Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (44)

Search Parameters:
Keywords = seagrass cover

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 15945 KiB  
Article
Mapping Subtidal Marine Forests in the Mediterranean Sea Using Copernicus Contributing Mission
by Dimitris Poursanidis and Stelios Katsanevakis
Remote Sens. 2025, 17(14), 2398; https://doi.org/10.3390/rs17142398 - 11 Jul 2025
Viewed by 405
Abstract
Mediterranean subtidal reefs host ecologically significant habitats, including forests of Cystoseira spp., which form complex benthic communities within the photic zone. These habitats are increasingly degraded due to climate change, invasive species, and anthropogenic pressures, particularly in the eastern Mediterranean. In support of [...] Read more.
Mediterranean subtidal reefs host ecologically significant habitats, including forests of Cystoseira spp., which form complex benthic communities within the photic zone. These habitats are increasingly degraded due to climate change, invasive species, and anthropogenic pressures, particularly in the eastern Mediterranean. In support of habitat monitoring under the EU Natura 2000 directive and the Nature Restoration Regulation, this study investigates the utility of high-resolution satellite remote sensing for mapping subtidal brown algae and associated benthic classes. Using imagery from the SuperDove sensor (Planet Labs, San Francisco, CA, USA), we developed an integrated mapping workflow at the Natura 2000 site GR2420009. Aquatic reflectance was derived using ACOLITE v.20250114.0, and both supervised classification and spectral unmixing were implemented in the EnMAP Toolbox v.3.16.3 within QGIS. A Random Forest classifier (100 fully grown trees) achieved high thematic accuracy across all habitat types (F1 scores: 0.87–1.00), with perfect classification of shallow soft bottoms and strong performance for Cystoseira s.l. (F1 = 0.94) and Seagrass (F1 = 0.93). Spectral unmixing further enabled quantitative estimation of fractional cover, with high predictive accuracy for deep soft bottoms (R2 = 0.99; RPD = 18.66), shallow soft bottoms (R2 = 0.98; RPD = 8.72), Seagrass (R2 = 0.88; RPD = 3.01) and Cystoseira s.l. (R2 = 0.82; RPD = 2.37). The lower performance for rocky reefs with other cover (R2 = 0.71) reflects spectral heterogeneity and shadowing effects. The results highlight the effectiveness of combining classification and unmixing approaches for benthic habitat mapping using CubeSat constellations, offering scalable tools for large-area monitoring and ecosystem assessment. Despite challenges in field data acquisition, the presented framework provides a robust foundation for remote sensing-based conservation planning in optically shallow marine environments. Full article
(This article belongs to the Special Issue Marine Ecology and Biodiversity by Remote Sensing Technology)
Show Figures

Graphical abstract

34 pages, 6121 KiB  
Article
Acute Impacts of Hurricane Ian on Benthic Habitats, Water Quality, and Microbial Community Composition on the Southwest Florida Shelf
by Matthew Cole Tillman, Robert Marlin Smith, Trevor R. Tubbs, Adam B. Catasus, Hidetoshi Urakawa, Puspa L. Adhikari and James G. Douglass
Coasts 2025, 5(2), 16; https://doi.org/10.3390/coasts5020016 - 22 May 2025
Viewed by 2022
Abstract
Tropical cyclones can severely disturb shallow, continental shelf ecosystems, affecting habitat structure, diversity, and ecosystem services. This study examines the impacts of Hurricane Ian on the Southwest Florida Shelf by assessing water quality, substrate type, and epibenthic and microbial community characteristics at eight [...] Read more.
Tropical cyclones can severely disturb shallow, continental shelf ecosystems, affecting habitat structure, diversity, and ecosystem services. This study examines the impacts of Hurricane Ian on the Southwest Florida Shelf by assessing water quality, substrate type, and epibenthic and microbial community characteristics at eight sites (3 to 20 m in depth) before and after Ian’s passage in 2022. Hurricane Ian drastically changed substrate type and biotic cover, scouring away epibenthos and/or burying hard substrates in mud and sand, especially at mid depth (10 m) sites (92–98% loss). Following Hurricane Ian, the greatest losses were observed in fleshy macroalgae (58%), calcareous green algae (100%), seagrass (100%), sessile invertebrates (77%), and stony coral communities (71%), while soft coral (17%) and sponge communities (45%) were more resistant. After Ian, turbidity, chromophoric dissolved organic matter, and dissolved inorganic nitrogen and phosphorus increased at most sites, while total nitrogen, total phosphorus, and silica decreased. Microbial communities changed significantly post Ian, with estuary-associated taxa expanding further offshore. The results show that the shelf ecosystem is highly susceptible to disturbances from waves, deposition and erosion, and water quality changes caused by mixing and coastal discharge. More routine monitoring of this environment is necessary to understand the long-term patterns of these disturbances, their interactions, and how they influence the resilience and recovery processes of shelf ecosystems. Full article
Show Figures

Figure 1

13 pages, 1481 KiB  
Article
Bacterial Carbon Demand and Primary Production in a Posidonia oceanica System: A Re-Evaluation of Carbon Fluxes
by Branko Velimirov and Markus Weinbauer
J. Mar. Sci. Eng. 2025, 13(2), 314; https://doi.org/10.3390/jmse13020314 - 8 Feb 2025
Viewed by 635
Abstract
An earlier ecosystemic study on carbon balance calculations of a Posidonia oceanica system in the Bay of Calvi [Corsica, France], indicated that the bacterial carbon demand [BCD] between May and October [Temp > 18 °C] in the seagrass meadow could not be sustained [...] Read more.
An earlier ecosystemic study on carbon balance calculations of a Posidonia oceanica system in the Bay of Calvi [Corsica, France], indicated that the bacterial carbon demand [BCD] between May and October [Temp > 18 °C] in the seagrass meadow could not be sustained by net leaf production of P. oceanica and its epiphytes [NPP]. Hence, the system was clearly heterotrophic as only one autotrophic region was recorded, namely the depth range from 0–10 m. Already published data on the production of algal macrophytes and Cymodocea nodosa meadows and their mapping in the Bay of Calvi allowed a re-evaluation of the carbon budgets for each specific depth range. It was shown that C. nodosa could contribute significantly to covering the bacterial carbon demand of the P. oceanica system and that a positive carbon balance could be obtained for the seagrass meadow due to this carbon input when the temperature was higher than 18 °C, even though the depth ranges between 21–30 m and 31–38 m were negative. The overall trend indicates that the system cannot rely on the phytoplanktonic production of the water column, as BCD is higher than phytoplanktonic carbon production. When integrating BCD and net primary production [NPP] of the water column in summer we noticed a lack of some 97.6 to 104.3 tons of carbon which is not covered by the seagrasses leaf production and the algal macrophytes. The obtained data indicate clearly that other carbon carbon-producing compartments like the microphytobenthos, the NPP of rhizome epiphytes, and the detrital carbon import into the Bay of Calvi need to be investigated. Full article
(This article belongs to the Section Marine Ecology)
Show Figures

Figure 1

16 pages, 761 KiB  
Review
Remote Sensing Tools for Monitoring Marine Phanerogams: A Review of Sentinel and Landsat Applications
by Noelia Campillo-Tamarit, Juan Víctor Molner and Juan M. Soria
J. Mar. Sci. Eng. 2025, 13(2), 292; https://doi.org/10.3390/jmse13020292 - 4 Feb 2025
Cited by 3 | Viewed by 1271
Abstract
Seagrasses play a pivotal role in maintaining marine ecosystems, supporting biodiversity, and preventing sediment loss during storms. Their capacity for photosynthesis and growth is linked to light availability in the continental shelf waters. Satellite platforms such as Landsat (USGS) and Sentinel (ESA) provide [...] Read more.
Seagrasses play a pivotal role in maintaining marine ecosystems, supporting biodiversity, and preventing sediment loss during storms. Their capacity for photosynthesis and growth is linked to light availability in the continental shelf waters. Satellite platforms such as Landsat (USGS) and Sentinel (ESA) provide accessible imagery for the monitoring of these submerged plants. This study employed the PRISMA methodology to conduct a systematic review of the literature, with the objective of identifying articles focused on these seagrasses and their detection via satellite imagery. The identified methodologies included the use of vegetation and water indices, which were validated through empirical observations, as well as supervised classification algorithms, such as Random Forest, Maximum Likelihood, and Support Vector Machine. These approaches were applied to Mediterranean and other coastal regions, revealing changes in seagrass cover due to anchor damage in tourist areas and trawling scars that resemble plough marks. Such tools are vital for informing management actions, such as the implementation of restrictions on anchoring and bottom trawling, in order to protect these vulnerable ecosystems. By enabling targeted interventions, this approach facilitates the preservation of seagrass meadows, which are also critical for carbon sequestration and the sustainability of marine habitats. Full article
(This article belongs to the Special Issue New Advances in Marine Remote Sensing Applications)
Show Figures

Figure 1

23 pages, 12422 KiB  
Article
Mapping Coastal Marine Habitats Using UAV and Multispectral Satellite Imagery in the NEOM Region, Northern Red Sea
by Emma Sullivan, Nikolaos Papagiannopoulos, Daniel Clewley, Steve Groom, Dionysios E. Raitsos and Ibrahim Hoteit
Remote Sens. 2025, 17(3), 485; https://doi.org/10.3390/rs17030485 - 30 Jan 2025
Viewed by 1930
Abstract
Effective management to conserve marine environments requires up-to-date information on the location, distribution, and extent of major benthic habitats. Remote sensing is a key tool for such assessments, enabling consistent, repeated measurements over large areas. There is particular interest in using freely available [...] Read more.
Effective management to conserve marine environments requires up-to-date information on the location, distribution, and extent of major benthic habitats. Remote sensing is a key tool for such assessments, enabling consistent, repeated measurements over large areas. There is particular interest in using freely available satellite images such as from the Copernicus Sentinel-2 series for accessible repeat assessments. In this study, an area of 438 km2 of the northern Red Sea coastline, adjacent to the NEOM development was mapped using Sentinel-2 imagery. A hierarchical Random Forest classification method was used, where the initial level classified pixels into a geomorphological class, followed by a second level of benthic cover classification. Uncrewed Aerial Vehicle (UAV) surveys were carried out in 12 locations in the NEOM area to collect field data on benthic cover for training and validation. The overall accuracy of the geomorphic and benthic classifications was 84.15% and 72.97%, respectively. Approximately 12% (26.26 km2) of the shallow Red Sea study area was classified as coral or dense algae and 16% (36.12 km2) was classified as rubble. These reef environments offer crucial ecosystem services and are believed to be internationally important as a global warming refugium. Seagrass meadows, covering an estimated 29.17 km2 of the study area, play a regionally significant role in carbon sequestration and are estimated to store 200 tonnes of carbon annually, emphasising the importance of their conservation for meeting the environmental goals of the NEOM megaproject. This is the first map of this region generated using Sentinel-2 data and demonstrates the feasibility of using an open source and reproducible methodology for monitoring coastal habitats in the region. The use of training data derived from UAV imagery provides a low-cost and time-efficient alternative to traditional methods of boat or snorkel surveys for covering large areas in remote sites. Full article
(This article belongs to the Topic Conservation and Management of Marine Ecosystems)
Show Figures

Figure 1

24 pages, 6941 KiB  
Article
Discriminating Seagrasses from Green Macroalgae in European Intertidal Areas Using High-Resolution Multispectral Drone Imagery
by Simon Oiry, Bede Ffinian Rowe Davies, Ana I. Sousa, Philippe Rosa, Maria Laura Zoffoli, Guillaume Brunier, Pierre Gernez and Laurent Barillé
Remote Sens. 2024, 16(23), 4383; https://doi.org/10.3390/rs16234383 - 23 Nov 2024
Cited by 1 | Viewed by 1786
Abstract
Coastal areas support seagrass meadows, which offer crucial ecosystem services, including erosion control and carbon sequestration. However, these areas are increasingly impacted by human activities, leading to habitat fragmentation and seagrass decline. In situ surveys, traditionally performed to monitor these ecosystems, face limitations [...] Read more.
Coastal areas support seagrass meadows, which offer crucial ecosystem services, including erosion control and carbon sequestration. However, these areas are increasingly impacted by human activities, leading to habitat fragmentation and seagrass decline. In situ surveys, traditionally performed to monitor these ecosystems, face limitations on temporal and spatial coverage, particularly in intertidal zones, prompting the addition of satellite data within monitoring programs. Yet, satellite remote sensing can be limited by too coarse spatial and/or spectral resolutions, making it difficult to discriminate seagrass from other macrophytes in highly heterogeneous meadows. Drone (unmanned aerial vehicle—UAV) images at a very high spatial resolution offer a promising solution to address challenges related to spatial heterogeneity and the intrapixel mixture. This study focuses on using drone acquisitions with a ten spectral band sensor similar to that onboard Sentinel-2 for mapping intertidal macrophytes at low tide (i.e., during a period of emersion) and effectively discriminating between seagrass and green macroalgae. Nine drone flights were conducted at two different altitudes (12 m and 120 m) across heterogeneous intertidal European habitats in France and Portugal, providing multispectral reflectance observation at very high spatial resolution (8 mm and 80 mm, respectively). Taking advantage of their extremely high spatial resolution, the low altitude flights were used to train a Neural Network classifier to discriminate five taxonomic classes of intertidal vegetation: Magnoliopsida (Seagrass), Chlorophyceae (Green macroalgae), Phaeophyceae (Brown algae), Rhodophyceae (Red macroalgae), and benthic Bacillariophyceae (Benthic diatoms), and validated using concomitant field measurements. Classification of drone imagery resulted in an overall accuracy of 94% across all sites and images, covering a total area of 467,000 m2. The model exhibited an accuracy of 96.4% in identifying seagrass. In particular, seagrass and green algae can be discriminated. The very high spatial resolution of the drone data made it possible to assess the influence of spatial resolution on the classification outputs, showing a limited loss in seagrass detection up to about 10 m. Altogether, our findings suggest that the MultiSpectral Instrument (MSI) onboard Sentinel-2 offers a relevant trade-off between its spatial and spectral resolution, thus offering promising perspectives for satellite remote sensing of intertidal biodiversity over larger scales. Full article
(This article belongs to the Section Ecological Remote Sensing)
Show Figures

Figure 1

18 pages, 16650 KiB  
Article
Mapping Seagrass Distribution and Abundance: Comparing Areal Cover and Biomass Estimates Between Space-Based and Airborne Imagery
by Victoria J. Hill, Richard C. Zimmerman, Dorothy A. Byron and Kenneth L. Heck
Remote Sens. 2024, 16(23), 4351; https://doi.org/10.3390/rs16234351 - 21 Nov 2024
Cited by 1 | Viewed by 1745
Abstract
This study evaluated the effectiveness of Planet satellite imagery in mapping seagrass coverage in Santa Rosa Sound, Florida. We compared very-high-resolution aerial imagery (0.3 m) collected in September 2022 with high-resolution Planet imagery (~3 m) captured during the same period. Using supervised classification [...] Read more.
This study evaluated the effectiveness of Planet satellite imagery in mapping seagrass coverage in Santa Rosa Sound, Florida. We compared very-high-resolution aerial imagery (0.3 m) collected in September 2022 with high-resolution Planet imagery (~3 m) captured during the same period. Using supervised classification techniques, we accurately identified expansive, continuous seagrass meadows in the satellite images, successfully classifying 95.5% of the 11.18 km2 of seagrass area delineated manually from the aerial imagery. Our analysis utilized an occurrence frequency (OF) product, which was generated by processing ten clear-sky images collected between 8 and 25 September 2022 to determine the frequency with which each pixel was classified as seagrass. Seagrass patches encompassing at least nine pixels (~200 m2) were almost always detected by our classification algorithm. Using an OF threshold equal to or greater than >60% provided a high level of confidence in seagrass presence while effectively reducing the impact of small misclassifications, often of individual pixels, that appeared sporadically in individual images. The image-to-image uncertainty in seagrass retrieval from the satellite images was 0.1 km2 or 2.3%, reflecting the robustness of our classification method and allowing confidence in the accuracy of the seagrass area estimate. The satellite-retrieved leaf area index (LAI) was consistent with previous in situ measurements, leading to the estimate that 2700 tons of carbon per year are produced by the Santa Rosa Sound seagrass ecosystem, equivalent to a drawdown of approximately 10,070 tons of CO2. This satellite-based approach offers a cost-effective, semi-automated, and scalable method of assessing the distribution and abundance of submerged aquatic vegetation that provides numerous ecosystem services. Full article
Show Figures

Figure 1

18 pages, 3430 KiB  
Article
Mapping and Characterizing Eelgrass Meadows Using UAV Imagery in Placentia Bay and Trinity Bay, Newfoundland and Labrador, Canada
by Aaron Sneep, Rodolphe Devillers, Katleen Robert, Arnault Le Bris and Evan Edinger
Sustainability 2024, 16(8), 3471; https://doi.org/10.3390/su16083471 - 21 Apr 2024
Cited by 1 | Viewed by 1887
Abstract
Sustainable coastal social–ecological systems rely on healthy ecosystems known to provide benefits to both nature and people. A key ecosystem found globally is seagrass, for which maps at a scale relevant to inform conservation and management efforts are often missing. Eelgrass (Zostera [...] Read more.
Sustainable coastal social–ecological systems rely on healthy ecosystems known to provide benefits to both nature and people. A key ecosystem found globally is seagrass, for which maps at a scale relevant to inform conservation and management efforts are often missing. Eelgrass (Zostera marina), a species of seagrass found throughout the northern hemisphere, has been declining in Placentia Bay, an ecologically and biologically significant area of Canada’s east coast subject to an increasing human impact. This research provides baseline information on the distribution of eelgrass meadows and their anthropogenic stressors at seven sites of Placentia Bay and three sites of the adjacent Trinity Bay, on the island of Newfoundland. High-resolution maps of eelgrass meadows were created by combining ground-truth underwater videos with unmanned aerial vehicle imagery classified with an object-based image analysis approach. Visual analyses of the imagery and underwater videos were conducted to characterize sites based on the presence of physical disturbances and the semi-quantitative cover of epiphytes, an indication of nutrient enrichment. A total eelgrass area of ~1 km2 was mapped across the 10 sites, with an overall map accuracy of over 80% for 8 of the 10 sites. Results indicated minimum pressures of physical disturbance and eutrophication affecting eelgrass in the region, likely due to the small population size of the communities near the eelgrass meadows. These baseline data will promote the sustainability of potential future coastal development in the region by facilitating the future monitoring and conservation of eelgrass ecosystems. Full article
(This article belongs to the Special Issue Ecology, Biodiversity and Conservation in Seagrass Ecosystems)
Show Figures

Graphical abstract

36 pages, 13382 KiB  
Article
Long-Term Spatial Pattern Predictors (Historically Low Rainfall, Benthic Topography, and Hurricanes) of Seagrass Cover Change (1984 to 2021) in a Jamaican Marine Protected Area
by Kurt McLaren, Jasmine Sedman, Karen McIntyre and Kurt Prospere
Remote Sens. 2024, 16(7), 1247; https://doi.org/10.3390/rs16071247 - 31 Mar 2024
Cited by 1 | Viewed by 1478
Abstract
Climate change and other anthropogenic factors have caused a significant decline in seagrass cover globally. Identifying the specific causes of this decline is paramount if they are to be addressed. Consequently, we identified the causes of long-term change in seagrass/submerged aquatic vegetation (SAV) [...] Read more.
Climate change and other anthropogenic factors have caused a significant decline in seagrass cover globally. Identifying the specific causes of this decline is paramount if they are to be addressed. Consequently, we identified the causes of long-term change in seagrass/submerged aquatic vegetation (SAV) percentage cover and extent in a marine protected area on Jamaica’s southern coast. Two random forest regression (RFr) models were built using 2013 hydroacoustic survey SAV percentage cover data (dependent variable), and auxiliary and 2013 Landsat 7 and 8 reflectance data as the predictors. These were used to generate 24 SAV percentage cover and benthic feature maps (SAV present, absent, and coral reef) for the period 1984–2021 (37 years) from Landsat satellite series reflectance data. These maps and rainfall data were used to determine if SAV extent/area (km2) and average percentage cover and annual rainfall changed significantly over time and to evaluate the influence of rainfall. Additionally, rainfall impact on the overall spatial patterns of SAV loss, gain, and percentage cover change was assessed. Finally, the most important spatial pattern predictors of SAV loss, gain, and percentage cover change during 23 successive 1-to-4-year periods were identified. Predictors included rainfall proxies (distance and direction from river mouth), benthic topography, depth, and hurricane exposure (a measure of hurricane disturbance). SAV area/extent was largely stable, with >70% mean percentage cover for multiple years. However, Hurricane Ivan (in 2004) caused a significant decline in SAV area/extent (by 1.62 km2, or 13%) during 2002–2006, and a second hurricane (Dean) in 2007 delayed recovery until 2015. Additionally, rainfall declined significantly by >1000 mm since 1901, and mean monthly rainfall positively influenced SAV percentage cover change and had a positive overall effect on the spatial pattern of SAV cover percentage change (across the entire bay) and gain (close to the mouth of a river). The most important spatial pattern predictors were the two rainfall proxies (areas closer to the river mouth were more likely to experience SAV loss and gain) and depth, with shallow areas generally having a higher probability of SAV loss and gain. Three hurricanes had significant but different impacts depending on their distance from the southern coastline. Specifically, a hurricane that made landfall in 1988 (Gilbert), resulted in higher SAV percentage cover loss in 1987–1988. Benthic locations with a northwestern/northern facing aspect (the predominant direction of Ivan’s leading edge wind bands) experienced higher SAV losses during 2002–2006. Additionally, exposure to Ivan explained percentage cover loss during 2006–2008 and average exposure to (the cumulative impact of) Ivan and Dean (both with tracks close to the southern coastline) explained SAV loss during 2013–2015. Therefore, despite historic lows in annual rainfall, overall, higher rainfall was beneficial, multiple hurricanes impacted the site, and despite two hurricanes in three years, SAV recovered within a decade. Hurricanes and a further reduction in rainfall may pose a serious threat to SAV persistence in the future. Full article
Show Figures

Figure 1

32 pages, 1714 KiB  
Review
Exploring the Prospects of Fermenting/Co-Fermenting Marine Biomass for Enhanced Bioethanol Production
by Mohamed E. H. Osman, Atef M. Abo-Shady, Mostafa E. Elshobary, Mahasen O. Abd El-Ghafar, Dieter Hanelt and Abdelfatah Abomohra
Fermentation 2023, 9(11), 934; https://doi.org/10.3390/fermentation9110934 - 26 Oct 2023
Cited by 13 | Viewed by 3703
Abstract
With the rising demands for renewable fuels, there is growing interest in utilizing abundant and sustainable non-edible biomass as a feedstock for bioethanol production. Macroalgal biomass contains a high content of carbohydrates in the form of special polysaccharides like alginate, agar, and carrageenan [...] Read more.
With the rising demands for renewable fuels, there is growing interest in utilizing abundant and sustainable non-edible biomass as a feedstock for bioethanol production. Macroalgal biomass contains a high content of carbohydrates in the form of special polysaccharides like alginate, agar, and carrageenan that can be converted to fermentable sugars. In addition, using seagrass as a feedstock for bioethanol production can provide a sustainable and renewable energy source while addressing environmental concerns. It is a resource-rich plant that offers several advantages for bioethanol production, including its high cellulose content, rapid growth rates, and abundance in coastal regions. To reduce sugar content and support efficient microbial fermentation, co-fermentation of macroalgae with seagrass (marine biomass) can provide complementary sugars and nutrients to improve process yields and economics. This review comprehensively covers the current status and future potential of fermenting macroalgal biomass and seagrass, as well as possible combinations for maximizing bioethanol production from non-edible energy crops. An overview is provided on the biochemical composition of macroalgae and seagrass, pretreatment methods, hydrolysis, and fermentation processes. Key technical challenges and strategies to achieve balanced co-substrate fermentation are discussed. The feasibility of consolidated bioprocessing to directly convert mixed feedstocks to ethanol is also evaluated. Based on current research, macroalgae-seagrass co-fermentation shows good potential to improve the bioethanol yields, lower the cost, and enable more optimal utilization of diverse marine biomass resources compared to individual substrates. Full article
(This article belongs to the Special Issue Algae Biotechnology for Biofuel Production and Bioremediation)
Show Figures

Figure 1

13 pages, 2316 KiB  
Article
Less Is More: Seagrass Restoration Success Using Less Vegetation per Area
by Carolina V. Mourato, Nuno Padrão, Ester A. Serrão and Diogo Paulo
Sustainability 2023, 15(17), 12937; https://doi.org/10.3390/su151712937 - 28 Aug 2023
Cited by 3 | Viewed by 2354
Abstract
Seagrass restoration in open coast environments presents unique challenges. Traditional sod transplant designs, though relatively successful in these environments, are impractical for large-scale restoration due to high biomass requirements. Here, we develop the checkers design, which aims to optimise the usage of biomass [...] Read more.
Seagrass restoration in open coast environments presents unique challenges. Traditional sod transplant designs, though relatively successful in these environments, are impractical for large-scale restoration due to high biomass requirements. Here, we develop the checkers design, which aims to optimise the usage of biomass by transplanting fewer sods in a checkerboard pattern. We established six plots (9 m2 each) for each species (Zostera marina and Zostera noltei), with 25 sods in each plot. The area, percent cover, density, and leaf length were measured at 1, 6, and 12 months. The plots located on the seaward end of the transplant design vanished over the winter, suggesting location-dependent survival influenced by winter storms. Nevertheless, both species exhibited increased percentages of cover, density, and vegetated area after one year, with variations between species. Z. noltei showed a slower expansion but greater resilience to winter, while Z. marina displayed a higher density and cover over the first 6 months but experienced area loss during the winter. Despite these differences, both species survived and increased vegetated areas after one year, indicating the viability and promise of the checkers method for large-scale restoration. However, careful consideration of location or storm-mitigating measures is essential for the successful implementation of this method. Full article
(This article belongs to the Special Issue Advances in Seagrass Ecosystem Restoration)
Show Figures

Figure 1

14 pages, 2961 KiB  
Technical Note
Characterisation and Dynamics of an Emerging Seagrass Meadow
by Marina Dolbeth, Dimítri de Araújo Costa, Manuel Meyer, José Alberto Gonçalves and Ana Bio
Remote Sens. 2023, 15(16), 4086; https://doi.org/10.3390/rs15164086 - 19 Aug 2023
Viewed by 2023
Abstract
Seagrasses are habitat-forming species that support biodiversity and a wide range of associated ecosystem services, from blue carbon capture to providing nursery areas for a variety of organisms. Their decline has been documented worldwide and is attributed to human impacts ranging from habitat [...] Read more.
Seagrasses are habitat-forming species that support biodiversity and a wide range of associated ecosystem services, from blue carbon capture to providing nursery areas for a variety of organisms. Their decline has been documented worldwide and is attributed to human impacts ranging from habitat loss and eutrophication to the effects of climate change. However, recent recovery trends have also been documented due to reductions in stressors, passive and active restoration, and even changes in environmental conditions owing to local management. In this study, we document for the first time the occurrence of Zostera noltei in the downstream area of the River Minho Estuary. This occurrence was unexpected given the hydrological conditions of the estuary, characterised by dredging and siltation. We reconstructed the occurrence and historical distribution of seagrass beds, and showed that they have existed in the region for more than a decade. The current distribution area was mapped using high-resolution multispectral remote sensing techniques, and in situ photoquadrats to complement the remote sensing information with an evaluation of the seagrass cover. A current seagrass area of 0.81 ha was found with an average cover of 70%. However, the Minho Estuary continues to be strongly affected by sediment deposition, which may affect the seagrass population in the long term. Continued surveys are recommended to confirm the long-term trend of colonisation of this important habitat, which ultimately provides so many benefits to coastal ecosystems and humankind. Full article
(This article belongs to the Section Environmental Remote Sensing)
Show Figures

Figure 1

26 pages, 1875 KiB  
Article
Molluscs from Tidal Channels of the Gulf of Gabès (Tunisia): Quantitative Data and Comparison with Other Lagoons and Coastal Waters of the Mediterranean Sea
by Abir Fersi, Jean-Philippe Pezy, Ali Bakalem, Lassad Neifar and Jean-Claude Dauvin
J. Mar. Sci. Eng. 2023, 11(3), 545; https://doi.org/10.3390/jmse11030545 - 3 Mar 2023
Cited by 2 | Viewed by 2102
Abstract
The present study analyses the spatio-temporal structuration of the molluscan fauna from four tidal channels of the Gulf of Gabès. A total of 26 stations were sampled at four seasons from March 2016 to January 2017, leading to the identification of 2695 individuals [...] Read more.
The present study analyses the spatio-temporal structuration of the molluscan fauna from four tidal channels of the Gulf of Gabès. A total of 26 stations were sampled at four seasons from March 2016 to January 2017, leading to the identification of 2695 individuals and 57 species. The species richness and abundances are higher in autumn than in other seasons. The fauna is dominated by seven species, three gastropods [Cerithium scabridum Philippi, 1848, Bittium reticulatum (da Costa, 1778) and Tricolia speciosa (Megerle von Mühfleld, 1824)] and four bivalves [Abra alba (W. Wood, 1802), Loripes orbiculatus Poli, 1791, Varicorbula gibba (Olivi, 1792) and Peronaea planata (Linnaeus, 1758)], which are characteristic of habitats with detritus accumulation and seagrass meadows. These dominant species are commonly recorded in lagoons and coastal shallow waters of the Mediterranean Sea. The structure of the molluscan fauna is linked to the location of tidal channels in the Gulf of Gabès. Abundances are lower in the Mimoun channel than in the other channels, especially the Maltine channel which shows a great accumulation of organic matter and high abundances of molluscs. Low abundances are found in high-energy hydrodynamic zones with gravel sediment; conversely, the presence of macrophytes (mainly in seagrass meadows) increases molluscan diversity. Comparisons with other sites in the shallow waters of the Tunisian coast and lagoons show that the taxonomic diversity of molluscs of the tidal channels of the Gulf of Gabès is equivalent to that reported elsewhere, but the abundance per m2 is among the lowest levels recorded here. Moreover, most of the dominant species found in the Gulf of Gabès tidal channel are reported as dominant in other studies covering the Mediterranean Sea. A distance-based redundancy analysis shows that depth, sediment type and the presence of marine phanerogams and filter-feeder bivalves on fine sands and gravels account for the structure of mollusc assemblages associated with each channel. Full article
(This article belongs to the Section Marine Ecology)
Show Figures

Figure 1

11 pages, 1790 KiB  
Article
Salinity-Induced Extinction of Zostera marina in Lake Grevelingen? How Strong Habitat Modification May Require Introduction of a Suitable Ecotype
by Marieke M. van Katwijk, Rens J. T. Cronau, Leon P. M. Lamers, Pauline Kamermans, Brigitta I. van Tussenbroek and Dick J. de Jong
Sustainability 2023, 15(4), 3472; https://doi.org/10.3390/su15043472 - 14 Feb 2023
Cited by 6 | Viewed by 3031
Abstract
During the 1980s–1990s, 4600 hectares of the seagrass Zostera marina were permanently lost from Lake Grevelingen (the Netherlands), and restoration is planned. In 1971, the lake was fully marine (salinity 30), and seagrass covered 1300 hectares. After closure in that year, the lake [...] Read more.
During the 1980s–1990s, 4600 hectares of the seagrass Zostera marina were permanently lost from Lake Grevelingen (the Netherlands), and restoration is planned. In 1971, the lake was fully marine (salinity 30), and seagrass covered 1300 hectares. After closure in that year, the lake gradually became brackish (salinity of 23 by 1978), and the meadows expanded to 4600 hectares. However, with the creation of a sluice connection to the sea in 1978, the lake returned to marine conditions and a fatal decline initiated. We revisit traditionally suggested causes of the disappearance of the seagrass, finding them unsatisfactory. We hypothesize that during the lower salinity conditions from 1971 to 1978, selection of low-salinity genotypes occurred, and these genotypes were not adapted to returning marine conditions. This hypothesis is no longer testable through genetic analysis in Lake Grevelingen but is supported by previously unpublished experiments that found a lack of seed germination at even moderately high salinity for the now extinct population. Such processes could be relevant for, and tested in, environmentally modified water systems worldwide, particularly when isolated. Based on our assessment, the abiotic environment of Lake Grevelingen seems suitable for Z. marina restoration using a donor from a high salinity environment. Full article
(This article belongs to the Special Issue Advances in Seagrass Ecosystem Restoration)
Show Figures

Figure 1

14 pages, 4455 KiB  
Article
Strong Genetic Structure and Limited Gene Flow among Populations of the Tropical Seagrass Thalassia hemprichii in the Philippines
by Yuichi Nakajima, Yu Matsuki, Miguel D. Fortes, Wilfredo H. Uy, Wilfredo L. Campos, Kazuo Nadaoka and Chunlan Lian
J. Mar. Sci. Eng. 2023, 11(2), 356; https://doi.org/10.3390/jmse11020356 - 5 Feb 2023
Cited by 4 | Viewed by 4016
Abstract
Seagrasses are marine angiosperms, and seagrass beds maintain the species diversity of tropical and subtropical coastal ecosystems. For proper understanding, management and conservation of coastal ecosystems, it is essential to understand seagrass population dynamics. Population genetic studies can cover large geographic scales and [...] Read more.
Seagrasses are marine angiosperms, and seagrass beds maintain the species diversity of tropical and subtropical coastal ecosystems. For proper understanding, management and conservation of coastal ecosystems, it is essential to understand seagrass population dynamics. Population genetic studies can cover large geographic scales and contribute to a comprehensive understanding of reproductive dynamics and potential dispersal among locations. The clonal and genetic diversity and genetic connectivity of Thalassia hemprichii in the Philippines were estimated by a population genetics approach. The geographic scale of this study has a direct distance of approximately 1600 km. Although high clonal diversity was found in some sites (R = 0.07–1.00), both sexual and asexual reproduction generally maintains separate populations. Genetic diversity is not definitely correlated with latitude, and genetic differentiation is significant in all pairs of sites (FST = 0.026–0.744). Complex genetic structure was found in some regions, even at a fine geographic scale. The migration of fruits and seedlings was elucidated as an infrequent and stochastic event. These results suggest the necessity for the conservation of this species due to a deficiency in migrants from external regions. Full article
(This article belongs to the Topic Marine Ecology, Environmental Stress and Management)
Show Figures

Figure 1

Back to TopTop