal maturity across terrestrial, transitional, and marine deposits. In this study, a comparative analysis of porosity and pore structures is presented using organic petrographical, petrophysical, and mineralogical methods on organic-rich samples from diverse depositional environments. A pore evolution model for these sediments in different settings is proposed. Results show that kerogen particles in terrestrial shales at low and moderate thermal maturity (Dameigou Formation and Qingshankou Formation) are mostly nonporous. Transitional shales (Longtan Formation) contain vitrinite and inertinite, with only some inertinite exhibiting visible primary pores. In marine shales at higher maturity (late oil window; Dalong Formation), the interparticle pore space is occupied by solid bitumen, and secondary porosity is present at higher maturity, approaching the thermal gas generation stage. In over-mature marine shales (Wujiaping and Daye Formations), secondary pores are densely distributed within pyrobitumen. A negative correlation between organic carbon content and pore volume is observed in low-maturity lacustrine and transitional shales due to poorly developed kerogen-bound pores and interparticle pore occlusion by solid bitumen. However, over-mature marine shales exhibit a strong positive correlation due to extensive secondary porosity in pyrobitumen. Thus, pore evolution within OM is controlled by kerogen type and maturity. In oil-prone marine and lacustrine shales, secondary porosity in solid bitumen and pyrobitumen increases with thermal maturity. In contrast, terrestrial kerogen rarely forms solid bitumen and mainly develops micropores rather than mesopores at high maturity. Full article
(This article belongs to the Section Marine Energy)
Show Figures

Figure 1

17 pages, 2405 KiB  
Article
Impact of Emission Standards on Fine Particulate Matter Toxicity: A Long-Term Analysis in Los Angeles
by Mohammad Mahdi Badami, Yashar Aghaei and Constantinos Sioutas
Toxics 2025, 13(2), 140; https://doi.org/10.3390/toxics13020140 - 18 Feb 2025
Cited by 2 | Viewed by 944
Abstract
This study examines long-term trends in fine particulate matter (PM2.5) composition and oxidative potential in Los Angeles based on data from the University of Southern California’s Particle Instrumentation Unit, with chemical composition retrieved from the EPA’s Air Quality System (AQS). While [...] Read more.
This study examines long-term trends in fine particulate matter (PM2.5) composition and oxidative potential in Los Angeles based on data from the University of Southern California’s Particle Instrumentation Unit, with chemical composition retrieved from the EPA’s Air Quality System (AQS). While regulatory interventions have reduced PM2.5 mass concentration and primary combustion-related components, our findings reveal a more complex toxicity pattern. From 2001 to 2008, the PM2.5 oxidative potential, measured via the dithiothreitol (DTT) assay, declined from ~0.84 to ~0.16 nmol/min/m3 under stringent tailpipe controls. However, after this initial decline, PM2.5 DTT stabilized and gradually increased from ~0.35 in 2012 to ~0.97 nmol/min/m3 by 2024, reflecting the growing influence of non-tailpipe emissions such as brake/tire wear. Metals, such as iron (Fe, ~150 ng/m3) and zinc (Zn, ~10 ng/m3), remained relatively stable as organic and elemental carbon (OC and EC) declined, resulting in non-tailpipe contributions dominating PM2.5 toxicity. Although PM2.5 mass concentrations were effectively reduced, the growing contribution of non-tailpipe emissions (e.g., brake/tire wear and secondary organic aerosols) underscores the limitations of mass-based standards and tailpipe-focused strategies. Our findings emphasize the need to broaden regulatory strategies, targeting emerging sources that shape PM2.5 composition and toxicity and ensuring more improvements in public health outcomes. Full article
(This article belongs to the Special Issue Air Pollutant Exposure and Respiratory Injury)
Show Figures

Graphical abstract

16 pages, 6346 KiB  
Article
Intra-Annual Growth Dynamics and Environmental Response of Leaves, Shoots and Stems in Quercus serrata on Lushan Mountain, Subtropical China
by Dina Fu, Wenpeng Zhang, Xinsheng Liu, Yesi Zhao, Lian Sun, Sirui Zhang and Zilong Chen
Forests 2025, 16(2), 305; https://doi.org/10.3390/f16020305 - 10 Feb 2025
Viewed by 857
Abstract
Primary and secondary growth of trees are key components of carbon sequestration in forest ecosystems. However, the temporal relationships between primary and secondary growth as well as their responses to environmental variations are still poorly understood. Herein, we continuously measured the intra-annual leaf, [...] Read more.
Primary and secondary growth of trees are key components of carbon sequestration in forest ecosystems. However, the temporal relationships between primary and secondary growth as well as their responses to environmental variations are still poorly understood. Herein, we continuously measured the intra-annual leaf, shoot and stem growth of Quercus serrata for two years on Lushan Mountain, southeastern China. Our results showed that shoots were ranked as the first organ to initiate, peak and cease growth, rather than leaves and stems. Moreover, the phenological stages of shoot growth were negatively associated with those of leaves and stems, whereas there was a weak positive correlation in phenological events between leaves and stems. These temporal connections in phenological events between primary and secondary growth suggest a prioritized carbon allocation to shoot growth and a high dependence of stem growth on carbon from newly developing leaves. Although stem growth started earlier in response to the warmer spring in 2018 compared to the colder spring in 2017, no significant difference in annual increment was observed between years, which was related to the more severe drought condition during the dry season in 2018. At the intra-annual scale, different organs generally had a consistent growth response to temperature variables but showed a divergent response to vapor pressure deficit. Despite a relatively short observational period and potential bias in spatial representativeness, our data provide nuanced knowledge on seasonal growth dynamics in primary and secondary of broadleaved species, underlining the importance of jointly considering intra-seasonal variabilities of environmental conditions in order to correctly predict tree growth response to climate change in subtropical regions. Full article
(This article belongs to the Special Issue Drought Impacts on Wood Anatomy and Tree Growth)
Show Figures

Figure 1

20 pages, 1233 KiB  
Review
Chemical Production Based on Biomass—Potential and Limits
by Manfred Kircher
Biomass 2025, 5(1), 8; https://doi.org/10.3390/biomass5010008 - 5 Feb 2025
Viewed by 2430
Abstract
As the raw material transition from fossil to renewable feedstock progresses, the demand for biogenic raw materials for industrial purposes will increase. This applies above all to the energy and chemical sectors. However, the capacities for biogenic energy and carbon sources to be [...] Read more.
As the raw material transition from fossil to renewable feedstock progresses, the demand for biogenic raw materials for industrial purposes will increase. This applies above all to the energy and chemical sectors. However, the capacities for biogenic energy and carbon sources to be provided by agriculture and forestry are limited. This review examines the contribution that biogenic raw materials and CO2 from biogenic sources can make to sustainable chemical production in the EU. It analyses statistical data from the EU and studies from the chemical industry. First priority needs to be given to edible biomass for the sector of nutrition. When it comes to the industrial use of biomass, sectors should be prioritised that cannot do without carbon-supplying raw materials. This is particularly the case in the field of organic chemistry. This review focuses on bio-based organic chemical products and gives an outlook on the future of chemical production in Europe based on primary, secondary, and tertiary biomass and CO2 from biogenic sources. Finally, two new indicators for economically and ecologically sustainable industrial use of biomass are proposed. Both indicators can support the determination of the sustainability status of the sustainable integration of agriculture, forestry, residual, and biowaste management in bioeconomic value networks. Full article
Show Figures

Figure 1

15 pages, 2678 KiB  
Article
Primary Particulate Matter and Aerosol Emissions from Biodiesel Engines During Idling in Plateau Environments of China
by Dingmin Xu, Hongyang Yu, Wenjie Cai, Jiacheng Xu and Jiaqiang Li
Sustainability 2025, 17(3), 976; https://doi.org/10.3390/su17030976 - 25 Jan 2025
Cited by 1 | Viewed by 1557
Abstract
Diesel vehicles are recognized as significant mobile sources of particulate matter emissions. As a renewable and environmentally friendly alternative to conventional fossil diesel, biodiesel offers the benefit of reducing greenhouse gas emissions. However, existing research on biodiesel emissions primarily focuses on primary emissions, [...] Read more.
Diesel vehicles are recognized as significant mobile sources of particulate matter emissions. As a renewable and environmentally friendly alternative to conventional fossil diesel, biodiesel offers the benefit of reducing greenhouse gas emissions. However, existing research on biodiesel emissions primarily focuses on primary emissions, with a limited understanding of their impact on secondary organic aerosol (SOA) formation. In this study, a diesel engine test bench was employed under idle conditions using three commonly used biodiesel blends. Exhaust emissions were directly introduced into the HAP-SWFU chamber, a quartz glass smog chamber designed to characterize both primary emissions and SOA formation during the photochemical oxidation process. The black carbon and primary organic aerosol (POA) emission factors for the three biodiesel blends under idle conditions ranged from 0.31 to 0.58 g kg−1 fuel and 0.99 to 1.06 g kg−1 fuel, respectively. The particle size of exhaust particulates peaked between 20 and 30 nm, and nucleation-idle conditions were found to be the dominating mode. The SOA production factor was between 0.92 and 1.15 g kg−1 fuel, and the SOA/POA ratio ranged from 1.35 to 2.37, with an average of 1.86. This study concludes that the POA emission factor for biodiesel under idle conditions is comparable to values reported in previous studies on pure diesel exhaust, with the maximum SOA production factor reduced by 38%. Full article
(This article belongs to the Section Pollution Prevention, Mitigation and Sustainability)
Show Figures

Figure 1

23 pages, 19751 KiB  
Article
ApWD40a, a Member of the WD40-Repeat Protein Family, Is Crucial for Fungal Development, Toxin Synthesis, and Pathogenicity in the Ginseng Alternaria Leaf Blight Fungus Alternaria panax
by Jinling Lan, Shengjie Mei, Yingxue Du, Meili Chi, Jiayi Yang, Shuliu Guo, Mingliang Chu, Ronglin He and Jie Gao
J. Fungi 2025, 11(1), 59; https://doi.org/10.3390/jof11010059 - 14 Jan 2025
Viewed by 1005
Abstract
Alternaria panax, the primary pathogen that causes ginseng Alternaria leaf blight disease, can lead to a 20–30% reduction in ginseng yield. WD40 repeat-containing proteins are evolutionarily conserved proteins with diverse functions between different organisms. In this study, we characterized the roles of [...] Read more.
Alternaria panax, the primary pathogen that causes ginseng Alternaria leaf blight disease, can lead to a 20–30% reduction in ginseng yield. WD40 repeat-containing proteins are evolutionarily conserved proteins with diverse functions between different organisms. In this study, we characterized the roles of a WD40 repeat-containing protein in A. panax. The deletion of ApWD40a impaired the mycelial growth, reduced the sporulation, and significantly decreased the efficiency in utilizing various carbon sources. The ΔApwd40a mutant showed increased sensitivity to osmotic stress and metal ion stress induced by sorbitol, NaCl, and KCl, but decreased the sensitivity to a cell wall stress factor (SDS) and oxidative stress factors (paraquat and H2O2). Pathogenicity assays performed on detached ginseng leaves and roots revealed that the disruption of ApWD40a significantly decreased the fungal virulence through attenuating melanin and mycotoxin production by A. panax. A comparative transcriptome analysis revealed that ApWD40a was involved in many metabolic and biosynthetic processes, including amino acid metabolism, carbon metabolism, sulfate metabolic pathways, and secondary metabolite pathways. In particular, a significantly upregulated gene that encoded a sulfate permease 2 protein in ΔApwd40a, named ApSulP2, was deleted in the wild-type strain of A. panax. The deletion of ApSulP2 resulted in reduced biomass under sulfate-free conditions, demonstrating that the sulfate transport was impaired. Taken together, our findings highlight that ApWD40a played crucial roles in different biological processes and the pathogenicity of A. panax through modulating the expressions of genes involved in various primary and secondary metabolic processes. Full article
(This article belongs to the Section Fungal Genomics, Genetics and Molecular Biology)
Show Figures

Figure 1

25 pages, 4779 KiB  
Article
Metabolomics and Transcriptomics Reveal the Effects of Different Fermentation Times on Antioxidant Activities of Ophiocordyceps sinensis
by Min He, Tao Wang, Chuyu Tang, Mengjun Xiao, Xiaojian Pu, Jianzhao Qi, Yuling Li and Xiuzhang Li
J. Fungi 2025, 11(1), 51; https://doi.org/10.3390/jof11010051 - 9 Jan 2025
Cited by 5 | Viewed by 1442
Abstract
Ophiocordyceps sinensis is a fungus that is cultured through fermentation from wild Chinese cordyceps. While studies have examined its metabolites, the evaluation of its antioxidant capacity remains to be conducted. The antioxidant results of O. sinensis indicate that the ferric ion-reducing antioxidant power [...] Read more.
Ophiocordyceps sinensis is a fungus that is cultured through fermentation from wild Chinese cordyceps. While studies have examined its metabolites, the evaluation of its antioxidant capacity remains to be conducted. The antioxidant results of O. sinensis indicate that the ferric ion-reducing antioxidant power (FRAP), antioxidant capacity (2.74 ± 0.12 μmol Trolox/g), 2,2-diphenyl-1-picrylhydrazyl (DPPH•) free radical scavenging rate (60.21 ± 0.51%), and the hydroxyl free radical scavenging rate (91.83 ± 0.68%) reached a maximum on day 30. Using LC-MS/MS to measure the metabolites on D24, D30, and D36, we found that the majority of the differential accumulated metabolites (DAMs) primarily accumulate in lipids, organoheterocyclic compounds, and organic acids and their derivatives. Notably, the DAMs exhibiting high peaks include acetylcarnitine, glutathione, linoleic acid, and L-propionylcarnitine, among others. The transcriptome analysis results indicate that the differentially expressed genes (DEGs) exhibiting high expression peaks on D30 primarily included lnaA, af470, and ZEB1; high expression peaks on D24 comprised SPBC29A3.09c and YBT1; high expression peaks on D36 included dtxS1, PA1538, and katG. The combined analysis revealed significant and extremely significant positive and negative correlations between all the DAMs and DEGs. The primary enriched pathways (p < 0.05) included glutathione metabolism, tryptophan metabolism, carbon metabolism, biosynthesis of secondary metabolites, and phenylalanine metabolism. The metabolic pathway map revealed that the DAMs and DEGs influencing the antioxidant activity of O. sinensis were significantly up-regulated on D30 but down-regulated on D36. The correlation analysis suggests that an increase in the content of DEGs and DAMs promotes an increase in the levels of enzyme and non-enzyme substances, ultimately enhancing the antioxidant capacity of O. sinensis. These findings serve as a reference of how DAMs and DEGs affect the antioxidant activity of O. sinensis. This may contribute to the enhanced development and application of O. sinensis. Full article
Show Figures

Figure 1

Back to TopTop