Surface Water Extent Extraction in Prairie Environments Using Sentinel-1 Image-Pair Coherence
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Datasets
2.2.1. Sentinel-1 SAR Imagery
2.2.2. Surface Water Basemap Water Frequency Dataset
2.2.3. High-Resolution Optical Imagery
2.3. Methods
2.3.1. SAR Image Backscatter Preprocessing
2.3.2. InSAR Coherence Estimation
2.3.3. InSAR Coherence Time-Series Analysis
2.3.4. Image Classification and Post-Processing
2.3.5. Accuracy Assessment
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Product Name | Acquisition Dates | Sensor | Rel. Orbit |
S1B_IW_SLC__1SDV_20191103T004906_20191103T004933_018756_0235A2_6ED6.SAFE | 20191103 | S1B | 5 |
S1B_IW_SLC__1SDV_20191115T004906_20191115T004933_018931_023B50_89EC.SAFE | 20191115 | S1B | 5 |
S1B_IW_SLC__1SDV_20191127T004906_20191127T004933_019106_0240EE_A42A.SAFE | 20191127 | S1B | 5 |
S1B_IW_SLC__1SDV_20191209T004905_20191209T004932_019281_024677_09EC.SAFE | 20191209 | S1B | 5 |
S1B_IW_SLC__1SDV_20191221T004905_20191221T004932_019456_024C0C_F4F1.SAFE | 20191221 | S1B | 5 |
S1B_IW_SLC__1SDV_20200102T004904_20200102T004931_019631_02519D_488D.SAFE | 20200102 | S1B | 5 |
S1B_IW_SLC__1SDV_20200114T004904_20200114T004931_019806_02572E_E304.SAFE | 20200114 | S1B | 5 |
S1B_IW_SLC__1SDV_20200126T004903_20200126T004930_019981_025CC4_35C9.SAFE | 20200126 | S1B | 5 |
S1B_IW_SLC__1SDV_20200207T004903_20200207T004930_020156_026277_488D.SAFE | 20200207 | S1B | 5 |
S1B_IW_SLC__1SDV_20200212T005705_20200212T005732_020229_0264E2_6B73.SAFE | 20200212 | S1B | 5 |
S1B_IW_SLC__1SDV_20200224T005704_20200224T005731_020404_026A83_43D4.SAFE | 20200224 | S1B | 5 |
S1B_IW_SLC__1SDV_20200302T004903_20200302T004930_020506_026DB7_679F.SAFE | 20200302 | S1B | 5 |
S1B_IW_SLC__1SDV_20200314T004903_20200314T004930_020681_027342_96CC.SAFE | 20200314 | S1B | 5 |
S1B_IW_SLC__1SDV_20200319T005705_20200319T005732_020754_0275A1_BFCC.SAFE | 20200319 | S1B | 5 |
S1B_IW_SLC__1SDV_20200331T005705_20200331T005732_020929_027B25_1C15.SAFE | 20200331 | S1B | 5 |
S1B_IW_SLC__1SDV_20200407T004903_20200407T004930_021031_027E52_440C.SAFE | 20200407 | S1B | 5 |
S1B_IW_SLC__1SDV_20200419T004904_20200419T004931_021206_0283DA_F5D6.SAFE | 20200419 | S1B | 5 |
S1B_IW_SLC__1SDV_20200501T004904_20200501T004931_021381_028961_7076.SAFE | 20200501 | S1B | 5 |
S1B_IW_SLC__1SDV_20200513T004905_20200513T004932_021556_028ED2_A5C4.SAFE | 20200513 | S1B | 5 |
S1B_IW_SLC__1SDV_20200525T004906_20200525T004933_021731_0293EF_7D08.SAFE | 20200525 | S1B | 5 |
S1B_IW_SLC__1SDV_20200606T004907_20200606T004933_021906_029930_9DEC.SAFE | 20200606 | S1B | 5 |
S1B_IW_SLC__1SDV_20200618T004907_20200618T004934_022081_029E79_A6C7.SAFE | 20200618 | S1B | 5 |
S1B_IW_SLC__1SDV_20200630T004908_20200630T004935_022256_02A3DA_A1A1.SAFE | 20200630 | S1B | 5 |
S1B_IW_SLC__1SDV_20200724T004909_20200724T004936_022606_02AE7A_0F1B.SAFE | 20200724 | S1B | 5 |
S1B_IW_SLC__1SDV_20200805T004910_20200805T004937_022781_02B3C8_D50B.SAFE | 20200805 | S1B | 5 |
S1B_IW_SLC__1SDV_20200817T004911_20200817T004938_022956_02B935_E8C4.SAFE | 20200817 | S1B | 5 |
S1B_IW_SLC__1SDV_20200829T004911_20200829T004938_023131_02BEB4_51BC.SAFE | 20200829 | S1B | 5 |
S1B_IW_SLC__1SDV_20200910T004912_20200910T004939_023306_02C433_B52A.SAFE | 20200910 | S1B | 5 |
S1B_IW_SLC__1SDV_20200922T004912_20200922T004939_023481_02C9AD_C801.SAFE | 20200922 | S1B | 5 |
S1B_IW_SLC__1SDV_20201004T004912_20201004T004939_023656_02CF28_9F43.SAFE | 20201004 | S1B | 5 |
S1B_IW_SLC__1SDV_20201016T004913_20201016T004940_023831_02D495_5778.SAFE | 20201016 | S1B | 5 |
S1B_IW_SLC__1SDV_20201028T004913_20201028T004940_024006_02DA16_3E33.SAFE | 20201028 | S1B | 5 |
S1B_IW_SLC__1SDV_20201109T004912_20201109T004939_024181_02DF7D_7D62.SAFE | 20201109 | S1B | 5 |
S1B_IW_SLC__1SDV_20201121T004912_20201121T004939_024356_02E4FC_0A41.SAFE | 20201121 | S1B | 5 |
S1B_IW_SLC__1SDV_20201203T004912_20201203T004939_024531_02EA8A_AD39.SAFE | 20201203 | S1B | 5 |
S1B_IW_SLC__1SDV_20201215T004911_20201215T004938_024706_02F037_D4E3.SAFE | 20201215 | S1B | 5 |
S1B_IW_SLC__1SDV_20201227T004911_20201227T004938_024881_02F5E4_2EB9.SAFE | 20201227 | S1B | 5 |
S1B_IW_SLC__1SDV_20210108T004910_20210108T004937_025056_02FB7E_BB56.SAFE | 20210108 | S1B | 5 |
S1B_IW_SLC__1SDV_20210120T004910_20210120T004937_025231_030119_7063.SAFE | 20210120 | S1B | 5 |
S1B_IW_SLC__1SDV_20210201T004909_20210201T004936_025406_0306A9_2B56.SAFE | 20210201 | S1B | 5 |
S1B_IW_SLC__1SDV_20210213T004909_20210213T004936_025581_030C65_2FCF.SAFE | 20210213 | S1B | 5 |
S1B_IW_SLC__1SDV_20210225T004909_20210225T004936_025756_03121B_8DBF.SAFE | 20210225 | S1B | 5 |
S1B_IW_SLC__1SDV_20210309T004909_20210309T004936_025931_0317D6_9B28.SAFE | 20210309 | S1B | 5 |
S1B_IW_SLC__1SDV_20210321T004909_20210321T004936_026106_031D76_EAE5.SAFE | 20210321 | S1B | 5 |
S1B_IW_SLC__1SDV_20210402T004909_20210402T004936_026281_0322F9_3EE5.SAFE | 20210402 | S1B | 5 |
S1B_IW_SLC__1SDV_20210414T004909_20210414T004936_026456_03288F_F58F.SAFE | 20210414 | S1B | 5 |
S1B_IW_SLC__1SDV_20210426T004910_20210426T004937_026631_032E2D_2CF1.SAFE | 20210426 | S1B | 5 |
S1B_IW_SLC__1SDV_20210508T004911_20210508T004938_026806_0333C6_2386.SAFE | 20210508 | S1B | 5 |
S1B_IW_SLC__1SDV_20210520T004911_20210520T004938_026981_033934_5596.SAFE | 20210520 | S1B | 5 |
S1B_IW_SLC__1SDV_20210601T004912_20210601T004939_027156_033E67_1A87.SAFE | 20210601 | S1B | 5 |
S1B_IW_SLC__1SDV_20210613T004913_20210613T004940_027331_0343A9_683C.SAFE | 20210613 | S1B | 5 |
S1B_IW_SLC__1SDV_20210625T004913_20210625T004940_027506_034894_0283.SAFE | 20210625 | S1B | 5 |
S1B_IW_SLC__1SDV_20210707T004914_20210707T004941_027681_034DB8_9E49.SAFE | 20210707 | S1B | 5 |
S1B_IW_SLC__1SDV_20210719T004915_20210719T004942_027856_0352EC_C813.SAFE | 20210719 | S1B | 5 |
S1B_IW_SLC__1SDV_20210731T004916_20210731T004943_028031_035808_E950.SAFE | 20210731 | S1B | 5 |
S1B_IW_SLC__1SDV_20210812T004916_20210812T004943_028206_035D73_EFAC.SAFE | 20210812 | S1B | 5 |
S1B_IW_SLC__1SDV_20210824T004917_20210824T004944_028381_0362ED_6885.SAFE | 20210824 | S1B | 5 |
S1B_IW_SLC__1SDV_20210905T004917_20210905T004944_028556_036865_9E2D.SAFE | 20210905 | S1B | 5 |
S1B_IW_SLC__1SDV_20210917T004918_20210917T004945_028731_036DC2_8DAE.SAFE | 20210917 | S1B | 5 |
S1B_IW_SLC__1SDV_20210929T004918_20210929T004945_028906_037321_6307.SAFE | 20210929 | S1B | 5 |
S1B_IW_SLC__1SDV_20211011T004918_20211011T004945_029081_03785E_AB3F.SAFE | 20211011 | S1B | 5 |
S1B_IW_SLC__1SDV_20211023T004919_20211023T004946_029256_037DCD_393F.SAFE | 20211023 | S1B | 5 |
S1B_IW_SLC__1SDV_20211104T004918_20211104T004945_029431_03832D_F81B.SAFE | 20211104 | S1B | 5 |
S1B_IW_SLC__1SDV_20211116T004918_20211116T004945_029606_038880_7681.SAFE | 20211116 | S1B | 5 |
S1B_IW_SLC__1SDV_20211128T004918_20211128T004945_029781_038DFC_0EBF.SAFE | 20211128 | S1B | 5 |
S1B_IW_SLC__1SDV_20211210T004917_20211210T004944_029956_039383_288B.SAFE | 20211210 | S1B | 5 |
S1B_IW_SLC__1SDV_20211222T004916_20211222T004943_030131_03990F_3583.SAFE | 20211222 | S1B | 5 |
S1A_IW_SLC__1SDV_20220227T132233_20220227T132303_042099_050403_D413.SAFE | 20220227 | S1B | 27 |
S1A_IW_SLC__1SDV_20220311T132233_20220311T132303_042274_0509F2_258F.SAFE | 20220311 | S1A | 27 |
S1A_IW_SLC__1SDV_20220323T132233_20220323T132303_042449_050FE8_68A5.SAFE | 20220323 | S1A | 27 |
S1A_IW_SLC__1SDV_20220404T132234_20220404T132303_042624_0515DD_9D99.SAFE | 20220404 | S1A | 27 |
S1A_IW_SLC__1SDV_20220416T132234_20220416T132304_042799_051BC0_316A.SAFE | 20220416 | S1A | 27 |
S1A_IW_SLC__1SDV_20220428T132234_20220428T132304_042974_052178_DC00.SAFE | 20220428 | S1A | 27 |
S1A_IW_SLC__1SDV_20220510T132235_20220510T132305_043149_052742_CF9D.SAFE | 20220510 | S1A | 27 |
S1A_IW_SLC__1SDV_20220522T132236_20220522T132306_043324_052C78_D2D4.SAFE | 20220522 | S1A | 27 |
S1A_IW_SLC__1SDV_20220603T132237_20220603T132307_043499_05319E_A6BB.SAFE | 20220603 | S1A | 27 |
S1A_IW_SLC__1SDV_20220615T132237_20220615T132307_043674_0536DC_1C04.SAFE | 20220615 | S1A | 27 |
S1A_IW_SLC__1SDV_20220627T132238_20220627T132308_043849_053C1A_45F7.SAFE | 20220627 | S1A | 27 |
S1A_IW_SLC__1SDV_20220709T132239_20220709T132309_044024_054148_A891.SAFE | 20220709 | S1A | 27 |
S1A_IW_SLC__1SDV_20220721T132240_20220721T132310_044199_054684_FAD7.SAFE | 20220721 | S1A | 27 |
S1A_IW_SLC__1SDV_20220802T132241_20220802T132310_044374_054BAE_AD35.SAFE | 20220802 | S1A | 27 |
S1A_IW_SLC__1SDV_20220814T132241_20220814T132311_044549_05512C_3ADE.SAFE | 20220814 | S1A | 27 |
S1A_IW_SLC__1SDV_20220826T132242_20220826T132312_044724_055712_555C.SAFE | 20220826 | S1A | 27 |
S1A_IW_SLC__1SDV_20220907T132243_20220907T132312_044899_055CF5_50E7.SAFE | 20220907 | S1A | 27 |
S1A_IW_SLC__1SDV_20220919T132242_20220919T132312_045074_0562DE_4152.SAFE | 20220919 | S1A | 27 |
S1A_IW_SLC__1SDV_20221001T132243_20221001T132313_045249_0568BA_3EFB.SAFE | 20221001 | S1A | 27 |
S1A_IW_SLC__1SDV_20221013T132243_20221013T132313_045424_056E98_64D7.SAFE | 20221013 | S1A | 27 |
S1A_IW_SLC__1SDV_20221025T132243_20221025T132313_045599_0573CA_A181.SAFE | 20221025 | S1A | 27 |
S1A_IW_SLC__1SDV_20221106T132243_20221106T132313_045774_0579B5_8581.SAFE | 20221106 | S1A | 27 |
S1A_IW_SLC__1SDV_20221118T132243_20221118T132312_045949_057F9A_3C64.SAFE | 20221118 | S1A | 27 |
S1A_IW_SLC__1SDV_20221130T132242_20221130T132312_046124_05858D_32A2.SAFE | 20221130 | S1A | 27 |
S1A_IW_SLC__1SDV_20221212T132242_20221212T132311_046299_058B83_85D6.SAFE | 20221212 | S1A | 27 |
S1A_IW_SLC__1SDV_20221224T132241_20221224T132311_046474_05917F_0FDC.SAFE | 20221224 | S1A | 27 |
S1A_IW_SLC__1SDV_20230105T132240_20230105T132310_046649_059767_7891.SAFE | 20230105 | S1A | 27 |
S1A_IW_SLC__1SDV_20230117T132239_20230117T132309_046824_059D51_F85D.SAFE | 20230117 | S1A | 27 |
S1A_IW_SLC__1SDV_20230129T132240_20230129T132309_046999_05A339_CEFF.SAFE | 20230129 | S1A | 27 |
S1A_IW_SLC__1SDV_20230210T132239_20230210T132309_047174_05A907_A125.SAFE | 20230210 | S1A | 27 |
S1A_IW_SLC__1SDV_20230222T132238_20230222T132308_047349_05AF01_5E17.SAFE | 20230222 | S1A | 27 |
S1A_IW_SLC__1SDV_20230306T132239_20230306T132309_047524_05B4EB_49C1.SAFE | 20230306 | S1A | 27 |
S1A_IW_SLC__1SDV_20230318T132239_20230318T132309_047699_05BAD9_F35F.SAFE | 20230318 | S1A | 27 |
S1A_IW_SLC__1SDV_20230330T132239_20230330T132309_047874_05C0B0_9BAF.SAFE | 20230330 | S1A | 27 |
S1A_IW_SLC__1SDV_20230411T132240_20230411T132309_048049_05C6A6_DE77.SAFE | 20230411 | S1A | 27 |
S1A_IW_SLC__1SDV_20230423T132240_20230423T132310_048224_05CC7C_C032.SAFE | 20230423 | S1A | 27 |
S1A_IW_SLC__1SDV_20230505T132240_20230505T132310_048399_05D25A_804B.SAFE | 20230505 | S1A | 27 |
S1A_IW_SLC__1SDV_20230517T132241_20230517T132311_048574_05D7AC_BA23.SAFE | 20230517 | S1A | 27 |
S1A_IW_SLC__1SDV_20230529T132242_20230529T132312_048749_05DCDF_49CB.SAFE | 20230529 | S1A | 27 |
S1A_IW_SLC__1SDV_20230610T132242_20230610T132312_048924_05E22A_B72C.SAFE | 20230610 | S1A | 27 |
S1A_IW_SLC__1SDV_20230622T132243_20230622T132312_049099_05E779_C5F7.SAFE | 20230622 | S1A | 27 |
S1A_IW_SLC__1SDV_20230704T132244_20230704T132313_049274_05ECD6_56E8.SAFE | 20230704 | S1A | 27 |
S1A_IW_SLC__1SDV_20230716T132245_20230716T132314_049449_05F241_A8AE.SAFE | 20230716 | S1A | 27 |
S1A_IW_SLC__1SDV_20230728T132245_20230728T132315_049624_05F7A0_B937.SAFE | 20230728 | S1A | 27 |
S1A_IW_SLC__1SDV_20230809T132245_20230809T132315_049799_05FD2C_B644.SAFE | 20230809 | S1A | 27 |
S1A_IW_SLC__1SDV_20230821T132246_20230821T132316_049974_060327_0333.SAFE | 20230821 | S1A | 27 |
S1A_IW_SLC__1SDV_20230902T132247_20230902T132317_050149_06092B_1DDE.SAFE | 20230902 | S1A | 27 |
S1A_IW_SLC__1SDV_20230914T132248_20230914T132317_050324_060F16_A738.SAFE | 20230914 | S1A | 27 |
S1A_IW_SLC__1SDV_20230926T132248_20230926T132318_050499_061515_C3B1.SAFE | 20230926 | S1A | 27 |
Appendix B
Appendix C
References
- Pekel, J.-F.; Cottam, A.; Gorelick, N.; Belward, A.S. High-Resolution Mapping of Global Surface Water and Its Long-Term Changes. Nature 2016, 540, 418–422. [Google Scholar] [CrossRef]
- Wang, S.; Li, J.; Russell, H.A.J. Methods for Estimating Surface Water Storage Changes and Their Evaluations. J. Hydrometeorol. 2023, 24, 445–461. [Google Scholar] [CrossRef]
- Olthof, I.; Rainville, T. Dynamic Surface Water Maps of Canada from 1984 to 2019 Landsat Satellite Imagery. Remote Sens. Environ. 2022, 279, 113121. [Google Scholar] [CrossRef]
- Wang, S.; Li, J. Terrestrial Water Storage Climatology for Canada from GRACE Satellite Observations in 2002–2014. Can. J. Remote Sens. 2016, 42, 190–202. [Google Scholar] [CrossRef]
- Li, J.; Wang, S.; Zhou, F. Time Series Analysis of Long-Term Terrestrial Water Storage over Canada from GRACE Satellites Using Principal Component Analysis. Can. J. Remote Sens. 2016, 42, 161–170. [Google Scholar] [CrossRef]
- Wang, S.; Yang, Y.; Luo, Y.; Rivera, A. Spatial and Seasonal Variations in Evapotranspiration over Canada’s Landmass. Hydrol. Earth Syst. Sci. 2013, 17, 3561–3575. [Google Scholar] [CrossRef]
- Fernandes, R.; Korolevych, V.; Wang, S. Trends in Land Evapotranspiration over Canada for the Period 1960–2000 Based on In Situ Climate Observations and a Land Surface Model. J. Hydrometeorol. 2007, 8, 1016–1030. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, S.; Ren, Z.; Huang, J.; Wang, X.; Liu, S.; Deng, H.; Lin, W. Increased Evapotranspiration from Land Cover Changes Intensified Water Crisis in an Arid River Basin in Northwest China. J. Hydrol. 2019, 574, 383–397. [Google Scholar] [CrossRef]
- Li, J.; Wang, S.; Michel, C.; Russell, H.A.J. Surface Deformation Observed by InSAR Shows Connections with Water Storage Change in Southern Ontario. J. Hydrol. Reg. Stud. 2020, 27, 100661. [Google Scholar] [CrossRef]
- Li, W.; Zhang, W.; Li, Z.; Wang, Y.; Chen, H.; Gao, H.; Zhou, Z.; Hao, J.; Li, C.; Wu, X. A New Method for Surface Water Extraction Using Multi-Temporal Landsat 8 Images Based on Maximum Entropy Model. Eur. J. Remote Sens. 2022, 55, 303–312. [Google Scholar] [CrossRef]
- DeVries, B.; Huang, C.; Armston, J.; Huang, W.; Jones, J.W.; Lang, M.W. Rapid and Robust Monitoring of Flood Events Using Sentinel-1 and Landsat Data on the Google Earth Engine. Remote Sens. Environ. 2020, 240, 111664. [Google Scholar] [CrossRef]
- Pietroniro, A.; Leconte, R. A Review of Canadian Remote Sensing and Hydrology, 1999–2003. Hydrol. Process 2005, 19, 285–301. [Google Scholar] [CrossRef]
- Yang, X.; Zhao, S.; Qin, X.; Zhao, N.; Liang, L. Mapping of Urban Surface Water Bodies from Sentinel-2 MSI Imagery at 10 m Resolution via NDWI-Based Image Sharpening. Remote Sens. 2017, 9, 596. [Google Scholar] [CrossRef]
- Wang, C.; Jia, M.; Chen, N.; Wang, W. Long-Term Surface Water Dynamics Analysis Based on Landsat Imagery and the Google Earth Engine Platform: A Case Study in the Middle Yangtze River Basin. Remote Sens. 2018, 10, 1635. [Google Scholar] [CrossRef]
- Mustafa, M.T.; Hassoon, K.I.; Hussain, H.M.; Abd, M.H. Using water indices (NDWI, MNDWI, NDMI, WRI and AWEI) to detect physical and chemical parameters by apply remote sensing and GIS techniques. Int. J. Res.-Granthaalayah 2017, 5, 117–128. [Google Scholar] [CrossRef]
- McFEETERS, S.K. The Use of the Normalized Difference Water Index (NDWI) in the Delineation of Open Water Features. Int. J. Remote Sens. 1996, 17, 1425–1432. [Google Scholar] [CrossRef]
- Xu, H. Modification of Normalised Difference Water Index (NDWI) to Enhance Open Water Features in Remotely Sensed Imagery. Int. J. Remote Sens. 2006, 27, 3025–3033. [Google Scholar] [CrossRef]
- Kasischke, E.S.; Melack, J.M.; Craig Dobson, M. The Use of Imaging Radars for Ecological Applications—A Review. Remote Sens. Environ. 1997, 59, 141–156. [Google Scholar] [CrossRef]
- Li, J.; Wang, S. An Automatic Method for Mapping Inland Surface Waterbodies with Radarsat-2 Imagery. Int. J. Remote Sens. 2015, 36, 1367–1384. [Google Scholar] [CrossRef]
- Brisco, B. Mapping and Monitoring Surface Water and Wetlands with Synthetic Aperture Radar. In Remote Sensing of Wetlands: Applications and Advances; CRC Press: Boca Raton, FL, USA, 2015; pp. 119–136. [Google Scholar]
- Martinis, S.; Twele, A.; Voigt, S. Towards Operational near Real-Time Flood Detection Using a Split-Based Automatic Thresholding Procedure on High Resolution TerraSAR-X Data. Nat. Hazards Earth Syst. Sci. 2009, 9, 303–314. [Google Scholar] [CrossRef]
- White, L.; Brisco, B.; Pregitzer, M.; Tedford, B.; Boychuk, L. RADARSAT-2 Beam Mode Selection for Surface Water and Flooded Vegetation Mapping. Can. J. Remote Sens. 2014, 40, 135–151. [Google Scholar]
- Millard, K.; Brown, N.; Stiff, D.; Pietroniro, A. Automated Surface Water Detection from Space: A Canada-Wide, Open-Source, Automated, near-Real Time Solution. Can. Water Resour. J./Rev. Can. Des Ressour. Hydr. 2020, 45, 304–323. [Google Scholar] [CrossRef]
- Morris, K.; Jeffries, M.O.; Weeks, W.F. Ice Processes and Growth History on Arctic and Sub-Arctic Lakes Using ERS-1 SAR Data. Polar Rec. 1995, 31, 115–128. [Google Scholar] [CrossRef]
- Murfitt, J.; Duguay, C.R. Assessing the Performance of Methods for Monitoring Ice Phenology of the World’s Largest High Arctic Lake Using High-Density Time Series Analysis of Sentinel-1 Data. Remote Sens. 2020, 12, 382. [Google Scholar] [CrossRef]
- Martinis, S.; Plank, S.; Ćwik, K. The Use of Sentinel-1 Time-Series Data to Improve Flood Monitoring in Arid Areas. Remote Sens. 2018, 10, 583. [Google Scholar] [CrossRef]
- Huang, W.; DeVries, B.; Huang, C.; Lang, M.W.; Jones, J.W.; Creed, I.F.; Carroll, M.L. Automated Extraction of Surface Water Extent from Sentinel-1 Data. Remote Sens. 2018, 10, 797. [Google Scholar] [CrossRef]
- Bartsch, A.; Trofaier, A.M.; Hayman, G.; Sabel, D.; Schlaffer, S.; Clark, D.B.; Blyth, E. Detection of Open Water Dynamics with ENVISAT ASAR in Support of Land Surface Modelling at High Latitudes. Biogeosciences 2012, 9, 703–714. [Google Scholar] [CrossRef]
- Nasirzadehdizaji, R.; Cakir, Z.; Balik Sanli, F.; Abdikan, S.; Pepe, A.; Calò, F. Sentinel-1 Interferometric Coherence and Backscattering Analysis for Crop Monitoring. Comput. Electron. Agric. 2021, 185, 106118. [Google Scholar] [CrossRef]
- Schlaffer, S.; Chini, M.; Dorigo, W.; Plank, S. Monitoring Surface Water Dynamics in the Prairie Pothole Region of North Dakota Using Dual-Polarised Sentinel-1 Synthetic Aperture Radar (SAR) Time Series. Hydrol. Earth Syst. Sci. 2022, 26, 841–860. [Google Scholar] [CrossRef]
- Canisius, F.; Brisco, B.; Murnaghan, K.; Van Der Kooij, M.; Keizer, E. SAR Backscatter and InSAR Coherence for Monitoring Wetland Extent, Flood Pulse and Vegetation: A Study of the Amazon Lowland. Remote Sens. 2019, 11, 720. [Google Scholar] [CrossRef]
- Amani, M.; Poncos, V.; Brisco, B.; Foroughnia, F.; DeLancey, E.R.; Ranjbar, S. InSAR Coherence Analysis for Wetlands in Alberta, Canada Using Time-Series Sentinel-1 Data. Remote Sens. 2021, 13, 3315. [Google Scholar] [CrossRef]
- Touzi, R.; Lopes, A.; Bruniquel, J.; Vachon, P.W. Coherence Estimation for SAR Imagery. IEEE Trans. Geosci. Remote Sens. 1999, 37, 135–149. [Google Scholar] [CrossRef]
- Ullmann, T.; Sauerbrey, J.; Hoffmeister, D.; May, S.M.; Baumhauer, R.; Bubenzer, O. Assessing Spatiotemporal Variations of Sentinel-1 InSAR Coherence at Different Time Scales over the Atacama Desert (Chile) between 2015 and 2018. Remote Sens. 2019, 11, 2960. [Google Scholar] [CrossRef]
- Ni, J.; Lopez-Martinez, C.; Hu, Z.; Zhang, F. Multitemporal SAR and Polarimetric SAR Optimization and Classification: Reinterpreting Temporal Coherence. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5236617. [Google Scholar] [CrossRef]
- Chul Jung, H.; Alsdorf, D. Repeat-Pass Multi-Temporal Interferometric SAR Coherence Variations with Amazon Floodplain and Lake Habitats. Int. J. Remote Sens. 2010, 31, 881–901. [Google Scholar] [CrossRef]
- Smith, L.C.; Alsdorf, D.E. Control on Sediment and Organic Carbon Delivery to the Arctic Ocean Revealed with Space-Borne Synthetic Aperture Radar: Ob’ River, Siberia. Geology 1998, 26, 395. [Google Scholar] [CrossRef]
- Lu, Z.; Kwoun, O. Radarsat-1 and ERS InSAR Analysis Over Southeastern Coastal Louisiana: Implications for Mapping Water-Level Changes Beneath Swamp Forests. IEEE Trans. Geosci. Remote Sens. 2008, 46, 2167–2184. [Google Scholar] [CrossRef]
- Antonova, S.; Duguay, C.R.; Kääb, A.; Heim, B.; Langer, M.; Westermann, S.; Boike, J. Monitoring Bedfast Ice and Ice Phenology in Lakes of the Lena River Delta Using TerraSAR-X Backscatter and Coherence Time Series. Remote Sens. 2016, 8, 903. [Google Scholar] [CrossRef]
- Pandit, A.; Sawant, S.; Mohite, J.; Pappula, S. Sentinel-1-Derived Coherence Time-Series for Crop Monitoring in Indian Agriculture Region. Geocarto Int. 2022, 37, 9497–9517. [Google Scholar] [CrossRef]
- De Vroey, M.; Radoux, J.; Defourny, P. Grassland Mowing Detection Using Sentinel-1 Time Series: Potential and Limitations. Remote Sens. 2021, 13, 348. [Google Scholar] [CrossRef]
- Tamm, T.; Zalite, K.; Voormansik, K.; Talgre, L. Relating Sentinel-1 Interferometric Coherence to Mowing Events on Grasslands. Remote Sens. 2016, 8, 802. [Google Scholar] [CrossRef]
- Li, Z.; Guo, H.; Li, X.; Wang, C. SAR Interferometry Coherence Analysis for Snow Mapping. In Scanning the Present and Resolving the Future, Proceedings of the IEEE 2001 International Geoscience and Remote Sensing Symposium, Sydney, NSW, Australia, 9–13 July 2001; IEEE: New York, NY, USA, 2001; Volume 6, pp. 2905–2907. [Google Scholar] [CrossRef]
- Kumar, V.; Venkataraman, G. SAR interferometric coherence analysis for snow cover mapping in the Western Himalayan region. Int. J. Digit. Earth 2011, 4, 78–90. [Google Scholar] [CrossRef]
- Yu, Z.; An, Q.; Liu, W.; Wang, Y. Analysis and Evaluation of Surface Water Changes in the Lower Reaches of the Yangtze River Using Sentinel-1 Imagery. J. Hydrol. Reg. Stud. 2022, 41, 101074. [Google Scholar] [CrossRef]
- Zhang, M.; Chen, F.; Tian, B.; Liang, D. Multi-Temporal SAR Image Classification of Coastal Plain Wetlands Using a New Feature Selection Method and Random Forests. Remote Sens. Lett. 2019, 10, 312–321. [Google Scholar] [CrossRef]
- Zhou, Z.; Liu, L.; Jiang, L.; Feng, W.; Samsonov, S.V. Using Long-Term SAR Backscatter Data to Monitor Post-Fire Vegetation Recovery in Tundra Environment. Remote Sens. 2019, 11, 2230. [Google Scholar] [CrossRef]
- Bangira, T.; Alfieri, S.M.; Menenti, M.; Van Niekerk, A. Comparing Thresholding with Machine Learning Classifiers for Mapping Complex Water. Remote Sens. 2019, 11, 1351. [Google Scholar] [CrossRef]
- Yue, L.; Li, B.; Zhu, S.; Yuan, Q.; Shen, H. A Fully Automatic and High-Accuracy Surface Water Mapping Framework on Google Earth Engine Using Landsat Time-Series. Int. J. Digit. Earth 2023, 16, 210–233. [Google Scholar] [CrossRef]
- Maghsoudi, Y.; Collins, M.J.; Leckie, D.G. Radarsat-2 Polarimetric SAR Data for Boreal Forest Classification Using SVM and a Wrapper Feature Selector. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2013, 6, 1531–1538. [Google Scholar] [CrossRef]
- Jacob, A.W.; Vicente-Guijalba, F.; Lopez-Martinez, C.; Lopez-Sanchez, J.M.; Litzinger, M.; Kristen, H.; Mestre-Quereda, A.; Ziolkowski, D.; Lavalle, M.; Notarnicola, C.; et al. Sentinel-1 InSAR Coherence for Land Cover Mapping: A Comparison of Multiple Feature-Based Classifiers. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 535–552. [Google Scholar] [CrossRef]
- Zhang, X.; Chan, N.W.; Pan, B.; Ge, X.; Yang, H. Mapping Flood by the Object-Based Method Using Backscattering Coefficient and Interference Coherence of Sentinel-1 Time Series. Sci. Total Environ. 2021, 794, 148388. [Google Scholar] [CrossRef]
- Mestre-Quereda, A.; Lopez-Sanchez, J.M.; Vicente-Guijalba, F.; Jacob, A.W.; Engdahl, M.E. Time-Series of Sentinel-1 Interferometric Coherence and Backscatter for Crop-Type Mapping. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 4070–4084. [Google Scholar] [CrossRef]
- Nikaein, T.; Iannini, L.; Molijn, R.A.; Lopez-Dekker, P. On the Value of Sentinel-1 InSAR Coherence Time-Series for Vegetation Classification. Remote Sens. 2021, 13, 3300. [Google Scholar] [CrossRef]
- Hansen, J.N.; Mitchard, E.T.A.; King, S. Assessing Forest/Non-Forest Separability Using Sentinel-1 C-Band Synthetic Aperture Radar. Remote Sens. 2020, 12, 1899. [Google Scholar] [CrossRef]
- Wu, Q.; Lane, C.R. Delineation and Quantification of Wetland Depressions in the Prairie Pothole Region of North Dakota. Wetlands 2016, 36, 215–227. [Google Scholar] [CrossRef]
- Winter, T.C. Hydrologic Studies of Wetlands in the Northern Prairie. In Northern Prairie Wetlands; Iowa State University Press: Ames, IA, USA, 1989. [Google Scholar]
- Cohen, M.J.; Creed, I.F.; Alexander, L.; Basu, N.B.; Calhoun, A.J.K.; Craft, C.; D’Amico, E.; DeKeyser, E.; Fowler, L.; Golden, H.E.; et al. Do Geographically Isolated Wetlands Influence Landscape Functions? Proc. Natl. Acad. Sci. USA 2016, 113, 1978–1986. [Google Scholar] [CrossRef]
- Montgomery, J.S.; Hopkinson, C.; Brisco, B.; Patterson, S.; Rood, S.B. Wetland Hydroperiod Classification in the Western Prairies Using Multitemporal Synthetic Aperture Radar. Hydrol. Process 2018, 32, 1476–1490. [Google Scholar] [CrossRef]
- Yagmur, N.; Bilgilioglu, B.B.; Dervisoglu, A.; Musaoglu, N.; Tanik, A. Long and short-term assessment of surface area changes in saline and freshwater lakes via remote sensing. Water Environ. J. 2020, 35, 107–122. [Google Scholar] [CrossRef]
- Weather Spark. Saskatoon Climate, Weather By Month, Average Temperature (Canada). Available online: http://weatherspark.com/y/3392/Average-Weather-in-Saskatoon-Canada-Year-Round (accessed on 23 January 2024).
- Government of Canada. Almanac Averages and Extremes for January 22. (October 2024). 2024. Available online: https://climate.weather.gc.ca/climate_data/almanac_e.html?hlyRange=2013-11-12%7C2025-01-22&dlyRange=2013-03-09%7C2025-01-22&mlyRange=%7C&StationID=51878&Prov=SK&urlExtension=_e.html&searchType=stnName&optLimit=yearRange&StartYear=1840&EndYear=2025&selRowPerPage=25&Line=2&searchMethod=contains&month=1&day=22&txtStationName=prince%2Balbert&timeframe=4&Year=2025&time=LST (accessed on 25 January 2025).
- Torres, R.; Snoeij, P.; Geudtner, D.; Bibby, D.; Davidson, M.; Attema, E.; Potin, P.; Rommen, B.; Floury, N.; Brown, M.; et al. GMES Sentinel-1 Mission. Remote Sens. Environ. 2012, 120, 9–24. [Google Scholar] [CrossRef]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-Scale Geospatial Analysis for Everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Gatelli, F.; Monti Guamieri, A.; Parizzi, F.; Pasquali, P.; Prati, C.; Rocca, F. The Wavenumber Shift in SAR Interferometry. IEEE Trans. Geosci. Remote Sens. 1994, 32, 855–865. [Google Scholar] [CrossRef]
- Wang, X.; Xiao, X.; Zou, Z.; Dong, J.; Qin, Y.; Doughty, R.B.; Menarguez, M.A.; Chen, B.; Wang, J.; Ye, H.; et al. Gainers and Losers of Surface and Terrestrial Water Resources in China during 1989–2016. Nat. Commun. 2020, 11, 3471. [Google Scholar] [CrossRef]
- Planet Labs Inc. Planet Imagery Product Specifications: PlanetScope & RapidEye; Planet Labs Inc.: San Francisco, CA, USA, 2019; Available online: https://assets.planet.com/docs/combined-imagery-product-spec-april-2019.pdf (accessed on 13 May 2025).
- Mullissa, A.; Vollrath, A.; Odongo-Braun, C.; Slagter, B.; Balling, J.; Gou, Y.; Gorelick, N.; Reiche, J. Sentinel-1 SAR Backscatter Analysis Ready Data Preparation in Google Earth Engine. Remote Sens. 2021, 13, 1954. [Google Scholar] [CrossRef]
- Lee, T.F. Sea Ice-Edge Enhancement Using Polar-Orbiting Environmental Satellite Data. Weather. Forecast. 1993, 8, 369–377. [Google Scholar] [CrossRef]
- Lee, J.-S. A Simple Speckle Smoothing Algorithm for Synthetic Aperture Radar Images. IEEE Trans. Syst. Man. Cybern. 1983, SMC-13, 85–89. [Google Scholar] [CrossRef]
- Vollrath, A.; Mullissa, A.; Reiche, J. Angular-Based Radiometric Slope Correction for Sentinel-1 on Google Earth Engine. Remote Sens. 2020, 12, 1867. [Google Scholar] [CrossRef]
- Yague-Martinez, N.; Prats-Iraola, P.; Rodriguez Gonzalez, F.; Brcic, R.; Shau, R.; Geudtner, D.; Eineder, M.; Bamler, R. Interferometric Processing of Sentinel-1 TOPS Data. IEEE Trans. Geosci. Remote Sens. 2016, 54, 2220–2234. [Google Scholar] [CrossRef]
- Prats-Iraola, P.; Scheiber, R.; Marotti, L.; Wollstadt, S.; Reigber, A. TOPS Interferometry With TerraSAR-X. IEEE Trans. Geosci. Remote Sens. 2012, 50, 3179–3188. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Belgiu, M.; Drăguţ, L. Random Forest in Remote Sensing: A Review of Applications and Future Directions. ISPRS J. Photogramm. Remote Sens. 2016, 114, 24–31. [Google Scholar] [CrossRef]
- Agarwal, V.; Akyilmaz, O.; Shum, C.K.; Feng, W.; Yang, T.Y.; Forootan, E.; Syed, T.H.; Haritashya, U.K.; Uz, M. Machine learning based downscaling of Grace-estimated groundwater in Central Valley, California. Sci. Total Environ. 2023, 865, 161138. [Google Scholar] [CrossRef]
- Agrawal, T. Bayesian optimization. In Hyperparameter Optimization in Machine Learning; Apress: Berkeley, CA, USA, 2020; pp. 81–108. [Google Scholar] [CrossRef]
- Leinss, S.; Wiesmann, A.; Lemmetyinen, J.; Hajnsek, I. Snow water equivalent of dry snow measured by differential interferometry. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 3773–3790. [Google Scholar] [CrossRef]
- Villarroya-Carpio, A.; Lopez-Sanchez, J.M.; Engdahl, M.E. Sentinel-1 Interferometric Coherence as a Vegetation Index for Agriculture. Remote Sens. Environ. 2022, 280, 113208. [Google Scholar] [CrossRef]
- Gunn, G.E.; Duguay, C.R.; Derksen, C.; Clausi, D.A.; Toose, P. Investigating the influence of variable freshwater ice types on passive and active microwave observations. Remote Sens. 2017, 9, 1242. [Google Scholar] [CrossRef]
Band Used | |
---|---|
2-Band | Backscatter: VV, VH |
4-Band | Backscatter: VV, VH Coherence (12-day): VV, VH |
6-Band | Backscatter: VV, VH Coherence (12 days): VV, VH Coherence (24 days): VV, VH |
Winter | Summer | ||||||
---|---|---|---|---|---|---|---|
Polarization | Land Cover | December 2020 | January 2021 | February 2021 | January 2020 | July 2020 | August 2020 |
VH | Surface Water | 0.22 | 0.22 | 0.23 | 0.22 | 0.22 | 0.22 |
Agriculture | 0.27 | 0.25 | 0.26 | 0.27 | 0.25 | 0.25 | |
Vegetation | 0.34 | 0.33 | 0.30 | 0.26 | 0.26 | 0.28 | |
VV | Surface Water | 0.36 | 0.33 | 0.33 | 0.24 | 0.24 | 0.22 |
Agriculture | 0.69 | 0.58 | 0.57 | 0.37 | 0.26 | 0.32 | |
Vegetation | 0.53 | 0.49 | 0.45 | 0.30 | 0.29 | 0.32 |
Date | Configuration | VarSplit | MinLeaf | Train Acc | Test Acc |
---|---|---|---|---|---|
11/3/2019 | 2-band | 1 | 20 | 0.964 | 0.95 |
4-band | 3 | 2 | 0.982 | 0.99 | |
6-band | 1 | 1 | 0.993 | 0.99 | |
12/21/2019 | 2-band | 2 | 5 | 0.945 | 0.94 |
4-band | 4 | 2 | 0.983 | 0.97 | |
6-band | 2 | 1 | 0.981 | 0.968 | |
2/7/2020 | 2-band | 2 | 5 | 0.978 | 0.956 |
4-band | 4 | 2 | 0.974 | 0.97 | |
6-band | 2 | 5 | 0.976 | 0.968 | |
4/19/2020 | 2-band | 1 | 1 | 0.974 | 0.97 |
4-band | 4 | 10 | 0.974 | 0.98 | |
6-band | 2 | 5 | 0.973 | 0.974 | |
6/6/2020 | 2-band | 1 | 2 | 0.9943 | 0.99 |
4-band | 2 | 2 | 0.994 | 0.99 | |
6-band | 2 | 10 | 0.993 | 0.986 | |
8/29/2020 | 2-band | 1 | 10 | 0.991 | 0.99 |
4-band | 4 | 1 | 0.995 | 0.99 | |
6-band | 3 | 5 | 0.992 | 0.981 | |
10/4/2020 | 2-band | 1 | 5 | 0.91 | 0.89 |
4-band | 1 | 5 | 0.986 | 0.98 | |
6-band | 2 | 2 | 0.975 | 0.97 | |
11/9/2020 | 2-band | 1 | 10 | 0.831 | 0.83 |
4-band | 2 | 20 | 0.852 | 0.86 | |
6-band | 2 | 5 | 0.852 | 0.85 |
Date | Configuration | TP | FP | FN | TN | Acc | F1 | Kappa | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
11/3/2019 | 2-band | 257 | 292 | 65 | 31 | 56 | 89 | 372 | 338 | 0.84 | 0.84 | 0.81 | 0.83 | 0.67 | 0.68 |
4-band | 266 | 283 | 57 | 40 | 12 | 13 | 415 | 414 | 0.91 | 0.93 | 0.89 | 0.91 | 0.81 | 0.85 | |
6-band | 262 | 280 | 58 | 41 | 2 | 3 | 428 | 426 | 0.92 | 0.94 | 0.89 | 0.93 | 0.83 | 0.88 | |
12/21/2019 | 2-band | 257 | 284 | 68 | 40 | 47 | 96 | 378 | 332 | 0.85 | 0.82 | 0.82 | 0.81 | 0.69 | 0.64 |
4-band | 248 | 270 | 70 | 51 | 4 | 2 | 428 | 427 | 0.90 | 0.93 | 0.87 | 0.91 | 0.79 | 0.85 | |
6-band | 241 | 257 | 81 | 66 | 4 | 4 | 424 | 423 | 0.89 | 0.91 | 0.85 | 0.88 | 0.76 | 0.81 | |
2/7/2020 | 2-band | 254 | 283 | 72 | 40 | 54 | 95 | 370 | 332 | 0.83 | 0.82 | 0.80 | 0.81 | 0.66 | 0.64 |
4-band | 252 | 283 | 66 | 40 | 22 | 39 | 410 | 388 | 0.88 | 0.89 | 0.85 | 0.88 | 0.76 | 0.79 | |
6-band | 258 | 276 | 66 | 48 | 27 | 42 | 399 | 386 | 0.88 | 0.88 | 0.85 | 0.86 | 0.74 | 0.76 | |
4/19/2020 | 2-band | 276 | 305 | 58 | 35 | 70 | 98 | 340 | 306 | 0.83 | 0.82 | 0.81 | 0.82 | 0.65 | 0.65 |
4-band | 272 | 302 | 68 | 38 | 60 | 85 | 344 | 319 | 0.83 | 0.84 | 0.81 | 0.83 | 0.65 | 0.67 | |
6-band | 273 | 306 | 71 | 38 | 50 | 73 | 350 | 327 | 0.84 | 0.85 | 0.82 | 0.85 | 0.67 | 0.70 | |
6/6/2020 | 2-band | 276 | 300 | 63 | 40 | 0 | 1 | 405 | 403 | 0.92 | 0.95 | 0.90 | 0.94 | 0.83 | 0.89 |
4-band | 275 | 299 | 65 | 41 | 1 | 1 | 403 | 403 | 0.91 | 0.94 | 0.89 | 0.93 | 0.82 | 0.89 | |
6-band | 274 | 302 | 66 | 38 | 2 | 77 | 402 | 327 | 0.91 | 0.85 | 0.89 | 0.84 | 0.81 | 0.69 | |
8/29/2020 | 2-band | 260 | 288 | 65 | 37 | 3 | 6 | 414 | 411 | 0.91 | 0.94 | 0.88 | 0.93 | 0.81 | 0.88 |
4-band | 264 | 285 | 60 | 39 | 1 | 3 | 417 | 415 | 0.92 | 0.94 | 0.90 | 0.93 | 0.83 | 0.88 | |
6-band | 274 | 287 | 53 | 40 | 0 | 0 | 415 | 415 | 0.93 | 0.95 | 0.91 | 0.93 | 0.85 | 0.89 | |
10/4/2020 | 2-band | 270 | 288 | 54 | 35 | 63 | 7 | 358 | 409 | 0.84 | 0.94 | 0.82 | 0.93 | 0.68 | 0.88 |
4-band | 269 | 299 | 55 | 26 | 9 | 13 | 409 | 404 | 0.91 | 0.95 | 0.89 | 0.94 | 0.82 | 0.89 | |
6-band | 270 | 300 | 57 | 27 | 7 | 18 | 408 | 397 | 0.91 | 0.94 | 0.89 | 0.93 | 0.82 | 0.88 | |
11/9/2020 | 2-band | 195 | 250 | 127 | 72 | 63 | 129 | 357 | 291 | 0.74 | 0.73 | 0.67 | 0.71 | 0.47 | 0.46 |
4-band | 191 | 233 | 136 | 94 | 48 | 70 | 367 | 345 | 0.75 | 0.78 | 0.68 | 0.74 | 0.48 | 0.55 | |
6-band | 198 | 229 | 125 | 94 | 45 | 58 | 374 | 361 | 0.77 | 0.79 | 0.70 | 0.75 | 0.51 | 0.57 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, P.; Gunn, G. Surface Water Extent Extraction in Prairie Environments Using Sentinel-1 Image-Pair Coherence. Glacies 2025, 2, 6. https://doi.org/10.3390/glacies2020006
Chen P, Gunn G. Surface Water Extent Extraction in Prairie Environments Using Sentinel-1 Image-Pair Coherence. Glacies. 2025; 2(2):6. https://doi.org/10.3390/glacies2020006
Chicago/Turabian StyleChen, Peilin, and Grant Gunn. 2025. "Surface Water Extent Extraction in Prairie Environments Using Sentinel-1 Image-Pair Coherence" Glacies 2, no. 2: 6. https://doi.org/10.3390/glacies2020006
APA StyleChen, P., & Gunn, G. (2025). Surface Water Extent Extraction in Prairie Environments Using Sentinel-1 Image-Pair Coherence. Glacies, 2(2), 6. https://doi.org/10.3390/glacies2020006