Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (101)

Search Parameters:
Keywords = search friction

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 6089 KiB  
Article
An Optimized 1-D CNN-LSTM Approach for Fault Diagnosis of Rolling Bearings Considering Epistemic Uncertainty
by Onur Can Kalay
Machines 2025, 13(7), 612; https://doi.org/10.3390/machines13070612 - 16 Jul 2025
Viewed by 279
Abstract
Rolling bearings are indispensable but also the most fault-prone components of rotating machinery, typically used in fields such as industrial aircraft, production workshops, and manufacturing. They encounter diverse mechanical stresses, such as vibration and friction during operation, which may lead to wear and [...] Read more.
Rolling bearings are indispensable but also the most fault-prone components of rotating machinery, typically used in fields such as industrial aircraft, production workshops, and manufacturing. They encounter diverse mechanical stresses, such as vibration and friction during operation, which may lead to wear and fatigue cracks. From this standpoint, the present study combined a 1-D convolutional neural network (1-D CNN) with a long short-term memory (LSTM) algorithm for classifying different ball-bearing health conditions. A physics-guided method that adopts fault characteristics frequencies was used to calculate an optimal input size (sample length). Moreover, grid search was utilized to optimize (1) the number of epochs, (2) batch size, and (3) dropout ratio and further enhance the efficacy of the proposed 1-D CNN-LSTM network. Therefore, an attempt was made to reduce epistemic uncertainty that arises due to not knowing the best possible hyper-parameter configuration. Ultimately, the effectiveness of the physics-guided optimized 1-D CNN-LSTM was tested by comparing its performance with other state-of-the-art models. The findings revealed that the average accuracies could be enhanced by up to 20.717% with the help of the proposed approach after testing it on two benchmark datasets. Full article
(This article belongs to the Section Machines Testing and Maintenance)
Show Figures

Figure 1

29 pages, 3288 KiB  
Article
Non-Vertical Well Trajectory Design Based on Multi-Objective Optimization
by Xiaowei Li, Yu Li, Yang Wu, Zhaokai Hou and Haipeng Gu
Appl. Sci. 2025, 15(14), 7862; https://doi.org/10.3390/app15147862 - 14 Jul 2025
Viewed by 172
Abstract
The optimization and control of the wellbore trajectory is one of the important technologies to improve drilling efficiency, reduce drilling cost, and ensure drilling safety in the process of modern oil and gas exploration and development. In this paper, a multi-objective wellbore trajectory [...] Read more.
The optimization and control of the wellbore trajectory is one of the important technologies to improve drilling efficiency, reduce drilling cost, and ensure drilling safety in the process of modern oil and gas exploration and development. In this paper, a multi-objective wellbore trajectory optimization mathematical model is established, which takes into account the five factors of wellbore trajectory length, friction, torque, trajectory complexity, and target accuracy. A DR-NSGA-III-MGA algorithm (dynamic reference NSGA-III with multi-granularity adaptation) is proposed. By introducing multi-granularity reference vector generation and an information entropy-guided search direction adaptation mechanism, the performance of the algorithm in the complex target space is improved, and the three-stage wellbore trajectory is optimized. Simulation experiments show that the DR-NSGA-III-MGA algorithm is stable in a variety of complex problems, while maintaining good convergence, and has good generalization ability and practical application value. Full article
(This article belongs to the Section Earth Sciences)
Show Figures

Figure 1

26 pages, 5337 KiB  
Article
Dynamic Error Compensation Control of Direct-Driven Servo Electric Cylinder Terminal Positioning System
by Mingwei Zhao, Lijun Liu, Zhi Chen, Qinghua Yang and Xiaowei Tu
Actuators 2025, 14(7), 317; https://doi.org/10.3390/act14070317 - 25 Jun 2025
Viewed by 271
Abstract
In this work, we aimed to determine the nonlinear disturbance caused by cascaded coupling rigid–flexible deformation and friction in a direct-driven servo electric cylinder terminal positioning system (DDSEC-TPS) during feed motion of an intermittent, reciprocating, and time-varying load. For this purpose, a cascaded [...] Read more.
In this work, we aimed to determine the nonlinear disturbance caused by cascaded coupling rigid–flexible deformation and friction in a direct-driven servo electric cylinder terminal positioning system (DDSEC-TPS) during feed motion of an intermittent, reciprocating, and time-varying load. For this purpose, a cascaded coupling dynamic error model of DDSEC-TPS was established based on the position–pose error model of the parallel motion platform and the rotor field-oriented vector transform. Then, a model to observe the dynamic error of the DDSEC-TPS was established using the improved beetle antennae search algorithm backpropagation neural network (IBAS-BPNN) prediction model according to the rigid–flexible deformation error theory of feed motion, and the observed dynamic error was compensated for in the vector control strategy of the DDSEC-TPS. The length and error prediction models were trained and validated using opposite and mixed datasets tested on the experimental platform, to observe dynamic errors and evaluate and optimize the prediction models. The experimental results show that dynamic error compensation can improve the position tracking accuracy of the DDSEC-TPS and the position–pose performance of the parallel motion platform. This study is of great significance for improving the consistency of following multiple DDSEC-TPSs and the position–pose accuracy of parallel motion platforms. Full article
(This article belongs to the Section Control Systems)
Show Figures

Figure 1

13 pages, 375 KiB  
Systematic Review
A Literature Review of the Lubricants Used in Dermatome-Assisted Split-Thickness Skin Graft Harvest
by William Wright, Marc Ingram and Quentin Frew
J. Clin. Med. 2025, 14(12), 4336; https://doi.org/10.3390/jcm14124336 - 18 Jun 2025
Viewed by 374
Abstract
Background: Split-thickness skin grafts (STSGs) are utilised to close wounds which cannot be closed by primary closure. Dermatome-assisted STSG harvest utilises a lubricant to control friction, which facilitates graft harvest. Many different lubricants are used during graft harvest, although little research has been [...] Read more.
Background: Split-thickness skin grafts (STSGs) are utilised to close wounds which cannot be closed by primary closure. Dermatome-assisted STSG harvest utilises a lubricant to control friction, which facilitates graft harvest. Many different lubricants are used during graft harvest, although little research has been conducted to identify the optimal lubricant. Furthermore, new techniques such as Meek grafting are incompatible with commonly used oil-based lubricants. Method: A literature search was conducted, following the PRISMA protocol. 173 records were screened with 6 included in this study. We also reviewed the literature on lubricants in other biotribological systems including shaving. Results: We found support for numerous lubricants, including: mineral oil, catheter gel, chlorhexidine, saline and ultrasound gel. Evidence consisted of expert opinions, and one blinded comparative review. There was no consensus on the optimal lubricant, and we did not find evidence that lubricant compatibility with Meek grafting had been assessed. Conclusions: Presently, lubrication choice in STSG harvest lacks a scientific basis, and further research is needed to design a bespoke, Meek-compatible lubricant which considers only four of Engelhardt’s characteristics (1. cost-effectiveness; 4. lubrication; 6. no side effects; 8. practicability) to be essential. This should be followed by a blinded trial of lubricants. Full article
(This article belongs to the Special Issue Experimental and Clinical Advances in Skin Grafting)
Show Figures

Figure 1

20 pages, 5393 KiB  
Article
Robust Optimization of Hydraulic Fracturing Design for Oil and Gas Scientists to Develop Shale Oil Resources
by Qiang Lin, Wen Fang, Li Zhang, Qiuhuan Mu, Hui Li, Lizhe Li and Bo Wang
Processes 2025, 13(6), 1920; https://doi.org/10.3390/pr13061920 - 17 Jun 2025
Viewed by 435
Abstract
Shale plays with pre-existing natural fractures can yield significant production when operating horizontal wells with multi-stage hydraulic fracturing (HWMHF). This work proposes a general, robust, and integrated framework for estimating optimal HWMHF design parameters in an unconventional naturally fractured oil reservoir. This work [...] Read more.
Shale plays with pre-existing natural fractures can yield significant production when operating horizontal wells with multi-stage hydraulic fracturing (HWMHF). This work proposes a general, robust, and integrated framework for estimating optimal HWMHF design parameters in an unconventional naturally fractured oil reservoir. This work considers uncertainty in both the distribution of the natural fractures and uncertainty in three geo-mechanical parameters: the internal friction factor, the cohesion coefficient, and the tensile strength. Because a maximum of five design variables is considered, it is appropriate to apply derivative-free algorithms. This work considers versions of the genetic algorithm (GA), particle swarm optimization (PSO), and general pattern search (GPS) algorithms. The forward model consists of two linked software programs: a geo-mechanical simulator and an unconventional shale oil simulator. The two simulators run sequentially during the optimization process without human intervention. The in-house geo-mechanical simulator model provides sufficient computational efficiency so that it is feasible to solve the robust optimization problem. An embedded discrete fracture model (EDFM) is implemented to model large-scale fractures. Two cases strongly verified the feasibility of the framework for the optimization of HWMHF, and the average comprehensive NPV increases by 35% and 102.4%, respectively. By comparison, the pattern search algorithm is more suitable for HWMHF optimization. In this way, oil and gas scientists are contributing to the energy industry more accurately and resolutely. Full article
(This article belongs to the Special Issue Advances in Unconventional Reservoir Development and CO2 Storage)
Show Figures

Figure 1

13 pages, 476 KiB  
Systematic Review
Effects of Vibration Foam Rolling on Pain, Fatigue, and Range of Motion in Individuals with Muscle Fatigue: A Systematic Review
by Seju Park and Byeonggeun Kim
Healthcare 2025, 13(12), 1391; https://doi.org/10.3390/healthcare13121391 - 11 Jun 2025
Viewed by 1512
Abstract
Background/Objectives: Vibration foam rolling (VFR) has emerged as a popular intervention in sports and rehabilitation settings to enhance recovery and flexibility. This systematic review aimed to evaluate the effects of VFR on pain, fatigue, and range of motion (ROM) in individuals experiencing exercise-induced [...] Read more.
Background/Objectives: Vibration foam rolling (VFR) has emerged as a popular intervention in sports and rehabilitation settings to enhance recovery and flexibility. This systematic review aimed to evaluate the effects of VFR on pain, fatigue, and range of motion (ROM) in individuals experiencing exercise-induced muscle fatigue and to assess its clinical applicability. Methods: A systematic literature search was conducted across five databases: PubMed, Cochrane Library, Embase, Web of Science, and CINAHL. Studies were included if they involved participants with muscle fatigue, applied VFR as an intervention, and measured outcomes related to pain, fatigue, or ROM. Methodological quality was assessed using the Joanna Briggs Institute critical appraisal tools. Results: Eight studies published between 2019 and 2024 met the inclusion criteria. VFR showed beneficial effects in reducing delayed onset muscle soreness, improving pressure pain threshold, and lowering subjective fatigue. Several studies also reported increased ROM in specific joints, including the hip and knee. However, findings across studies were inconsistent, particularly in physiological markers such as muscle oxygen saturation and blood flow parameters, where statistically significant differences were not always observed. Conclusions: VFR may offer potential benefits for pain relief, fatigue recovery, and ROM improvement in fatigued individuals. Nonetheless, its effects remain difficult to isolate from those of mechanical pressure and friction associated with foam rolling. Future studies with standardized intervention protocols and long-term follow-up are needed to clarify the independent role of vibration in recovery outcomes. Full article
(This article belongs to the Special Issue Physical Fitness—Effects on Muscle Function and Sports Performance)
Show Figures

Figure 1

19 pages, 2782 KiB  
Article
Numerical Study of the Condenser of a Small CO2 Refrigeration Unit Operating Under Supercritical Conditions
by Piotr Szymczak, Piotr Bogusław Jasiński and Marcin Łęcki
Energies 2025, 18(11), 2992; https://doi.org/10.3390/en18112992 - 5 Jun 2025
Viewed by 399
Abstract
The paper presents a numerical analysis of a tube-in-tube condenser of a small refrigeration system. One of the challenges in designing such units is to reduce their dimensions while maintaining the highest possible cooling capacity, so the research presented here focuses on the [...] Read more.
The paper presents a numerical analysis of a tube-in-tube condenser of a small refrigeration system. One of the challenges in designing such units is to reduce their dimensions while maintaining the highest possible cooling capacity, so the research presented here focuses on the search for and impact of the appropriate flow conditions of these two fluids on condenser performance. The refrigerant is supercritical CO2, which is cooled by water. Thermal-flow simulations were performed for eight CO2 inlet velocities in the range of 1–8 m/s, and four cooling water velocities of 0.5–2 m/s. The main parameters of the exchanger operation were analyzed: heat transfer coefficient, Nusselt number, overall heat transfer coefficient, and friction factor, which were compared with selected correlations. The results showed that the condenser achieves the highest power for the highest water velocities (2 m/s) and CO2 (8 m/s), i.e., over 1000 W, which corresponds to a heat flux on the tube surface of approx. 2.6 × 105 W/m2 and a heat transfer coefficient of approx. 4700 W/m2K. One of the most important conclusions is the discovery of a significant effect of water velocity on heat transfer from the CO2 side—an increase in water velocity from 0.5 m/s to 2 m/s results in an increase in the heat transfer coefficient sCO2 by over 60%, with the same Re number. The implication of this study is to show the possibility of adjusting and selecting condenser parameters over a wide range of capacities, just by changing the fluid velocity. Full article
(This article belongs to the Special Issue Advances in Supercritical Carbon Dioxide Cycle)
Show Figures

Figure 1

20 pages, 2949 KiB  
Article
Optimal Design Methodology of Maxwell–Coulomb Friction Damper
by Chun-Nam Wong and Wai-On Wong
Vibration 2025, 8(2), 25; https://doi.org/10.3390/vibration8020025 - 19 May 2025
Viewed by 475
Abstract
The optimal design methodology for a Maxwell–Coulomb friction damper is proposed to minimize the resonant vibration of dynamic structures. The simple Coulomb friction damper has the problem of zero or little damping effect of the vibration of the spring–mass dynamic system at resonance. [...] Read more.
The optimal design methodology for a Maxwell–Coulomb friction damper is proposed to minimize the resonant vibration of dynamic structures. The simple Coulomb friction damper has the problem of zero or little damping effect of the vibration of the spring–mass dynamic system at resonance. This problem is solved in the case of the Maxwell–Coulomb friction damper, which is formed by combining a Coulomb friction damper with a spring element in series. However, the design and analysis of the Maxwell–Coulomb friction damper become much more complicated. The optimal design methodology for this nonlinear damper is proposed in this article. The nonlinear equations of motion of the proposed damper are modelled, and its hysteresis loop can be constructed by combining four different cases of stick–slide motion. Motion responses of the turbine blade with the proposed damper are solved by a central difference solver. Optimal paths of damping and stiffness ratios are determined by the central difference Newton search method. The optimal experimental design is ascertained using a prototype damper test. Close correlation with its numerical simulations is observed in our hysteresis loop comparison. The performance of the proposed damper is also compared to that of a viscous damper in the seismic response design of adjacent single-story buildings. Full article
(This article belongs to the Special Issue Vibration Damping)
Show Figures

Figure 1

32 pages, 6249 KiB  
Article
On the Effectiveness of Optimisation Algorithms for Hydrodynamic Lubrication Problems
by František Kocman and Pavel Novotný
Lubricants 2025, 13(5), 207; https://doi.org/10.3390/lubricants13050207 - 8 May 2025
Cited by 1 | Viewed by 514
Abstract
In many applications, it is necessary to optimise the performance of hydrodynamic (HD) bearings. Many studies have proposed different strategies, but there remains a lack of conclusive research on the suitability of various optimisation methods. This study evaluates the most commonly used algorithms, [...] Read more.
In many applications, it is necessary to optimise the performance of hydrodynamic (HD) bearings. Many studies have proposed different strategies, but there remains a lack of conclusive research on the suitability of various optimisation methods. This study evaluates the most commonly used algorithms, including the genetic (GA), particle swarm (PSWM), pattern search (PSCH) and surrogate (SURG) algorithms. The effectiveness of each algorithm in finding the global minimum is analysed, with attention to the parameter settings of each algorithm. The algorithms are assessed on HD journal and thrust bearings, using analytical and numerical solutions for friction moment, bearing load-carrying capacity and outlet lubricant flow rate under multiple operating conditions. The results indicate that the PSCH algorithm was the most efficient in all cases, excelling in both finding the global minimum and speed. While the PSWM algorithm also reliably found the global minimum, it exhibited lower speed in the defined problems. In contrast, genetic algorithms and the surrogate algorithm demonstrated significantly lower efficiency in the tested problems. Although the PSCH algorithm proved to be the most efficient, the PSWM algorithm is recommended as the best default choice due to its ease of use and minimal sensitivity to parameter settings. Full article
(This article belongs to the Special Issue Advances in Lubricated Bearings, 2nd Edition)
Show Figures

Figure 1

17 pages, 5648 KiB  
Article
Performance Evaluation of Highly Modified Asphalt-Based Binders in High Friction Surface Treatment: Comparative Study with Epoxy-Based System
by Alireza Roshan, Magdy Abdelrahman and Mohyeldin Ragab
Buildings 2025, 15(9), 1425; https://doi.org/10.3390/buildings15091425 - 23 Apr 2025
Cited by 1 | Viewed by 380
Abstract
High Friction Surface Treatments (HFSTs) are frequently used to increase skid resistance and reduce collisions, particularly in crash-prone zones, including horizontal curves and intersections. Epoxy-based binders traditionally have been the sole option for HFSTs, but their drawbacks, such as high costs and compatibility [...] Read more.
High Friction Surface Treatments (HFSTs) are frequently used to increase skid resistance and reduce collisions, particularly in crash-prone zones, including horizontal curves and intersections. Epoxy-based binders traditionally have been the sole option for HFSTs, but their drawbacks, such as high costs and compatibility challenges, have led to the search for substitute binders, including asphalt-based options. This study investigates the comparative performance of highly modified asphalt-based binders, including polymer-modified, mastic, and highly modified emulsions, in HFST applications using two aggregate types, Calcined Bauxite (CB) and Rhyolite with different gradations, with an emphasis on their frictional properties, durability, and resistance to polishing. Laboratory evaluations, including the Pendulum Tester (BPT), Dynamic Friction Testing Equipment (DFT), Surface Texture Measurement Apparatus (CTM), and Binder Bond Strength Test (BBS), were carried out to examine the Coefficient of Friction (COF), Mean Profile Depth (MPD), and aggregate bonding and retention. In terms of durability and friction, this study indicated that highly modified asphalt-based binders performed better than PG binders and conventional emulsions. The highest BPT values, both prior to and following polishing, were consistently observed for CB, with the emulsion containing the highest reactive polymer modifier showing the smallest decrease in BPT value (12.86% for CB and 10.34% for Rhyolite). Epoxy showed a greater COF retention over lengthy polishing cycles; however, highly polymer-modified (PM) binders like PG82-22 (PM) performed better than Epoxy under specific conditions. The macrotexture analysis revealed that Epoxy-based samples retained surface texture for further polishing cycles, while Mastic2 and PG82-22 (PM) also showed strong MPD retention. These findings highlight the importance of optimizing aggregate–binder combinations to ensure durable and effective HFST applications. Full article
(This article belongs to the Special Issue New Technologies for Asphalt Pavement Materials and Structures)
Show Figures

Figure 1

17 pages, 2619 KiB  
Article
Optimizing Hyaluronan-Based Lubricants for Treating Thoracolumbar Fascia Pathologies: Insights from Tribological and Pharmacokinetic Studies
by Alexandra Streďanská, Matěj Šimek, Jana Matonohová, David Nečas, Martin Vrbka, Jakub Suchánek, Veronika Pavliňáková, Lucy Vojtová, Martin Hartl, Ivan Křupka and Kristina Nešporová
Lubricants 2025, 13(4), 184; https://doi.org/10.3390/lubricants13040184 - 16 Apr 2025
Cited by 1 | Viewed by 838
Abstract
In a world where the incidence of non-specific lower back pain (LBP) is steadily increasing, researchers are still searching for effective solutions for patients. Hyaluronic acid (HA) viscosupplementation is commonly used to restore lubrication in osteoarthritis (OA) and other medical applications, but its [...] Read more.
In a world where the incidence of non-specific lower back pain (LBP) is steadily increasing, researchers are still searching for effective solutions for patients. Hyaluronic acid (HA) viscosupplementation is commonly used to restore lubrication in osteoarthritis (OA) and other medical applications, but its rapid metabolism limits efficacy. This study evaluates whether an HA derivative can replace native HA for the treatment of non-specific LBP while maintaining or enhancing its frictional properties and improving in vivo stability. Six HA-based lubricants, both native and derivatized, were tested in a tribological rabbit fascia model and a new synthetic model. Reduced HA derivative showed better tribological properties and longer in vivo residence time compared to native HA, as demonstrated in pharmacokinetic studies in rabbits. The 316 kDa HA and reduced HA exhibited the most stable tribological properties, which were influenced by their molecular weight and concentration. These findings suggest that both native and reduced HA are promising viscosupplements for intrafascial injection in the treatment of LBP, with reduced HA potentially enhancing effectiveness through a prolonged effect. Full article
Show Figures

Figure 1

19 pages, 3392 KiB  
Article
Tension-Aware Motion Planning for Tethered Robots
by Rogério R. Lima and Guilherme A. S. Pereira
Robotics 2025, 14(2), 11; https://doi.org/10.3390/robotics14020011 - 28 Jan 2025
Viewed by 1118
Abstract
This paper presents a path-planning approach for tethered robots. The proposed planner finds paths that minimize the tether tension due to tether–obstacle and tether–floor interaction. The method assumes that the tether is managed externally by a tether management system and pulled by the [...] Read more.
This paper presents a path-planning approach for tethered robots. The proposed planner finds paths that minimize the tether tension due to tether–obstacle and tether–floor interaction. The method assumes that the tether is managed externally by a tether management system and pulled by the robot. The planner is initially formulated for ground robots in a 2D environment and then extended for 3D scenarios, where it can be applied to tethered aerial and underwater vehicles. The proposed approach assumes a taut tether between two consecutive contact points and knowledge of the coefficient of friction of the obstacles present in the environment. The method first computes the visibility graph of the environment, in which each node represents a vertex of an obstacle. Then, a second graph, named the tension-aware graph, is built so that the tether–environment interaction, formulated in terms of tension, is computed and used as the cost of the edges. A graph search algorithm (e.g., Dijkstra) is then used to compute a path with minimum tension, which can help the tethered robot reach longer distances by minimizing the tension required to drag the tether along the way. This paper presents simulations and a real-world experiment that illustrate the characteristics of the method. Full article
(This article belongs to the Special Issue Autonomous Robotics for Exploration)
Show Figures

Figure 1

17 pages, 3706 KiB  
Article
A Study of the Stability of an Industrial Robot Servo System: PID Control Based on a Hybrid Sparrow Optimization Algorithm
by Pengxiang Wang, Tingping Feng, Changlin Song, Junmin Li and Simon X. Yang
Actuators 2025, 14(2), 49; https://doi.org/10.3390/act14020049 - 23 Jan 2025
Cited by 2 | Viewed by 1482
Abstract
Industrial robots can cause servo system instability during operation due to friction between joints and changes in end loads, which results in jittering of the robotic arm. Therefore, this paper proposes a hybrid sparrow search algorithm (HSSA) method for PID parameter optimization. By [...] Read more.
Industrial robots can cause servo system instability during operation due to friction between joints and changes in end loads, which results in jittering of the robotic arm. Therefore, this paper proposes a hybrid sparrow search algorithm (HSSA) method for PID parameter optimization. By studying the optimization characteristics of the genetic algorithm (GA) and sparrow search algorithm (SSA), the method combines the global optimization ability of GA and the local optimization ability of SSA, thus effectively reducing the risk of SSA falling into local optimum and improving the ability of SSA to find global optimization solutions. On the basis of the traditional PID control algorithm, HSSA is used to intelligently optimize the PID parameters so that it can better meet the nonlinear motion of the industrial robot servo system. It is proven through experiments that the HSSA in this paper, compared with GA, SSA, and traditional PID, has a maximum improvement of 73% in the step response time and a maximum improvement of more than 95% in the iterative optimization search speed. The experimental results show that the method has a good suppression effect on the jitter generated by industrial robots in motion, effectively improving the stability of the servo system, so this work greatly improves the stability and safety of industrial robots in operation. Full article
(This article belongs to the Section Actuators for Robotics)
Show Figures

Figure 1

21 pages, 12005 KiB  
Article
Shear Wave Velocity Prediction with Hyperparameter Optimization
by Gebrail Bekdaş, Yaren Aydın, Umit Işıkdağ, Sinan Melih Nigdeli, Dara Hajebi, Tae-Hyung Kim and Zong Woo Geem
Information 2025, 16(1), 60; https://doi.org/10.3390/info16010060 - 16 Jan 2025
Cited by 3 | Viewed by 1483
Abstract
Shear wave velocity (Vs) is an important soil parameter to be known for earthquake-resistant structural design and an important parameter for determining the dynamic properties of soils such as modulus of elasticity and shear modulus. Different Vs measurement methods are [...] Read more.
Shear wave velocity (Vs) is an important soil parameter to be known for earthquake-resistant structural design and an important parameter for determining the dynamic properties of soils such as modulus of elasticity and shear modulus. Different Vs measurement methods are available. However, these methods, which are costly and labor intensive, have led to the search for new methods for determining the Vs. This study aims to predict shear wave velocity (Vs (m/s)) using depth (m), cone resistance (qc) (MPa), sleeve friction (fs) (kPa), pore water pressure (u2) (kPa), N, and unit weight (kN/m3). Since shear wave velocity varies with depth, regression studies were performed at depths up to 30 m in this study. The dataset used in this study is an open-source dataset, and the soil data are from the Taipei Basin. This dataset was extracted, and a 494-line dataset was created. In this study, using HyperNetExplorer 2024V1, Vs prediction based on depth (m), cone resistance (qc) (MPa), shell friction (fs), pore water pressure (u2) (kPa), N, and unit weight (kN/m3) values could be performed with satisfactory results (R2 = 0.78, MSE = 596.43). Satisfactory results were obtained in this study, in which Explainable Artificial Intelligence (XAI) models were also used. Full article
(This article belongs to the Special Issue Emerging Research on Neural Networks and Anomaly Detection)
Show Figures

Figure 1

20 pages, 5882 KiB  
Article
Contact Parameter Calibration for Discrete Element Potato Minituber Seed Simulation
by Kai Chen, Xiang Yin, Wenpeng Ma, Chengqian Jin and Yangyang Liao
Agriculture 2024, 14(12), 2298; https://doi.org/10.3390/agriculture14122298 - 14 Dec 2024
Cited by 6 | Viewed by 1352
Abstract
The discrete element method (DEM) has been widely applied as a vital auxiliary technique in the design and optimization processes of agricultural equipment, especially for simulating the behavior of granular materials. In this study, the focus is placed on accurately calibrating the simulation [...] Read more.
The discrete element method (DEM) has been widely applied as a vital auxiliary technique in the design and optimization processes of agricultural equipment, especially for simulating the behavior of granular materials. In this study, the focus is placed on accurately calibrating the simulation contact parameters necessary for the V7 potato minituber seed DEM simulation. Firstly, three mechanical tests are conducted, and through a combination of actual tests and simulation tests, the collision recovery coefficient between the seed and rubber material is determined to be 0.469, the static friction coefficient is 0.474, and the rolling friction coefficient is 0.0062. Subsequently, two repose angle tests are carried out by employing the box side plates lifting method and the cylinder lifting method. With the application of the response surface method and a search algorithm based on Matlab 2019, the optimal combination of seed-to-seed contact parameters, namely, the collision recovery coefficient, static friction coefficient, and rolling friction coefficient, is obtained, which are 0.500, 0.476, and 0.043, respectively. Finally, the calibration results are verified by a seed-falling device that combines collisions and accumulation, and it is shown that the relative error between the simulation result and the actual result in the verification test is small. Thus, the calibration results can provide assistance for the design and optimization of the potato minituber seed planter. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

Back to TopTop