Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (9)

Search Parameters:
Keywords = sVEGFR-1/FLT-1

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 4183 KB  
Article
Glyceraldehyde 3-Phosphate Dehydrogenase and Galectin from Dirofilaria immitis Excretory/Secretory Antigens Activate Proangiogenic Pathway in In Vitro Vascular Endothelial Cell Model
by Manuel Collado-Cuadrado, Alfonso Balmori-de la Puente, Iván Rodríguez-Escolar, Elena Infante González-Mohino, Claudia Alarcón-Torrecillas, Miguel Pericacho and Rodrigo Morchón
Animals 2025, 15(7), 964; https://doi.org/10.3390/ani15070964 - 27 Mar 2025
Viewed by 889
Abstract
Heartworm disease is caused by Dirofilaria immitis, which mainly affects canids and felids. Adult D. immitis worms are located between the heart’s right ventricle and the pulmonary artery. These parasites produce an inflammatory and hypoxic process in the vascular endothelium. It has [...] Read more.
Heartworm disease is caused by Dirofilaria immitis, which mainly affects canids and felids. Adult D. immitis worms are located between the heart’s right ventricle and the pulmonary artery. These parasites produce an inflammatory and hypoxic process in the vascular endothelium. It has been demonstrated that D. immitis excretory/secretory antigens are able to stimulate the angiogenic process as a survival mechanism of D. immitis in the vascular endothelium, stimulating the proangiogenic pathway and related cellular processes. Our goal was to study the role of glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and galectin (GAL) (proteins of D. immitis excretory/secretory antigens) plus vascular endothelial growth factor isoform A (VEGF-A) in the angiogenic process and their relationship with three cellular processes (cell proliferation, cell migration, and pseudocapillary formation) in an in vitro model of vascular endothelial cells. Cell viability and cytotoxicity were analyzed by live cell analysis and a commercial kit, respectively. VEGF-A, sVEGFR-2, VEGFR-1/sFlt, soluble endoglin, and membrane endoglin were analyzed by commercial ELISA kits. Cell proliferation, cell migration, and pseudocapillary formation were analyzed by MTT-based assay, the wound healing technique, and counting cell connections and cell clusters, respectively. rDiGAPDH+VEGF-A and rDiGAL+VEGF-A significantly increased the expression of sVEGFR-2, mEndoglin, and VEGF-A compared to cultures treated with only the proteins (rDiGAPDH and rDiGAL), VEGF-A, or unstimulated cultures. In addition, they also produced a significant increase in cell proliferation, cell migration, and pseudocapillary formation. Therefore, these proteins together with VEGF-A can activate the proangiogenic pathway and could be related to D. immitis survival in the circulatory system. Full article
Show Figures

Figure 1

10 pages, 2282 KB  
Article
Wolbachia Promotes an Anti-Angiogenic Response Using an In Vitro Model of Vascular Endothelial Cells in Relation to Heartworm Disease
by Manuel Collado-Cuadrado, Claudia Alarcón-Torrecillas, Iván Rodríguez-Escolar, Alfonso Balmori-de la Puente, Elena Infante González-Mohino, Miguel Pericacho and Rodrigo Morchón
Pathogens 2024, 13(7), 603; https://doi.org/10.3390/pathogens13070603 - 22 Jul 2024
Cited by 2 | Viewed by 1769
Abstract
Heartworm disease caused by Dirofilaria immitis is a vector-borne zoonotic disease responsible for the infection of mainly domestic dogs and cats, or these are those for which the most data are known. Humans are an accidental host where a benign, asymptomatic pulmonary nodule [...] Read more.
Heartworm disease caused by Dirofilaria immitis is a vector-borne zoonotic disease responsible for the infection of mainly domestic dogs and cats, or these are those for which the most data are known. Humans are an accidental host where a benign, asymptomatic pulmonary nodule may originate. Dirofilaria immitis also harbours the endosymbiont bacteria of the genus Wolbachia, which play a role in moulting, embryogenesis, inflammatory pathology, and immune response. When Wolbachia sp. is released into the bloodstream, endothelial and pulmonary damage is exacerbated, further encouraging thrombus formation and pulmonary hypertension, facilitating congestive heart failure and death of the animal. Previous studies have shown that parasite excretory/secretory products are able to activate the pro-angiogenic pathway (formation of new vessels) to facilitate parasite survival. The aim of this study was to analyse the role of Wolbachia sp. and its relationship with the cellular processes and the angiogenic pathway in a model of human endothelial cells in vitro. The use of recombinant Wolbachia Surface Protein (rWSP) showed that its stimulation exerted an anti-angiogenic effect by detecting an increase in the production of VEGFR-1/sFlt1 and sEndoglin and did not affect the production of VEGFR-2 and mEndoglin (pro-angiogenic molecules). Furthermore, it did not stimulate cell proliferation or migration, although it did negatively stimulate the formation of pseudocapillaries, slowing down this process. These cellular processes are directly related to the angiogenic pathway so, with these results, we can conclude that Wolbachia sp. is related to the stimulation of the anti-angiogenic pathway, not facilitating the survival of D. immitis in vascular endothelium. Full article
Show Figures

Figure 1

11 pages, 1233 KB  
Article
Endoglin and Other Angiogenesis Markers in Recurrent Varicose Veins
by Francisco S. Lozano Sánchez, José A. Carnicero Martínez, Lucía Méndez-García, M. Begoña García-Cenador and Miguel Pericacho
J. Pers. Med. 2022, 12(4), 528; https://doi.org/10.3390/jpm12040528 - 25 Mar 2022
Cited by 7 | Viewed by 3281
Abstract
Background: Surgery on varicose veins (crossectomy and stripping) may lead to recurrence, with clinical and socioeconomic repercussions. The etiopathogenesis of varicose veins has yet to be fully understood. Objective: Study the expression of endoglin and other molecules involved in the neovascularisation process in [...] Read more.
Background: Surgery on varicose veins (crossectomy and stripping) may lead to recurrence, with clinical and socioeconomic repercussions. The etiopathogenesis of varicose veins has yet to be fully understood. Objective: Study the expression of endoglin and other molecules involved in the neovascularisation process in patients suffering from this disease. Methods: Total of 43 patients that have undergone surgery for varicose veins (24 primary and 19 recurrent). Endoglin and other molecules were identified on the venous wall (proximal -saphenofemoral junction- and distal), via real-time RT-PCR, and in serum, via ELISA: endoglin (Eng), vascular endothelial growth factor (VEGF-A), its receptors 1 and 2 (VEGFR1 or FLT1), (VEGFR2 or FLK), and the hypoxia-inducible factor (HIF-1A). All the patients signed a consent form. Results: The recurrent group recorded a higher expression of Eng, VEGF-A, VEGFR1, and VEGFR2 at the level of proximal venous wall compared to the primary group. HIF-1A did not record any differences. As regards the determination of the distal venous wall, no markers recorded differences between the groups. Among the serum determinations, only sFLT1 recorded a significant drop among the patients with recurrent varicose veins. Conclusions: Patients with recurrent varicose veins record a higher expression of endoglin and other markers of angiogenesis in proximal veins. Endoglin in the blood (sEng) serves no apparent purpose in recurrent varicose veins. Full article
Show Figures

Figure 1

16 pages, 1167 KB  
Review
Novel Multitarget Therapies for Lung Cancer and Respiratory Disease
by Masako Yumura, Tatsuya Nagano and Yoshihiro Nishimura
Molecules 2020, 25(17), 3987; https://doi.org/10.3390/molecules25173987 - 1 Sep 2020
Cited by 15 | Viewed by 4956
Abstract
In recent years, multitarget drugs for neurological diseases such as Alzheimer’s disease have been developed and well researched. Many studies have revealed that multitarget drugs are also useful for lung cancer and respiratory diseases. Pemetrexed is a multitargeted antifolate with strong antitumor activity [...] Read more.
In recent years, multitarget drugs for neurological diseases such as Alzheimer’s disease have been developed and well researched. Many studies have revealed that multitarget drugs are also useful for lung cancer and respiratory diseases. Pemetrexed is a multitargeted antifolate with strong antitumor activity against mesothelioma and lung adenocarcinoma. Crizotinib is an ATP-competitive tyrosine kinase inhibitor that targets c-MET, ROS1, and ALK. Alectinib is known as an ALK inhibitor but also targets LTK, CHEK2, FLT3, PHKG2, and RET. Sorafenib is a tyrosine kinase inhibitor that targets RAF kinase, KIT, VEGFR, PDGFR1β, FLT3, and RET. Nintedanib is a multiple tyrosine kinase inhibitor that targets FGFR, PDGFR, and VEGFR. In this review, we summarize the mechanisms of action of multitarget therapies and report the results of the latest clinical trials. Full article
(This article belongs to the Special Issue Multitarget Ligands)
Show Figures

Figure 1

28 pages, 1411 KB  
Review
Pathogenesis of Preeclampsia and Therapeutic Approaches Targeting the Placenta
by Manoj Kumar Jena, Neeta Raj Sharma, Matthew Petitt, Devika Maulik and Nihar Ranjan Nayak
Biomolecules 2020, 10(6), 953; https://doi.org/10.3390/biom10060953 - 24 Jun 2020
Cited by 190 | Viewed by 20925
Abstract
Preeclampsia (PE) is a serious pregnancy complication, affecting about 5–7% of pregnancies worldwide and is characterized by hypertension and damage to multiple maternal organs, primarily the liver and kidneys. PE usually begins after 20 weeks’ gestation and, if left untreated, can lead to [...] Read more.
Preeclampsia (PE) is a serious pregnancy complication, affecting about 5–7% of pregnancies worldwide and is characterized by hypertension and damage to multiple maternal organs, primarily the liver and kidneys. PE usually begins after 20 weeks’ gestation and, if left untreated, can lead to serious complications and lifelong disabilities—even death—in both the mother and the infant. As delivery is the only cure for the disease, treatment is primarily focused on the management of blood pressure and other clinical symptoms. The pathogenesis of PE is still not clear. Abnormal spiral artery remodeling, placental ischemia and a resulting increase in the circulating levels of vascular endothelial growth factor receptor-1 (VEGFR-1), also called soluble fms-like tyrosine kinase-1 (sFlt-1), are believed to be among the primary pathologies associated with PE. sFlt-1 is produced mainly in the placenta during pregnancy and acts as a decoy receptor, binding to free VEGF (VEGF-A) and placental growth factor (PlGF), resulting in the decreased bioavailability of each to target cells. Despite the pathogenic effects of increased sFlt-1 on the maternal vasculature, recent studies from our laboratory and others have strongly indicated that the increase in sFlt-1 in PE may fulfill critical protective functions in preeclamptic pregnancies. Thus, further studies on the roles of sFlt-1 in normal and preeclamptic pregnancies are warranted for the development of therapeutic strategies targeting VEGF signaling for the treatment of PE. Another impediment to the treatment of PE is the lack of suitable methods for delivery of cargo to placental cells, as PE is believed to be of placental origin and most available therapies for PE adversely impact both the mother and the fetus. The present review discusses the pathogenesis of PE, the complex role of sFlt-1 in maternal disease and fetal protection, and the recently developed placenta-targeted drug delivery system for the potential treatment of PE with candidate therapeutic agents. Full article
Show Figures

Figure 1

16 pages, 15018 KB  
Review
Positive and Negative Regulation of Angiogenesis by Soluble Vascular Endothelial Growth Factor Receptor-1
by Cristina M. Failla, Miriam Carbo and Veronica Morea
Int. J. Mol. Sci. 2018, 19(5), 1306; https://doi.org/10.3390/ijms19051306 - 27 Apr 2018
Cited by 73 | Viewed by 10459
Abstract
Vascular endothelial growth factor receptor (VEGFR)-1 exists in different forms, derived from alternative splicing of the same gene. In addition to the transmembrane form, endothelial cells produce a soluble VEGFR-1 (sVEGFR-1) isoform, whereas non-endothelial cells produce both sVEGFR-1 and a different soluble molecule, [...] Read more.
Vascular endothelial growth factor receptor (VEGFR)-1 exists in different forms, derived from alternative splicing of the same gene. In addition to the transmembrane form, endothelial cells produce a soluble VEGFR-1 (sVEGFR-1) isoform, whereas non-endothelial cells produce both sVEGFR-1 and a different soluble molecule, known as soluble fms-like tyrosine kinase (sFlt)1-14. By binding members of the vascular endothelial growth factor (VEGF) family, the soluble forms reduce the amounts of VEGFs available for the interaction with their transmembrane receptors, thereby negatively regulating VEGFR-mediated signaling. In agreement with this activity, high levels of circulating sVEGFR-1 or sFlt1-14 are associated with different pathological conditions involving vascular dysfunction. Moreover, sVEGFR-1 and sFlt1-14 have an additional role in angiogenesis: they are deposited in the endothelial cell and pericyte extracellular matrix, and interact with cell membrane components. Interaction of sVEGFR-1 with α5β1 integrin on endothelial cell membranes regulates vessel growth, triggering a dynamic, pro-angiogenic phenotype. Interaction of sVEGFR-1/sFlt1-14 with cell membrane glycosphingolipids in lipid rafts controls kidney cell morphology and glomerular barrier functions. These cell–matrix contacts represent attractive novel targets for pharmacological intervention in addition to those addressing interactions between VEGFs and their receptors. Full article
(This article belongs to the Special Issue Vascular Endothelial Growth Factor)
Show Figures

Graphical abstract

15 pages, 2436 KB  
Article
Synthetic Receptors Induce Anti Angiogenic and Stress Signaling on Human First Trimester Cytotrophoblast Cells
by Ahmed F. Pantho, Mason Price, AHM Zuberi Ashraf, Umaima Wajid, Maryam Emami Khansari, Afsana Jahan, Syeda H. Afroze, Md Mhahabubur Rhaman, Corey R. Johnson, Thomas J. Kuehl, Md. Alamgir Hossain and Mohammad Nasir Uddin
Int. J. Environ. Res. Public Health 2017, 14(5), 517; https://doi.org/10.3390/ijerph14050517 - 11 May 2017
Cited by 3 | Viewed by 5321
Abstract
The cytotrophoblast (CTB) cells of the human placenta have membrane receptors that bind certain cardiotonic steroids (CTS) found in blood plasma. One of these, marinobufagenin, is a key factor in the etiology of preeclampsia. Herein, we used synthetic receptors (SR) to study their [...] Read more.
The cytotrophoblast (CTB) cells of the human placenta have membrane receptors that bind certain cardiotonic steroids (CTS) found in blood plasma. One of these, marinobufagenin, is a key factor in the etiology of preeclampsia. Herein, we used synthetic receptors (SR) to study their effectiveness on the angiogenic profile of human first trimester CTB cells. The humanextravillous CTB cells (Sw.71) used in this study were derived from first trimester chorionic villus tissue. Culture media of CTB cells treated with ≥1 nM SR level revealed sFlt-1 (Soluble fms-like tyrosine kinase-1) was significantly increased while VEGF (vascular endothelial growth factor) was significantly decreased in the culture media (* p < 0.05 for each) The AT2 receptor (Angiotensin II receptor type 2) expression was significantly upregulated in ≥1 nM SR-treated CTB cells as compared to basal; however, the AT1 (Angiotensin II receptor, type 1) and VEGFR-1 (vascular endothelial growth factor receptor 1) receptor expression was significantly downregulated (* p < 0.05 for each). Our results show that the anti-proliferative and anti-angiogenic effects of SR on CTB cells are similar to the effects of CTS. The observed anti angiogenic activity of SR on CTB cells demonstrates that the functionalized-urea/thiourea molecules may be useful as potent inhibitors to prevent CTS-induced impairment of CTB cells. Full article
(This article belongs to the Section Global Health)
Show Figures

Figure 1

19 pages, 1957 KB  
Article
Mechanical Forces Induce Changes in VEGF and VEGFR-1/sFlt-1 Expression in Human Chondrocytes
by Rainer Beckmann, Astrid Houben, Mersedeh Tohidnezhad, Nisreen Kweider, Athanassios Fragoulis, Christoph J. Wruck, Lars O. Brandenburg, Benita Hermanns-Sachweh, Mary B. Goldring, Thomas Pufe and Holger Jahr
Int. J. Mol. Sci. 2014, 15(9), 15456-15474; https://doi.org/10.3390/ijms150915456 - 1 Sep 2014
Cited by 45 | Viewed by 9517
Abstract
Expression of the pro-angiogenic vascular endothelial growth factor (VEGF) stimulates angiogenesis and correlates with the progression of osteoarthritis. Mechanical joint loading seems to contribute to this cartilage pathology. Cyclic equibiaxial strains of 1% to 16% for 12 h, respectively, induced expression of VEGF [...] Read more.
Expression of the pro-angiogenic vascular endothelial growth factor (VEGF) stimulates angiogenesis and correlates with the progression of osteoarthritis. Mechanical joint loading seems to contribute to this cartilage pathology. Cyclic equibiaxial strains of 1% to 16% for 12 h, respectively, induced expression of VEGF in human chondrocytes dose- and frequency-dependently. Stretch-mediated VEGF induction was more prominent in the human chondrocyte cell line C-28/I2 than in primary articular chondrocytes. Twelve hours of 8% stretch induced VEGF expression to 175% of unstrained controls for at least 24 h post stretching, in promoter reporter and enzyme-linked immunosorbent assay (ELISA) studies. High affinity soluble VEGF-receptor, sVEGFR-1/sFlt-1 was less stretch-inducible than its ligand, VEGF-A, in these cells. ELISA assays demonstrated, for the first time, a stretch-mediated suppression of sVEGFR-1 secretion 24 h after stretching. Overall, strained chondrocytes activate their VEGF expression, but in contrast, strain appears to suppress the secretion of the major VEGF decoy receptor (sVEGFR-1/sFlt-1). The latter may deplete a biologically relevant feedback regulation to inhibit destructive angiogenesis in articular cartilage. Our data suggest that mechanical stretch can induce morphological changes in human chondrocytes in vitro. More importantly, it induces disturbed VEGF signaling, providing a molecular mechanism for a stress-induced increase in angiogenesis in cartilage pathologies. Full article
(This article belongs to the Special Issue The Chondrocyte Phenotype in Cartilage Biology)
Show Figures

Figure 1

14 pages, 433 KB  
Article
A Synthetic Thiourea-Based Tripodal Receptor that Impairs the Function of Human First Trimester Cytotrophoblast Cells
by Darijana Horvat, Maryam Emami Khansari, Avijit Pramanik, Madhava R. Beeram, Thomas J. Kuehl, Md. Alamgir Hossain and Mohammad Nasir Uddin
Int. J. Environ. Res. Public Health 2014, 11(7), 7456-7469; https://doi.org/10.3390/ijerph110707456 - 21 Jul 2014
Cited by 5 | Viewed by 6264
Abstract
A synthetic tripodal-based thiourea receptor (PNTTU) was used to explore the receptor/ligand binding affinity using CTB cells. The human extravillous CTB cells (Sw.71) used in this study were derived from first trimester chorionic villus tissue. The cell proliferation, migration and angiogenic factors were [...] Read more.
A synthetic tripodal-based thiourea receptor (PNTTU) was used to explore the receptor/ligand binding affinity using CTB cells. The human extravillous CTB cells (Sw.71) used in this study were derived from first trimester chorionic villus tissue. The cell proliferation, migration and angiogenic factors were evaluated in PNTTU-treated CTB cells. The PNTTU inhibited the CTBs proliferation and migration. The soluble fms-like tyrosine kinase-1 (sFlt-1) secretion was increased while vascular endothelial growth factor (VEGF) was decreased in the culture media of CTB cells treated with ≥1 nM PNTTU. The angiotensin II receptor type 2 (AT2) expression was significantly upregulated in ≥1 nM PNTTU-treated CTB cells in compared to basal; however, the angiotensin II receptor, type 1 (AT1) and vascular endothelial growth factor receptor 1 (VEGFR-1) expression was downregulated. The anti-proliferative and anti-angiogenic effect of this compound on CTB cells are similar to the effect of CTSs. The receptor/ligand affinity of PNTTU on CTBs provides us the clue to design a potent inhibitor to prevent the CTS-induced impairment of CTB cells. Full article
Show Figures

Figure 1

Back to TopTop