Characterisation and Dynamics of an Emerging Seagrass Meadow
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Data Acquisition and Analyses
3. Results
3.1. Seagrass Density and Cover Classification
3.2. Cover-Elevation Relationship
3.3. Recent Trends
4. Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dolbeth, M.; Cardoso, P.P.G.; Grilo, T.F.; Bordalo, M.D.; Raffaelli, D.; Pardal, M.Â. Long-term changes in the production by estuarine macrobenthos affected by multiple stressors. Estuar. Coast. Shelf Sci. 2011, 92, 10–18. [Google Scholar] [CrossRef]
- Maxwell, P.S.; Eklöf, J.S.; van Katwijk, M.M.; O’Brien, K.R.; de la Torre-Castro, M.; Boström, C.; Bouma, T.J.; Krause-Jensen, D.; Unsworth, R.K.F.; van Tussenbroek, B.I.; et al. The fundamental role of ecological feedback mechanisms for the adaptive management of seagrass ecosystems—A review. Biol. Rev. 2017, 92, 1521–1538. [Google Scholar] [CrossRef]
- United Nations Environment Programme. Out of the Blue: The Value of Seagrasses to the Environment and to People>; UNEP: Nairobi, Kenya, 2020; Available online: www.unep.org/resources/report/out-blue-value-seagrasses-environment-and-people (accessed on 30 June 2023).
- Orth, R.J.; Lefcheck, J.S.; McGlathery, K.S.; Aoki, L.; Luckenbach, M.W.; Moore, K.A.; Oreska, M.P.J.; Snyder, R.; Wilcox, D.J.; Lusk, B. Restoration of seagrass habitat leads to rapid recovery of coastal ecosystem services. Sci. Adv. 2020, 6, eabc6434. [Google Scholar] [CrossRef]
- Macreadie, P.I.; Anton, A.; Raven, J.A.; Beaumont, N.; Connolly, R.M.; Friess, D.A.; Kelleway, J.J.; Kennedy, H.; Kuwae, T.; Lavery, P.S.; et al. The future of Blue Carbon science. Nat. Commun. 2019, 10, 3998. [Google Scholar] [CrossRef]
- Serrano, O.; Lovelock, C.E.; Atwood, T.B.; Macreadie, P.I.; Canto, R.; Phinn, S.; Arias-Ortiz, A.; Bai, L.; Baldock, J.; Bedulli, C.; et al. Australian vegetated coastal ecosystems as global hotspots for climate change mitigation. Nat. Commun. 2019, 10, 4313. [Google Scholar] [CrossRef] [PubMed]
- Duffy, J.E.; Benedetti-Cecchi, L.; Trinanes, J.; Muller-Karger, F.E.; Ambo-Rappe, R.; Boström, C.; Buschmann, A.H.; Byrnes, J.; Coles, R.G.; Creed, J.; et al. Toward a coordinated global observing system for seagrasses and marine macroalgae. Front. Mar. Sci. 2019, 6, 317. [Google Scholar] [CrossRef]
- Sousa, A.I.; da Silva, J.F.; Azevedo, A.; Lillebø, A.I. Blue Carbon stock in Zostera noltei meadows at Ria de Aveiro coastal lagoon (Portugal) over a decade. Sci. Rep. 2019, 9, 14387. [Google Scholar] [CrossRef] [PubMed]
- McHenry, J.; Rassweiler, A.; Hernan, G.; Uejio, C.K.; Pau, S.; Dubel, A.K.; Lester, S.E. Modelling the biodiversity enhancement value of seagrass beds. Divers. Distrib. 2021, 27, 2036–2049. [Google Scholar] [CrossRef]
- Correia, M. Monitoring of Seahorse Populations, in the Ria Formosa Lagoon (Portugal), Reveals Steep Fluctuations: Potential Causes and Future Mitigations. Proc. Zool. Soc. 2022, 75, 190–199. [Google Scholar] [CrossRef]
- Castro, N.; Penedos, C.; Félix, P.; Chainho, P.; Pereira, T.; Costa, M.J.; Almeida, A.J.; Adão, H.; Costa, J.L. Structural and functional composition of fish communities associated to Zostera noltii meadows as a response to natural habitat recovery. Ecol. Indic. 2019, 106, 105435. [Google Scholar] [CrossRef]
- Dolbeth, M.; Cardoso, P.P.G.; Grilo, T.F.; Raffaelli, D.; Pardal, M.Â. Drivers of estuarine benthic species distribution patterns following a restoration of a seagrass bed: A functional trait analyses. Mar. Pollut. Bull. 2013, 72, 47–54. [Google Scholar] [CrossRef] [PubMed]
- Krause-Jensen, D.; Duarte, C.M.; Sand-Jensen, K.; Carstensen, J. Century-long records reveal shifting challenges to seagrass recovery. Glob. Chang. Biol. 2021, 27, 563–575. [Google Scholar] [CrossRef] [PubMed]
- de los Santos, C.B.; Krause-Jensen, D.; Alcoverro, T.; Marbà, N.; Duarte, C.M.; van Katwijk, M.M.; Pérez, M.; Romero, J.; Sánchez-Lizaso, J.L.; Roca, G.; et al. Recent trend reversal for declining European seagrass meadows. Nat. Commun. 2019, 10, 3356. [Google Scholar] [CrossRef] [PubMed]
- Rifai, H.; Quevedo, J.M.D.; Lukman, K.M.; Sondak, C.F.A.; Risandi, J.; Hernawan, U.E.; Uchiyama, Y.; Ambo-Rappe, R.; Kohsaka, R. Potential of seagrass habitat restorations as nature-based solutions: Practical and scientific implications in Indonesia. Ambio 2023, 52, 546–555. [Google Scholar] [CrossRef] [PubMed]
- Seddon, N.; Smith, A.; Smith, P.; Key, I.; Chausson, A.; Girardin, C.; House, J.; Srivastava, S.; Turner, B. Getting the message right on nature-based solutions to climate change. Glob. Chang. Biol. 2021, 27, 1518–1546. [Google Scholar] [CrossRef]
- Azevedo, A.; Sousa, A.I.; Lencart e Silva, J.D.; Dias, J.M.; Lillebø, A.I. Application of the generic DPSIR framework to seagrass communities of Ria de Aveiro: A better understanding of this coastal lagoon. J. Coast. Res. 2013, 65, 19–24. [Google Scholar] [CrossRef]
- Materatski, P.; Vafeiadou, A.M.; Ribeiro, R.; Moens, T.; Adão, H. A comparative analysis of benthic nematode assemblages from Zostera noltii beds before and after a major vegetation collapse. Estuar. Coast. Shelf Sci. 2015, 167, 256–268. [Google Scholar] [CrossRef]
- Grilo, T.F.; Cardoso, P.G.; Dolbeth, M.; Bordalo, M.D.; Pardal, M.Â. Effects of extreme climate events on the macrobenthic communities’ structure and functioning of a temperate estuary. Mar. Pollut. Bull. 2011, 62, 303–311. [Google Scholar] [CrossRef]
- Arias-Ortiz, A.; Serrano, O.; Masqué, P.; Lavery, P.S.; Mueller, U.; Kendrick, G.A.; Rozaimi, M.; Esteban, A.; Fourqurean, J.W.; Marbà, N.; et al. A marine heatwave drives massive losses from the world’s largest seagrass carbon stocks. Nat. Clim. Chang. 2018, 8, 338–344. [Google Scholar] [CrossRef]
- Paulo, D.; Cunha, A.H.; Boavida, J.; Serrão, E.A.; Gonçalves, E.J.; Fonseca, M. Open coast seagrass restoration. Can we do it? Large scale seagrass transplants. Front. Mar. Sci. 2019, 6, 52. [Google Scholar] [CrossRef]
- Cunha, A.H.; Assis, J.F.; Serrão, E.A. Seagrasses in Portugal: A most endangered marine habitat. Aquat. Bot. 2013, 104, 193–203. [Google Scholar] [CrossRef]
- Iglesias, I.; Avilez-Valente, P.; Bio, A.; Bastos, L. Modelling the main hydrodynamic patterns in shallow water estuaries: The Minho case study. Water 2019, 11, 1040. [Google Scholar] [CrossRef]
- De Sousa, R.G.; Dias, S.; Freitas, V.; Antunes, C. Subtidal macrozoobenthic assemblages along the River Minho estuarine gradient (north-west Iberian Peninsula). Aquat. Conserv. Mar. Freshw. Ecosyst. 2008, 18, 1063–1077. [Google Scholar] [CrossRef]
- Dolbeth, M.; Martinho, F.; Freitas, V.; Costa-Dias, S.; Campos, J.; Pardal, M.Â. Multi-year comparisons of fish recruitment, growth and production in two drought-affected Iberian estuaries. Mar. Freshw. Res. 2010, 61, 1399–1415. [Google Scholar] [CrossRef]
- Santos, A.I.; Oliveira, A.; Carinhas, D.; Pinto, J.P.; Freitas, M.C. Hydrodynamic and Sediment Transport Patterns in the Minho and Douro Estuaries (NW Portugal) Based on ADCP Monitoring Data: Part 2—Statistical Interpretation of Bottom Moored Datasets. Coasts 2021, 1, 56–72. [Google Scholar] [CrossRef]
- Vasconcelos, R.P.; Reis-Santos, P.; Fonseca, V.; Maia, A.; Ruano, M.; França, S.; Vinagre, C.; Costa, M.J.; Cabral, H.N. Assessing anthropogenic pressures on estuarine fish nurseries along the Portuguese coast: A multi-metric index and conceptual approach. Sci. Total Environ. 2007, 374, 199–215. [Google Scholar] [CrossRef]
- El-Khaled, Y.C.; Lago, A.K.; Mezger, S.D.; Wild, C. Comparative Evaluation of Free Web Tools ImageJ and Photopea for the Surface Area Quantification of Planar Substrates and Organisms. Diversity 2022, 14, 272. [Google Scholar] [CrossRef]
- AgiSoft. AgiSoft PhotoScan Professional, Version 1.80 Software; Agisoft LLC: St. Petersburg, Russia, 2021. Available online: http://www.agisoft.com/downloads/installer/(accessed on 15 October 2022).
- QGIS Development Team. QGIS Geographic Information System; Open Source Geospatial Foundation: Beaverton, OR, USA, 2022; Available online: http://qgis.osgeo.org (accessed on 20 June 2022).
- Karasiak, N. Dzetsaka Qgis Classification Plugin. 2006. Available online: https://doi.org/10.5281/zenodo.2552284 (accessed on 15 October 2022). [CrossRef]
- Tin Kam, H. Random decision forests. In Proceedings of the 3rd International Conference on Document Analysis and Recognition, Montreal, QC, Canada, 14–16 August 1995; Volume 1, pp. 278–282. [Google Scholar] [CrossRef]
- Meyer, M.d.F.; Gonçalves, J.A.; Cunha, J.F.R.; Ramos, S.C.d.C.e.S.; Bio, A.M.F. Application of a Multispectral UAS to Assess the Cover and Biomass of the Invasive Dune Species Carpobrotus edulis. Remote Sens. 2023, 15, 2411. [Google Scholar] [CrossRef]
- Rouse, J.W.; Haas, R.H.; Schell, J.A.; Deering, D.W.; Harlan, J.C. Monitoring the Vernal Advancements and Retrogradation of Natural Vegetation. NASA/GSFC, Final Report, Greenbelt, MD, USA, September 1972, pp. 1–137. Available online: http://scholar.google.com/scholar?q=related:kfZY0xukQScJ:scholar.google.com/&hl=en&num=20&as_sdt=0,5%5Cnpapers2://publication/uuid/FB22B85B-B2F9-442E-AF63-58F3517012FC (accessed on 15 October 2022).
- Olofsson, P.; Foody, G.M.; Herold, M.; Stehman, S.V.; Woodcock, C.E.; Wulder, M.A. Good practices for estimating area and assessing accuracy of land change. Remote Sens. Environ. 2014, 148, 42–57. [Google Scholar] [CrossRef]
- Zurqani, H.A.; Post, C.J.; Mikhailova, E.A.; Cope, M.P.; Allen, J.S.; Lytle, B.A. Evaluating the integrity of forested riparian buffers over a large area using LiDAR data and Google Earth Engine. Sci. Rep. 2020, 10, 14096. [Google Scholar] [CrossRef]
- Chefaoui, R.M.; Duarte, C.M.; Serrão, E.A. Dramatic loss of seagrass habitat under projected climate change in the Mediterranean Sea. Glob. Chang. Biol. 2018, 24, 4919–4928. [Google Scholar] [CrossRef]
- Halpern, B.S.; Frazier, M.; Afflerbach, J.; Lowndes, J.S.; Micheli, F.; O’Hara, C.; Scarborough, C.; Selkoe, K.A. Recent pace of change in human impact on the world’s ocean. Sci. Rep. 2019, 9, 11609. [Google Scholar] [CrossRef] [PubMed]
- Short, F.T.; Neckles, H.A. The effects of global climate change on seagrasses. Aquat. Bot. 1999, 63, 169–196. [Google Scholar] [CrossRef]
- Ondiviela, B.; Galván, C.; Recio, M.; Jiménez, M.; Juanes, J.A.; Puente, A.; Losada, I.J. Vulnerability of Zostera noltei to Sea Level Rise: The Use of Clustering Techniques in Climate Change Studies. Estuaries Coasts 2020, 43, 2063–2075. [Google Scholar] [CrossRef]
- Valle, M.; Chust, G.; del Campo, A.; Wisz, M.S.; Olsen, S.M.; Garmendia, J.M.; Borja, Á. Projecting future distribution of the seagrass Zostera noltii under global warming and sea level rise. Biol. Conserv. 2014, 170, 74–85. [Google Scholar] [CrossRef]
- Duarte, B.; Martins, I.; Rosa, R.; Matos, A.R.; Roleda, M.Y.; Reusch, T.B.H.; Engelen, A.H.; Serrão, E.A.; Pearson, G.A.; Marques, J.C.; et al. Climate change impacts on seagrass meadows and macroalgal forests: An integrative perspective on acclimation and adaptation potential. Front. Mar. Sci. 2018, 5, 190. [Google Scholar] [CrossRef]
- Cochón, G.; Sánchez, J.M. Variations of Seagrass Beds in Pontevedra (North-Western Spain): 1947–2001. Thalassas 2005, 21, 9–19. [Google Scholar]
- Costa, V.; Flindt, M.R.; Lopes, M.; Coelho, J.P.; Costa, A.F.; Lillebø, A.I.; Sousa, A.I. Enhancing the resilience of Zostera noltei seagrass meadows against Arenicola spp. bio-invasion: A decision-making approach. J. Environ. Manag. 2022, 302, 113969. [Google Scholar] [CrossRef]
- Borum, J.; Duarte, C.; Krause-Jensen, D.; Greve, T.M. European Seagrasses: An Introduction to Monitoring and Management. In Management 2004. Available online: http://www.seagrasses.org (accessed on 1 May 2023).
- Cognat, M.; Ganthy, F.; Auby, I.; Barraquand, F.; Rigouin, L.; Sottolichio, A. Environmental Factors Controlling Biomass Development of Seagrass Meadows of Zostera Noltei after a Drastic Decline (Arcachon Bay, France). J. Sea Res. 2018, 140, 87–104. [Google Scholar] [CrossRef]
- Román, M.; Fernández, E.; Zamborain-Mason, J.; Méndez, G. Anthropogenic Impact on Zostera noltei Seagrass Meadows (NW Iberian Peninsula) Assessed by Carbon and Nitrogen Stable Isotopic Signatures. Estuaries Coasts 2019, 42, 987–1000. [Google Scholar] [CrossRef]
- Rovira, A.; Ballinger, R.; Ibáñez, C.; Parker, P.; Dominguez, M.D.; Simon, X.; Lewandowski, A.; Hochfeld, B.; Tudor, M.; Vernaeve, L. Sediment imbalances and flooding risk in European deltas and estuaries. J. Soils Sediments 2014, 14, 1493–1512. [Google Scholar] [CrossRef]
- Cabaço, S.; Santos, R. Effects of burial and erosion on the seagrass Zostera noltii. J. Exp. Mar. Biol. Ecol. 2007, 340, 204–212. [Google Scholar] [CrossRef]
- Orth, R.J.; Harwell, M.C.; Inglis, G.J. Ecology of seagrass seeds and seagrass dispersal processes. In Seagrasses: Biology, Ecology and Conservation; Larkum, A.W.D., Orth, R.J., Duarte, C.M., Eds.; Springer: Dordrecht, The Netherlands, 2006; pp. 111–133. Available online: https://www.researchgate.net/publication/227177291_Ecology_of_Seagrass_Seeds_and_Seagrass_Dispersal_Processes (accessed on 30 June 2023). [CrossRef]
- Tavares, A.I.; Assis, J.; Patrício, A.R.; Ferreira, R.; Cheikh, M.A.S.; Bandeira, S.; Regalla, A.; Santos, I.; Potouroglou, M.; Nicolau, S.; et al. Seagrass Connectivity on the West Coast of Africa Supports the Hypothesis of Grazer-Mediated Seed Dispersal. Front. Mar. Sci. 2022, 9, 809721. [Google Scholar] [CrossRef]
- Peliz, Á.; Rosa, T.L.; Santos, A.M.P.; Pissarra, J.L. Fronts, jets, and counter-flows in the Western Iberian upwelling system. J. Mar. Syst. 2002, 35, 61–77. [Google Scholar] [CrossRef]
- Sousa, M.C.; Vaz, N.; Alvarez, I.; Dias, J.M. Effect of Minho estuarine plume on Rias Baixas: Numerical modeling approach. J. Coast. Res. 2013, 165, 2059–2064. [Google Scholar] [CrossRef]
- Des, M.; deCastro, M.; Sousa, M.C.; Dias, J.M.; Gómez-Gesteira, M. Hydrodynamics of river plume intrusion into an adjacent estuary: The Minho River and Ria de Vigo. J. Mar. Syst. 2019, 189, 87–97. [Google Scholar] [CrossRef]
- Silva, P.; Ramos, M. Water Exchange Mechanisms between Ria de Aveiro and the Atlantic Ocean. J. Coast. Res. SI 2006, 2004, 1622–1626. Available online: http://siaiacad09.univali.br/ics2004/arquivos/341_silva.pdf (accessed on 25 May 2023).
- Ilarri, M.; Souza, A.T.; Dias, E.; Antunes, C. Influence of climate change and extreme weather events on an estuarine fish community. Sci. Total Environ. 2022, 827, 154190. [Google Scholar] [CrossRef]
- Menten, G.; Melo, W.; Pinho, J.; Iglesias, I.; Antunes do Carmo, J. Simulation of Saltwater Intrusion in the Minho River Estuary under Sea Level Rise Scenarios. Water 2023, 15, 2313. [Google Scholar] [CrossRef]
- Borges, D.; Duarte, L.; Costa, I.; Bio, A.; Silva, J.; Sousa-Pinto, I.; Gonçalves, J.A. New Methodology for Intertidal Seaweed Biomass Estimation Using Multispectral Data Obtained with Unoccupied Aerial Vehicles. Remote Sens. 2023, 15, 3359. [Google Scholar] [CrossRef]
- Carpenter, S.; Byfield, V.; Felgate, S.L.; Price, D.M.; Andrade, V.; Cobb, E.; Strong, J.; Lichtschlag, A.; Brittain, H.; Barry, C.; et al. Using Unoccupied Aerial Vehicles (UAVs) to Map Seagrass Cover from Sentinel-2 Imagery. Remote Sens. 2022, 14, 477. [Google Scholar] [CrossRef]
- Wong, M.C.; Griffiths, G.; Vercaemer, B. Seasonal Response and Recovery of Eelgrass (Zostera marina) to Short-Term Reductions in Light Availability. Estuaries Coasts 2020, 43, 120–134. [Google Scholar] [CrossRef]
- Vermaat, J.; Hootsmans, M.; Nienhuis, P. Seasonal dynamics and leaf growth of Zostera noltii Hornem., a perennial intertidal seagrass. Aquat. Bot. 1987, 28, 287–299. [Google Scholar] [CrossRef]
- Dolbeth, M.; Stålnacke, P.; Alves, F.A.; Sousa, L.P.; Gooch, G.D.; Khokhlov, V.; Tuchkovenko, Y.; Lloret, J.; Bielecka, M.; Grzegorz Różyński, G.; et al. An Integrated Pan-European Perspective on Coastal Lagoons Management through a Mosaic-DPSIR Approach. Sci. Rep. 2016, 6, 19400. [Google Scholar] [CrossRef] [PubMed]
- Melo, W.; Pinho, J.; Iglesias, I.; Bio, A.; Avilez-Valente, P.; Vieira, J.; Bastos, L.; Veloso-Gomes, F. Hydro-and morphodynamic impacts of sea level rise: The Minho estuary case study. J. Mar. Sci. Eng. 2020, 8, 441. [Google Scholar] [CrossRef]
Reference | |||||||||
---|---|---|---|---|---|---|---|---|---|
Zostera noltei | Ulva sp. | Water | Bare Sediment | Submerged Sediment | Rock/Sand | % Area | Area (m2) | ||
Classified | Zostera noltei | 0.0474 | 0.0058 | 0.0000 | 0.0000 | 0.0005 | 0.0000 | 5.38 | 8336 |
Ulva sp. | 0.0012 | 0.0235 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 2.47 | 3836 | |
Water | 0.0000 | 0.0000 | 0.0561 | 0.0000 | 0.0052 | 0.0000 | 6.13 | 9503 | |
Bare sediment | 0.0025 | 0.0000 | 0.0000 | 0.5045 | 0.0150 | 0.0075 | 52.94 | 82,075 | |
Submerged sediment | 0.0000 | 0.0000 | 0.0000 | 0.0252 | 0.2683 | 0.0000 | 29.35 | 45,500 | |
Rock/Sand | 0.0013 | 0.0000 | 0.0000 | 0.0000 | 0.0268 | 0.0091 | 3.72 | 5772 | |
% Area | 5.25 | 2.93 | 5.61 | 52.96 | 31.59 | 1.66 | 100 | ||
Total Area (m2) | 8137 | 4542 | 8695 | 82103 | 48974 | 2571 | 155,022 | ||
Standard Error (m2) | 492 | 271 | 275 | 1613 | 1485 | 720 | |||
Producer Accuracy | 0.90 | 0.80 | 1.00 | 0.95 | 0.85 | 0.55 | |||
User Accuracy | 0.88 | 0.95 | 0.91 | 0.95 | 0.91 | 0.24 | |||
F1 Score | 0.89 | 0.87 | 0.96 | 0.95 | 0.88 | 0.34 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dolbeth, M.; Costa, D.d.A.; Meyer, M.; Gonçalves, J.A.; Bio, A. Characterisation and Dynamics of an Emerging Seagrass Meadow. Remote Sens. 2023, 15, 4086. https://doi.org/10.3390/rs15164086
Dolbeth M, Costa DdA, Meyer M, Gonçalves JA, Bio A. Characterisation and Dynamics of an Emerging Seagrass Meadow. Remote Sensing. 2023; 15(16):4086. https://doi.org/10.3390/rs15164086
Chicago/Turabian StyleDolbeth, Marina, Dimítri de Araújo Costa, Manuel Meyer, José Alberto Gonçalves, and Ana Bio. 2023. "Characterisation and Dynamics of an Emerging Seagrass Meadow" Remote Sensing 15, no. 16: 4086. https://doi.org/10.3390/rs15164086
APA StyleDolbeth, M., Costa, D. d. A., Meyer, M., Gonçalves, J. A., & Bio, A. (2023). Characterisation and Dynamics of an Emerging Seagrass Meadow. Remote Sensing, 15(16), 4086. https://doi.org/10.3390/rs15164086