Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (413)

Search Parameters:
Keywords = satellite image time series analysis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 11237 KiB  
Article
Reclassification Scheme for Image Analysis in GRASS GIS Using Gradient Boosting Algorithm: A Case of Djibouti, East Africa
by Polina Lemenkova
J. Imaging 2025, 11(8), 249; https://doi.org/10.3390/jimaging11080249 - 23 Jul 2025
Viewed by 448
Abstract
Image analysis is a valuable approach in a wide array of environmental applications. Mapping land cover categories depicted from satellite images enables the monitoring of landscape dynamics. Such a technique plays a key role for land management and predictive ecosystem modelling. Satellite-based mapping [...] Read more.
Image analysis is a valuable approach in a wide array of environmental applications. Mapping land cover categories depicted from satellite images enables the monitoring of landscape dynamics. Such a technique plays a key role for land management and predictive ecosystem modelling. Satellite-based mapping of environmental dynamics enables us to define factors that trigger these processes and are crucial for our understanding of Earth system processes. In this study, a reclassification scheme of image analysis was developed for mapping the adjusted categorisation of land cover types using multispectral remote sensing datasets and Geographic Resources Analysis Support System (GRASS) Geographic Information System (GIS) software. The data included four Landsat 8–9 satellite images on 2015, 2019, 2021 and 2023. The sequence of time series was used to determine land cover dynamics. The classification scheme consisting of 17 initial land cover classes was employed by logical workflow to extract 10 key land cover types of the coastal areas of Bab-el-Mandeb Strait, southern Red Sea. Special attention is placed to identify changes in the land categories regarding the thermal saline lake, Lake Assal, with fluctuating salinity and water levels. The methodology included the use of machine learning (ML) image analysis GRASS GIS modules ‘r.reclass’ for the reclassification of a raster map based on category values. Other modules included ‘r.random’, ‘r.learn.train’ and ‘r.learn.predict’ for gradient boosting ML classifier and ‘i.cluster’ and ‘i.maxlik’ for clustering and maximum-likelihood discriminant analysis. To reveal changes in the land cover categories around the Lake of Assal, this study uses ML and reclassification methods for image analysis. Auxiliary modules included ‘i.group’, ‘r.import’ and other GRASS GIS scripting techniques applied to Landsat image processing and for the identification of land cover variables. The results of image processing demonstrated annual fluctuations in the landscapes around the saline lake and changes in semi-arid and desert land cover types over Djibouti. The increase in the extent of semi-desert areas and the decrease in natural vegetation proved the processes of desertification of the arid environment in Djibouti caused by climate effects. The developed land cover maps provided information for assessing spatial–temporal changes in Djibouti. The proposed ML-based methodology using GRASS GIS can be employed for integrating techniques of image analysis for land management in other arid regions of Africa. Full article
(This article belongs to the Special Issue Self-Supervised Learning for Image Processing and Analysis)
Show Figures

Figure 1

27 pages, 7591 KiB  
Article
Advancing Land Use Modeling with Rice Cropping Intensity: A Geospatial Study on the Shrinking Paddy Fields in Indonesia
by Laju Gandharum, Djoko Mulyo Hartono, Heri Sadmono, Hartanto Sanjaya, Lena Sumargana, Anindita Diah Kusumawardhani, Fauziah Alhasanah, Dionysius Bryan Sencaki and Nugraheni Setyaningrum
Geographies 2025, 5(3), 31; https://doi.org/10.3390/geographies5030031 - 2 Jul 2025
Viewed by 725
Abstract
Indonesia faces significant challenges in meeting food security targets due to rapid agricultural land loss, with approximately 1.22 million hectares of rice fields converted between 1990 and 2022. Therefore, this study developed a prediction model for the loss of rice fields by 2030, [...] Read more.
Indonesia faces significant challenges in meeting food security targets due to rapid agricultural land loss, with approximately 1.22 million hectares of rice fields converted between 1990 and 2022. Therefore, this study developed a prediction model for the loss of rice fields by 2030, incorporating land productivity attributes, specifically rice cropping intensity/RCI, using geospatial technology—a novel method with a resolution of approximately 10 m for quantifying ecosystem service (ES) impacts. Land use/land cover data from Landsat images (2013, 2020, 2024) were classified using the Random Forest algorithm on Google Earth Engine. The prediction model was developed using a Multi-Layer Perceptron Neural Network and Markov Cellular Automata (MLP-NN Markov-CA) algorithms. Additionally, time series Sentinel-1A satellite imagery was processed using K-means and a hierarchical clustering analysis to map rice fields and their RCI. The validation process confirmed high model robustness, with an MLP-NN Markov-CA accuracy and Kappa coefficient of 83.90% and 0.91, respectively. The present study, which was conducted in Indramayu Regency (West Java), predicted that 1602.73 hectares of paddy fields would be lost within 2020–2030, specifically 980.54 hectares (61.18%) and 622.19 hectares (38.82%) with 2 RCI and 1 RCI, respectively. This land conversion directly threatens ES, resulting in a projected loss of 83,697.95 tons of rice production, which indicates a critical degradation of service provisioning. The findings provide actionable insights for land use planning to reduce agricultural land conversion while outlining the urgency of safeguarding ES values. The adopted method is applicable to regions with similar characteristics. Full article
Show Figures

Figure 1

18 pages, 3896 KiB  
Article
The Contribution of Meteosat Third Generation–Flexible Combined Imager (MTG-FCI) Observations to the Monitoring of Thermal Volcanic Activity: The Mount Etna (Italy) February–March 2025 Eruption
by Carolina Filizzola, Giuseppe Mazzeo, Francesco Marchese, Carla Pietrapertosa and Nicola Pergola
Remote Sens. 2025, 17(12), 2102; https://doi.org/10.3390/rs17122102 - 19 Jun 2025
Viewed by 522
Abstract
The Flexible Combined Imager (FCI) instrument aboard the Meteosat Third Generation (MTG-I) geostationary satellite, launched in December 2022 and operational since September 2024, by providing shortwave infrared (SWIR), medium infrared (MIR) and thermal infrared (TIR) data, with an image refreshing time of 10 [...] Read more.
The Flexible Combined Imager (FCI) instrument aboard the Meteosat Third Generation (MTG-I) geostationary satellite, launched in December 2022 and operational since September 2024, by providing shortwave infrared (SWIR), medium infrared (MIR) and thermal infrared (TIR) data, with an image refreshing time of 10 min and a spatial resolution ranging between 500 m in the high-resolution (HR) and 1–2 km in the normal-resolution (NR) mode, may represent a very promising instrument for monitoring thermal volcanic activity from space, also in operational contexts. In this work, we assess this potential by investigating the recent Mount Etna (Italy, Sicily) eruption of February–March 2025 through the analysis of daytime and night-time SWIR observations in the NR mode. The time series of a normalized hotspot index retrieved over Mt. Etna indicates that the effusive eruption started on 8 February at 13:40 UTC (14:40 LT), i.e., before information from independent sources. This observation is corroborated by the analysis of the MIR signal performed using an adapted Robust Satellite Technique (RST) approach, also revealing the occurrence of less intense thermal activity over the Mt. Etna area a few hours before (10.50 UTC) the possible start of lava effusion. By analyzing changes in total SWIR radiance (TSR), calculated starting from hot pixels detected using the preliminary NHI algorithm configuration tailored to FCI data, we inferred information about variations in thermal volcanic activity. The results show that the Mt. Etna eruption was particularly intense during 17–19 February, when the radiative power was estimated to be around 1–3 GW from other sensors. These outcomes, which are consistent with Multispectral Instrument (MSI) and Operational Land Imager (OLI) observations at a higher spatial resolution, providing accurate information about areas inundated by the lava, demonstrate that the FCI may provide a relevant contribution to the near-real-time monitoring of Mt. Etna activity. The usage of FCI data, in the HR mode, may further improve the timely identification of high-temperature features in the framework of early warning contexts, devoted to mitigating the social, environmental and economic impacts of effusive eruptions, especially over less monitored volcanic areas. Full article
Show Figures

Figure 1

23 pages, 3015 KiB  
Article
Surface Water Extent Extraction in Prairie Environments Using Sentinel-1 Image-Pair Coherence
by Peilin Chen and Grant Gunn
Glacies 2025, 2(2), 6; https://doi.org/10.3390/glacies2020006 - 19 May 2025
Viewed by 690
Abstract
Knowledge of surface water extent is critical for ecological and disaster monitoring. However, surface water extraction from optical satellite imagery is challenging due to the impact of weather. Synthetic Aperture Radar (SAR) can penetrate cloud cover and has significant advantages for surface water [...] Read more.
Knowledge of surface water extent is critical for ecological and disaster monitoring. However, surface water extraction from optical satellite imagery is challenging due to the impact of weather. Synthetic Aperture Radar (SAR) can penetrate cloud cover and has significant advantages for surface water mapping, but the classification accuracy might be limited by SAR’s inherent properties and land cover, which have similar backscatter to surface water. This study finds that the accuracy of surface water extraction at the Prairie Pothole Region (PPR) can be improved by combining interferometric coherence and backscatter for machine learning classification. This study performs time-series analysis on surface water and land to investigate their discrimination at different seasonal periods. The accuracy improvement of this method on Sentinel-1 images reached 10% during the seasons of fall and winter, where the combination of backscatter and coherence was proven to be efficient for separating water and land. Hence, our approaches of combining backscatter and coherence provide new insights for surface water extraction from SAR images in future studies. Full article
Show Figures

Figure 1

18 pages, 5114 KiB  
Article
Mapping Rice Phenology Using MODIS Products in An Giang Province, Mekong River Delta, Vietnam
by Shou-Hao Chiang and Minh-Binh Ton
Remote Sens. 2025, 17(9), 1583; https://doi.org/10.3390/rs17091583 - 29 Apr 2025
Viewed by 869
Abstract
The Moderate Resolution Imaging Spectroradiometer (MODIS) provides consistent long-term satellite observations that are valuable for rice mapping and production estimation through phenology extraction. This study evaluates the effectiveness of three MODIS products, MOD09GQ (1-day), MOD09Q1 (8-day), and MOD13Q1 (16-day), for mapping rice phenology [...] Read more.
The Moderate Resolution Imaging Spectroradiometer (MODIS) provides consistent long-term satellite observations that are valuable for rice mapping and production estimation through phenology extraction. This study evaluates the effectiveness of three MODIS products, MOD09GQ (1-day), MOD09Q1 (8-day), and MOD13Q1 (16-day), for mapping rice phenology in An Giang Province, a key rice-producing region in Vietnam’s climate-sensitive Mekong River Delta (MRD). The analysis focuses on rice cropping seasons from 2019 to 2021, using time series of the Normalized Difference Vegetation Index (NDVI) to capture temporal and spatial variations in rice growth dynamics. To address data gaps due to persistent cloud cover and sensor-related noises, smoothing techniques, including the Double Logistic Function (DLF) and Savitzky–Golay Filtering (SGF), were applied. Thirteen phenological parameters were extracted and used as inputs to an unsupervised K-Means clustering algorithm, enabling the classification of distinct rice growth patterns. The results show that DLF-processed MOD09GQ data most accurately reconstructed NDVI time series and captured short-term phenological transitions, outperforming coarser-resolution products. The resulting phenology maps could be used to correlate the influence of anthropogenic factors, such as the widespread adoption of short-duration rice varieties and shifts in water management practices. This study provides a robust framework for phenology-based rice mapping to support food security, sustainable agricultural planning, and climate resilience in the MRD. Full article
Show Figures

Graphical abstract

14 pages, 9320 KiB  
Article
A Phenology-Based Evaluation of the Optimal Proxy for Cropland Suitability Based on Crop Yield Correlations from Sentinel-2 Image Time-Series
by Dorijan Radočaj and Mladen Jurišić
Agriculture 2025, 15(8), 859; https://doi.org/10.3390/agriculture15080859 - 15 Apr 2025
Cited by 2 | Viewed by 429
Abstract
Cropland suitability calculations quantify natural suitability according to abiotic conditions, thus making them crucial for sustainable land management. However, since ground-truth yield data are extremely scarce, there is a need to improve knowledge on the optimal proxy metric from satellite imagery, which represents [...] Read more.
Cropland suitability calculations quantify natural suitability according to abiotic conditions, thus making them crucial for sustainable land management. However, since ground-truth yield data are extremely scarce, there is a need to improve knowledge on the optimal proxy metric from satellite imagery, which represents cropland suitability and enables global applicability. This study evaluated four frequently used vegetation indices from Sentinel-2 image time-series (normalized difference vegetation index, enhanced vegetation index, enhanced vegetation index 2, and wide dynamic range vegetation index) with three phenology metrics for correlation analysis with maize and soybean yield. Four years (2019–2022) in two study areas (Iowa and Illinois) were utilized in this research, and 1000 ground-truth crop yield samples were created for each combination of study year and area. The combination of wide dynamic range vegetation index (WDRVI) and maximum vegetation index phenology metric (MAX) was an optimal proxy for maize yield prediction, while enhanced vegetation index 2 (EVI2) and MAX produced the highest correlation for soybean, producing Pearson’s correlation coefficient means of 0.506 and 0.519, respectively. This study improved our knowledge of the optimal proxy metric for cropland suitability by combining multiple large ground-truth crop yield datasets with 30 m spatial resolution satellite imagery, which can be further improved with the use of novel vegetation indices with improved resistance to a saturation effect. Full article
(This article belongs to the Section Artificial Intelligence and Digital Agriculture)
Show Figures

Figure 1

19 pages, 9445 KiB  
Article
The Stepwise Multi-Temporal Interferometric Synthetic Aperture Radar with Partially Coherent Scatterers for Long-Time Series Deformation Monitoring
by Jinbao Zhang, Wei Duan, Xikai Fu, Ye Yun and Xiaolei Lv
Remote Sens. 2025, 17(8), 1374; https://doi.org/10.3390/rs17081374 - 11 Apr 2025
Cited by 1 | Viewed by 479
Abstract
In recent decades, the interferometric synthetic aperture radar (InSAR) technique has emerged as a powerful tool for monitoring ground subsidence and geohazards. Various satellite SAR systems with different modes, such as Sentinel-1 and Lutan-1, have produced abundant SAR datasets with wide coverage and [...] Read more.
In recent decades, the interferometric synthetic aperture radar (InSAR) technique has emerged as a powerful tool for monitoring ground subsidence and geohazards. Various satellite SAR systems with different modes, such as Sentinel-1 and Lutan-1, have produced abundant SAR datasets with wide coverage and large historical archives, which have significantly influenced long-term deformation monitoring applications. However, large-scale InSAR data have posed significant challenges to conventional InSAR methods. These issues include the computational burden and storage of multi-temporal InSAR (MT-InSAR) methods, as well as temporal decorrelation for coherent scatterers with long temporal baselines. In this study, we propose a stepwise MT-InSAR with a temporal coherent scatterer method to address these problems. First, a batch sequential method is introduced in the algorithm by grouping the SAR dataset in the time domain based on the average coherence distribution and then applying permanent scatterer interferometry to each temporal subset. Second, a multi-layer network is employed to estimate deformation for partially coherent scatterers using small baseline subset interferograms, with permanent scatterer deformation parameters as the reference. Finally, the final deformation rate and displacement time series were obtained by incorporating all the temporal subsets. The proposed method efficiently generates high-density InSAR deformation measurements for long-time series analysis. The proposed method was validated using 9 years of Sentinel-1 data with 229 SAR images from Jakarta, Indonesia. The deformation results were compared with those of conventional methods and global navigation satellite system data to confirm the effectiveness of the proposed method. Full article
Show Figures

Figure 1

18 pages, 1501 KiB  
Article
Tree Species Classification at the Pixel Level Using Deep Learning and Multispectral Time Series in an Imbalanced Context
by Florian Mouret, David Morin, Milena Planells and Cécile Vincent-Barbaroux
Remote Sens. 2025, 17(7), 1190; https://doi.org/10.3390/rs17071190 - 27 Mar 2025
Cited by 4 | Viewed by 1075
Abstract
This paper investigates tree species classification using the Sentinel-2 multispectral satellite image time series (SITS). Despite its importance for many applications and users, such mapping is often unavailable or outdated. The value of using SITS to classify tree species on a large scale [...] Read more.
This paper investigates tree species classification using the Sentinel-2 multispectral satellite image time series (SITS). Despite its importance for many applications and users, such mapping is often unavailable or outdated. The value of using SITS to classify tree species on a large scale has been demonstrated in numerous studies. However, many methods proposed in the literature still rely on a standard machine learning algorithm, usually the random forest (RF) algorithm. Our analysis shows that the use of deep learning (DL) models can lead to a significant improvement in classification results, especially in an imbalanced context where the RF algorithm tends to predict the majority class. In our case study in central France with 10 tree species, we obtained an overall accuracy (OA) of around 95% and an F1-macro score of around 80% using three different benchmark DL architectures (fully connected, convolutional, and attention-based networks). In contrast, using the RF algorithm, the OA and F1 scores obtained were 92% and 60%, indicating that the minority classes are poorly classified. Our results also show that DL models are robust to imbalanced data, although small improvements can be obtained by specifically addressing this issue. Validation on independent in situ data shows that all models struggle to predict in areas not well covered by training data, but even in this situation, the RF algorithm is largely outperformed by deep learning models for minority classes. The proposed framework can be easily implemented as a strong baseline, even with a limited amount of reference data. Full article
Show Figures

Figure 1

24 pages, 39182 KiB  
Article
Predicting Sugarcane Yield Through Temporal Analysis of Satellite Imagery During the Growth Phase
by Julio Cezar Souza Vasconcelos, Caio Simplicio Arantes, Eduardo Antonio Speranza, João Francisco Gonçalves Antunes, Luiz Antonio Falaguasta Barbosa and Geraldo Magela de Almeida Cançado
Agronomy 2025, 15(4), 793; https://doi.org/10.3390/agronomy15040793 - 24 Mar 2025
Cited by 1 | Viewed by 1296
Abstract
This research investigates how to estimate sugarcane (Saccharum officinarum L.) yield at harvest by using an average satellite image time-series collected during the growth phase. This study aims to evaluate the effectiveness of various modeling approaches, including a heteroskedastic gamma regression model, [...] Read more.
This research investigates how to estimate sugarcane (Saccharum officinarum L.) yield at harvest by using an average satellite image time-series collected during the growth phase. This study aims to evaluate the effectiveness of various modeling approaches, including a heteroskedastic gamma regression model, Random Forest, and Artificial Neural Networks, in predicting sugarcane yield based on satellite-derived vegetation indices and environmental variables. Key covariates analyzed include sugarcane varieties, production cycles, accumulated precipitation during the growth phase, and the mean GNDVI vegetation index. The analysis was conducted in two locations over two consecutive growing seasons. The research emphasizes the integration of satellite data with advanced statistical and machine learning techniques to enhance yield prediction in agricultural systems, specifically focusing on sugarcane cultivation. The results indicate that the heteroskedastic gamma regression model outperformed the other methods in explaining yield variability, particularly in commercial sugarcane fields, achieving a Coefficient Determination (R2) of 0.89. These findings highlight the potential of these models to support informed decision-making and optimize agricultural practices, providing valuable insights for precision farming. Overall, the results of this study represent an initial step toward developing more robust models for predicting sugarcane yield. Future work will involve incorporating additional variables to better assess the impacts of environmental stresses, such as high temperatures and water deficits, on the crop’s agronomic performance. Full article
(This article belongs to the Section Precision and Digital Agriculture)
Show Figures

Graphical abstract

28 pages, 6201 KiB  
Article
Vegetation Monitoring of Palm Trees in an Oasis Environment (Boudenib, Morocco) Using Automatic Processing of Medium-Resolution Remotely Sensed Data
by Kaoutar Badioui, Ann Van Griensven and Boud Verbeiren
Geosciences 2025, 15(3), 104; https://doi.org/10.3390/geosciences15030104 - 15 Mar 2025
Cited by 2 | Viewed by 852
Abstract
Oases are part of the natural wealth and heritage of Morocco and contribute to the social, economic, and touristic environment. Morocco has lost more than 2/3 of its oases during the past century due to water scarcity, succession of drought periods, climate change [...] Read more.
Oases are part of the natural wealth and heritage of Morocco and contribute to the social, economic, and touristic environment. Morocco has lost more than 2/3 of its oases during the past century due to water scarcity, succession of drought periods, climate change and over-exploitation of groundwater resources. Palm trees are strongly dependent on irrigation and availability of surface water as soon as the water table depth falls below the root zone of 9 m. Improving management and monitoring of oasis ecosystems is strongly encouraged by UNESCO Biosphere Reserve and RAMSAR guidelines. The Boudenib and Tafilalet oases are among the biggest palm groves located in the south-eastern part of Morocco. These oases belong to catchments of the rivers Guir and Ziz, respectively. This paper uses remotely sensed data from PROBA-V for monitoring vegetation in oases, and linking vegetation characteristics to water availability, water management and quality and quantity of date crops. The Normalized Differential Vegetation Index (NDVI) derived from optical images provides a good estimation of changes in vegetation cover over time. Images of various spatial resolutions (100 m, 300 m and 1 km) obtained with the frequently revisiting Belgian satellite PROBA-V and available since 2014, can be successfully used for deriving time series of vegetation dynamics. TREX—Tool for Raster data Exploration—is a Python-GDAL processing tool of PROBA-V NDVI images for analyzing vegetation dynamics, developed at the Vrije Universiteit Brussel and available online. TREX has various applications, but the main functionality is to provide an automatic processing of PROBA-V satellite images into time series of NDVI and LAI, used in vegetation monitoring of user-defined points of interest. This study presents the results of application of TREX in the arid ecosystems of the Boudenib oasis for the period 2014–2018. The resulting NDVI and LAI time series are also compared to time series of groundwater depth and date crops quantity and quality. Low LAI is observed when water depth is low, and the palm trees lose their greenery. Low LAI is also correlated to low quantity and quality of dates in October 2015 and October 2017. PROBA-V images can therefore be used for monitoring the health of palm trees in oasis environments. However, considering the fact that the PROBA-V satellite mission has ended, this approach could instead be applied to Sentinel-3 data using the same analysis. These results have important implications for water management in the area and can help decision-makers to make better decisions about prevention of water scarcity in the region. Full article
(This article belongs to the Special Issue Earth Observation by GNSS and GIS Techniques)
Show Figures

Figure 1

18 pages, 9552 KiB  
Article
A New Remote Sensing Index for the Detection of Multi-Type Forest Anomalies Based on Sentinel-2 Imagery
by Dalin Liang, Biao Cao, Qiao Wang, Jianbo Qi, Kun Jia, Wenzhi Zhao and Kai Yan
Forests 2025, 16(3), 497; https://doi.org/10.3390/f16030497 - 11 Mar 2025
Viewed by 999
Abstract
Forest anomalies (e.g., pests, deforestation, and fires) are increasingly frequent phenomena on Earth’s surface. Rapid detection of these anomalies is crucial for sustainable forest management and development. On-orbit remote sensing detection of multi-type forest anomalies using single-temporal images is one of the most [...] Read more.
Forest anomalies (e.g., pests, deforestation, and fires) are increasingly frequent phenomena on Earth’s surface. Rapid detection of these anomalies is crucial for sustainable forest management and development. On-orbit remote sensing detection of multi-type forest anomalies using single-temporal images is one of the most promising methods for achieving it. Nevertheless, existing forest anomaly detection methods rely on time series image analysis or are designed to detect a single type of forest anomaly. In this study, a Forest Anomaly Comprehensive Index (FACI) is proposed to detect multi-type forest anomalies using single-temporal Sentinel-2 images. First, the spectral characteristics of different forest anomaly events were analyzed to obtain potential band combinations. Then, the formulation of FACI was determined using imagery simulated by the LargE-Scale remote sensing data and image Simulation framework over heterogeneous 3D scenes (LESS) model. The thresholds for FACI for different anomalies were determined using the interquartile method and 90 in situ survey samples. The accuracy of FACI was quantitatively assessed using an additional 90 in situ survey samples. Evaluation results indicated that the overall accuracy of FACI in detecting the three forest anomalies was 88.3%, with a Kappa coefficient of 0.84. The overall accuracy of existing indices (NDVI, NDWI, SAVI, BSI, and TAI) is below 80%, with Kappa coefficients less than 0.7. In the end, a case study in Ji’an, Jiangxi Province, confirmed the ability of FACI to detect different stages of pest infection, as well as deforestation and forest fires, using single-temporal satellite images. The FACI provides a promising method for the on-orbit satellite detection of multi-type forest anomalies in the future. Full article
(This article belongs to the Section Forest Inventory, Modeling and Remote Sensing)
Show Figures

Figure 1

22 pages, 8396 KiB  
Article
A New Algorithm for the Global-Scale Quantification of Volcanic SO2 Exploiting the Sentinel-5P TROPOMI and Google Earth Engine
by Maddalena Dozzo, Alessandro Aiuppa, Giuseppe Bilotta, Annalisa Cappello and Gaetana Ganci
Remote Sens. 2025, 17(3), 534; https://doi.org/10.3390/rs17030534 - 5 Feb 2025
Viewed by 1982
Abstract
Sulfur dioxide (SO2) is sourced by degassing magma in the shallow crust; hence its monitoring provides information on the rates of magma ascent in the feeding conduit and the style and intensity of eruption, ultimately contributing to volcano monitoring and hazard [...] Read more.
Sulfur dioxide (SO2) is sourced by degassing magma in the shallow crust; hence its monitoring provides information on the rates of magma ascent in the feeding conduit and the style and intensity of eruption, ultimately contributing to volcano monitoring and hazard assessment. Here, we present a new algorithm to extract SO2 data from the TROPOMI imaging spectrometer aboard the Sentinel-5 Precursor satellite, which delivers atmospheric column measurements of sulfur dioxide and other gases with an unprecedented spatial resolution and daily revisit time. Specifically, we automatically extract the volcanic clouds by introducing a two-step approach. Firstly, we used the Simple Non-Iterative Clustering segmentation method, which is an object-based image analysis approach; secondly, the K-means unsupervised machine learning technique is applied to the segmented images, allowing a further and better clustering to distinguish the SO2. We implemented this algorithm in the open-source Google Earth Engine computing platform, which provides TROPOMI imagery collection adjusted in terms of quality parameters. As case studies, we chose three volcanoes: Mount Etna (Italy), Taal (Philippines) and Sangay (Ecuador); we calculated sulfur dioxide mass values from 2018 to date, focusing on a few paroxysmal events. Our results are compared with data available in the literature and with Level 2 TROPOMI imagery, where a mask is provided to identify SO2, finding an optimal agreement. This work paves the way to the release of SO2 flux time series with reduced delay and improved calculation time, hence contributing to a rapid response to volcanic unrest/eruption at volcanoes worldwide. Full article
Show Figures

Figure 1

25 pages, 9099 KiB  
Article
A Universal Framework for Near-Real-Time Detection of Vegetation Anomalies from Landsat Data
by Yixuan Xie, Zhiqiang Xiao, Juan Li, Jinling Song, Hua Yang and Kexin Lv
Remote Sens. 2025, 17(3), 520; https://doi.org/10.3390/rs17030520 - 3 Feb 2025
Viewed by 1414
Abstract
Vegetation anomalies are frequently occurring and may greatly affect ecological functions. Many near-real-time (NRT) detection methods have been developed to detect these anomalies in a timely manner whenever a new satellite observation is available. However, the undisturbed vegetation conditions captured by these methods [...] Read more.
Vegetation anomalies are frequently occurring and may greatly affect ecological functions. Many near-real-time (NRT) detection methods have been developed to detect these anomalies in a timely manner whenever a new satellite observation is available. However, the undisturbed vegetation conditions captured by these methods are only applicable to a particular pixel or vegetation type, resulting in a lack of universality. Also, most methods that use single characteristic parameter may ignore the multi-spectral expression of vegetation anomalies. In this study, we developed a universal framework to simultaneously detect various vegetation anomalies in NRT from Landsat observations. Firstly, Landsat surface reflectance data from the Benchmark Land Multisite Analysis and Intercomparison of Products (BELMANIP) sites were selected as a reference vegetation dataset to calculate the normalized difference vegetation index (NDVI) and the normalized burn ratio (NBR), which describe vegetation conditions from the perspectives of greenness and moisture, respectively. After the elimination of cloud-contaminated pixels, the high-quality NDVI and NBR data over the BELMANIP sites were further normalized in order to remove the differences in the growth of the varying vegetation. Based on the normalized NDVI and NBR, kernel density estimation (KDE) was used to create a universal measure of undisturbed vegetation, which described the uniform spectral frequency distribution of different undisturbed vegetation with a series of accumulated probabilities on a monthly basis. Whenever a new Landsat observation is collected, the vegetation anomalies are determined according to the universal measure in NRT. To demonstrate the potential of this framework, three study areas with different anomaly types (deforestation, fire event, and insect outbreak) in distinct ecozones (rainforest, coniferous forest, and deciduous broad-leaf forest) were used. The quantitative analyses showed generally high overall accuracies (>90% with the kappa >0.82). The user accuracy for the fire event and the producer accuracy for the earlier insect infestation were relatively lower. The accuracies may be affected by the complexity of the land surface, the quality of the Landsat image, and the accumulated probability threshold. Full article
Show Figures

Figure 1

31 pages, 6526 KiB  
Review
Remote Sensing Technology for Observing Tree Mortality and Its Influences on Carbon–Water Dynamics
by Mengying Ni, Qingquan Wu, Guiying Li and Dengqiu Li
Forests 2025, 16(2), 194; https://doi.org/10.3390/f16020194 - 21 Jan 2025
Cited by 1 | Viewed by 2153
Abstract
Trees are indispensable to ecosystems, yet mortality rates have been increasing due to the abnormal changes in forest growth environments caused by frequent extreme weather events associated with global climate warming. Consequently, the need to monitor, assess, and predict tree mortality has become [...] Read more.
Trees are indispensable to ecosystems, yet mortality rates have been increasing due to the abnormal changes in forest growth environments caused by frequent extreme weather events associated with global climate warming. Consequently, the need to monitor, assess, and predict tree mortality has become increasingly urgent to better address climate change and protect forest ecosystems. Over the past few decades, remote sensing has been widely applied to vegetation mortality observation due to its significant advantages. Here, we reviewed and analyzed the major research advancements in the application of remote sensing for tree mortality monitoring, using the Web of Science Core Collection database, covering the period from 1998 to the first half of 2024. We comprehensively summarized the use of different platforms (satellite and UAV) for data acquisition, the application of various sensors (multispectral, hyperspectral, and radar) as image data sources, the primary indicators, the classification models used in monitoring tree mortality, and the influence of tree mortality. Our findings indicated that satellite-based optical remote sensing data were the primary data source for tree mortality monitoring, accounting for 80% of existing studies. Time-series optical remote sensing data have emerged as a crucial direction for enhancing the accuracy of vegetation mortality monitoring. In recent years, studies utilizing airborne LiDAR have shown an increasing trend, accounting for 48% of UAV-based research. NDVI was the most commonly used remote sensing indicator, and most studies incorporated meteorological and climatic factors as environmental variables. Machine learning was increasingly favored for remote sensing data analysis, with Random Forest being the most widely used classification model. People are more focused on the impacts of tree mortality on water and carbon. Finally, we discussed the challenges in monitoring and evaluating tree mortality through remote sensing and offered perspectives for future developments. Full article
Show Figures

Figure 1

29 pages, 25762 KiB  
Article
Improving Bimonthly Landscape Monitoring in Morocco, North Africa, by Integrating Machine Learning with GRASS GIS
by Polina Lemenkova
Geomatics 2025, 5(1), 5; https://doi.org/10.3390/geomatics5010005 - 20 Jan 2025
Cited by 6 | Viewed by 2836
Abstract
This article presents the application of novel cartographic methods of vegetation mapping with a case study of the Rif Mountains, northern Morocco. The study area is notable for varied geomorphology and diverse landscapes. The methodology includes ML modules of GRASS GIS ‘r.learn.train’, ‘r.learn.predict’, [...] Read more.
This article presents the application of novel cartographic methods of vegetation mapping with a case study of the Rif Mountains, northern Morocco. The study area is notable for varied geomorphology and diverse landscapes. The methodology includes ML modules of GRASS GIS ‘r.learn.train’, ‘r.learn.predict’, and ‘r.random’ with algorithms of supervised classification implemented from the Scikit-Learn libraries of Python. This approach provides a platform for processing spatiotemporal data and satellite image analysis. The objective is to determine the robustness of the “DecisionTreeClassifier” and “ExtraTreesClassifier” classification algorithms. The time series of satellite images covering northern Morocco consists of six Landsat scenes for 2023 with a bimonthly time interval. Land cover maps are produced based on the processed, classified, and analyzed images. The results demonstrated seasonal changes in vegetation and land cover types. The validation was performed using a land cover dataset from the Food and Agriculture Organization (FAO). This study contributes to environmental monitoring in North Africa using ML algorithms of satellite image processing. Using RS data combined with the powerful functionality of the GRASS GIS and FAO-derived datasets, the topographic variability, moderate-scale habitat heterogeneity, and bimonthly distribution of land cover types of northern Morocco in 2023 have been assessed for the first time. Full article
Show Figures

Figure 1

Back to TopTop