Novel Multitarget Therapies for Lung Cancer and Respiratory Disease
Abstract
1. Introduction
2. Pemetrexed
3. Crizotinib
4. Alectinib
5. Sorafenib
6. Nintedanib
7. Novel Compounds
8. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hopkins, A.L. Network pharmacology: The next paradigm in drug discovery. Nat. Chem. Biol. 2008, 4, 682–690. [Google Scholar] [CrossRef] [PubMed]
- Ramsay, R.R.; Popovic-Nikolic, M.R.; Nikolic, K.; Uliassi, E.; Bolognesi, M.L. A perspective on multi-target drug discovery and design for complex diseases. Clin. Transl. Med. 2018, 7. [Google Scholar] [CrossRef]
- Proschak, E.; Stark, H.; Merk, D. Polypharmacology by Design: A Medicinal Chemist’s Perspective on Multitargeting Compounds. J. Med. Chem. 2019, 62, 420–444. [Google Scholar] [CrossRef]
- Costa, E.; Giardini, A.; Savin, M.; Menditto, E.; Lehane, E.; Laosa, O.; Pecorelli, S.; Monaco, A.; Marengoni, A. Interventional tools to improve medication adherence: Review of literature. Patient Prefer. Adherence 2015, 9, 1303–1314. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Jiang, X.; He, S.; Jiang, H.; Feng, F.; Liu, W.; Qu, W.; Sun, H. Rational Design of Multitarget-Directed Ligands: Strategies and Emerging Paradigms. J. Med. Chem. 2019, 62, 8881–8914. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Soacha, D.A.; Scheiner, M.; Decker, M. Multi-target-directed-ligands acting as enzyme inhibitors and receptor ligands. Eur. J. Med. Chem. 2019, 180, 690–706. [Google Scholar] [CrossRef] [PubMed]
- Chattopadhyay, S.; Moran, R.G.; Goldman, I.D. Pemetrexed: Biochemical and cellular pharmacology, mechanisms, and clinical applications. Mol. Cancer Ther. 2007, 6, 404–417. [Google Scholar] [CrossRef]
- Julian, R.; Molina, A.A.A. The Role of Pemetrexed (Alimta, LY231514) in LungCancer Therapy. Clin. Lung Cancer 2003, 5, 21–27. [Google Scholar]
- Christoph, D.C.; Asuncion, B.R.; Mascaux, C.; Tran, C.; Lu, X.; Wynes, M.W.; Hepp, R. Folypoly-glutamate synthetase expression is associated with tumor response and outcome from pemetrexed-based chemotherapy in Malignanat pleural mesothelioma. J. Thorac. Oncol. 2012, 7, 1440–1448. [Google Scholar] [CrossRef]
- Ceppi, P.; Volante, M.; Saviozzi, S.; Rapa, I.; Novello, S.; Cambieri, A.; Lo Iacono, M.; Cappia, S.; Papotti, M.; Scagliotti, G.V. Squamous cell carcinoma of the lung compared with other histotypes shows higher messenger RNA and protein levels for thymidylate synthase. Cancer 2006, 107, 1589–1596. [Google Scholar] [CrossRef]
- Liu, Y.; Yin, T.J.; Zhou, R.; Zhou, S.; Fan, L.; Zhang, R.G. Expression of thymidylate synthase predicts clinical outcomes of pemetrexed-containing chemotherapy for non-small-cell lung cancer: A systemic review and meta-analysis. Cancer Chemother. Pharmacol. 2013, 72, 1125–1132. [Google Scholar] [CrossRef] [PubMed]
- Scagliotti, G.V.; Shin, D.M.; Kindler, H.L.; Vasconcelles, M.J.; Keppler, U.; Manegold, C.; Burris, H.; Gatzemeier, U.; Blatter, J.; Symanowski, J.T.; et al. Phase II study of pemetrexed with and without folic acid and vitamin B 12 as front-line therapy in malignant pleural mesothelioma. J. Clin. Oncol. 2003, 21, 1556–1561. [Google Scholar] [CrossRef] [PubMed]
- Berghmans, T.; Paesmans, M.; Lalami, Y.; Louviaux, I.; Luce, S.; Mascaux, C.; Meert, A.P.; Sculier, J.P. Activity of chemotherapy and immunotherapy on malignant mesothelioma: A systematic review of the literature with meta-analysis. Lung Cancer 2002, 38, 111–121. [Google Scholar] [CrossRef]
- Kindler, H.L.; Millard, F.; Herndon Ii, J.E.; Vogelzang, N.J.; Suzuki, Y.; Green, M.R. Gemcitabine for malignant mesothelioma: A phase II trial by the Cancer and Leukemia Group B. Lung Cancer 2001, 31, 311–317. [Google Scholar] [CrossRef]
- Vogelzang, N.J.; Rusthoven, J.J.; Symanowski, J.; Denham, C.; Kaukel, E.; Ruffie, P.; Gatzemeier, U.; Boyer, M.; Emri, S.; Manegold, C.; et al. Phase III study of pemetrexed in combination with cisplatin versus cisplatin alone in patients with malignant pleural mesothelioma. J. Clin. Oncol. 2003, 21, 2636–2644. [Google Scholar] [CrossRef]
- Hughes, A.; Calvert, P.; Azzabi, A.; Plummer, R.; Johnson, R.; Rusthoven, J.; Griffin, M.; Fishwick, K.; Boddy, A.V.; Verrill, M.; et al. Phase I clinical and pharmacokinetic study of pemetrexed and carboplatin in patients with malignant pleural mesothelioma. J. Clin. Oncol. 2002, 20, 3533–3544. [Google Scholar] [CrossRef]
- Ceresoli, G.L.; Zucali, P.A.; Favaretto, A.G.; Grossi, F.; Bidoli, P.; Del Conte, G.; Ceribelli, A.; Bearz, A.; Morenghi, E.; Cavina, R.; et al. Phase II study of pemetrexed plus carboplatin in malignant pleural mesothelioma. J. Clin. Oncol. 2006, 24, 1443–1448. [Google Scholar] [CrossRef]
- Castagneto, B.; Botta, M.; Aitini, E.; Spigno, F.; Degiovanni, D.; Alabiso, O.; Serra, M.; Muzio, A.; Carbone, R.; Buosi, R.; et al. Phase II study of pemetrexed in combination with carboplatin in patients with malignant pleural mesothelioma (MPM). Ann. Oncol. 2008, 19, 370–373. [Google Scholar] [CrossRef]
- Hanna, N.; Shepherd, F.A.; Fossella, F.V.; Pereira, J.R.; Demarinis, F.; Von Pawel, J.; Gatzemeier, U.; Tsao, T.C.Y.; Pless, M.; Muller, T.; et al. Randomized phase III trial of pemetrexed versus docetaxel in patients with non-small-cell lung cancer previously treated with chemotherapy. J. Clin. Oncol. 2004, 22, 1589–1597. [Google Scholar] [CrossRef]
- Scagliotti, G.V.; Parikh, P.; Von Pawel, J.; Biesma, B.; Vansteenkiste, J.; Manegold, C.; Serwatowski, P.; Gatzemeier, U.; Digumarti, R.; Zukin, M.; et al. Phase III study comparing cisplatin plus gemcitabine with cisplatin plus pemetrexed in chemotherapy-naive patients with advanced-stage non-small-cell lung cancer. J. Clin. Oncol. 2008, 26, 3543–3551. [Google Scholar] [CrossRef]
- Paz-Ares, L.G.; De Marinis, F.; Dediu, M.; Thomas, M.; Pujol, J.L.; Bidoli, P.; Molinier, O.; Sahoo, T.P.; Laack, E.; Reck, M.; et al. PARAMOUNT: Final overall survival results of the phase III study of maintenance pemetrexed versus placebo immediately after induction treatment with pemetrexed plus cisplatin for advanced nonsquamous non-small-cell lung cancer. J. Clin. Oncol. 2013, 31, 2895–2902. [Google Scholar] [CrossRef]
- Gandhi, L.; Rodríguez-Abreu, D.; Gadgeel, S.; Esteban, E.; Felip, E.; De Angelis, F.; Domine, M.; Clingan, P.; Hochmair, M.J.; Powell, S.F.; et al. Pembrolizumab plus chemotherapy in metastatic non-small-cell lung cancer. N. Engl. J. Med. 2018, 378, 2078–2092. [Google Scholar] [CrossRef] [PubMed]
- Iwahara, T.; Fujimoto, J.; Wen, D.; Cupples, R.; Bucay, N.; Arakawa, T.; Mori, S.; Ratzkin, B.; Yamamoto, T. Molecular characterization of ALK, a receptor tyrosine kinase expressed specically in the nervous system. Oncogene 1997, 14, 439–449. [Google Scholar] [CrossRef] [PubMed]
- Stephan, W.M.; Clayton, N.; Prasad, M.; Payton, L.J.; Mark, N.K.; Xue, C.; Witte, D.P. ALK, the chromosome 2 gene locus altered by the t(2;5) in non-Hodgkin’s lymphoma, encodes a novel neural receptor tyrosine kinase that is highly related to leukocyto tyrosine kinase (LTK). Oncogene 1997, 14, 2175–2188. [Google Scholar]
- Soda, M.; Choi, Y.L.; Enomoto, M.; Takada, S.; Yamashita, Y.; Ishikawa, S.; Fujiwara, S.I.; Watanabe, H.; Kurashina, K.; Hatanaka, H.; et al. Identification of the transforming EML4-ALK fusion gene in non-small-cell lung cancer. Nature 2007, 448, 561–566. [Google Scholar] [CrossRef]
- Shaw, A.T.; Engelman, J.A. ALK in lung cancer: Past, present, and future. J. Clin. Oncol. 2013, 31, 1105–1111. [Google Scholar] [CrossRef]
- Chin, L.P.; Soo, R.A.; Soong, R.; Ou SH, I. Targeting ROS1 with anaplastic lymphoma kinase inhibitors. J. Thorac. Oncol. 2012, 7, 1625–1630. [Google Scholar] [CrossRef]
- Kwak, E.L.; Bang, Y.-J.; Ross Camidge, D.; Shaw, A.T.; Solomon, B.; Maki, R.G.; Ou, S.-H.I.; Dezube, B.J.; Jänne, P.A.; Costa, D.B.; et al. Anaplastic Lymphoma Kinase Inhibition in Non-Small-Cell Lung Cancer. N. Engl. Med. 2010, 18, 1693–1703. [Google Scholar] [CrossRef]
- Shaw, A.T.; Kim, D.W.; Nakagawa, K.; Seto, T.; Crinó, L.; Ahn, M.J.; De Pas, T.; Besse, B.; Solomon, B.J.; Blackhall, F.; et al. Crizotinib versus chemotherapy in advanced ALK-positive lung cancer. N. Engl. J. Med. 2013, 368, 2385–2394. [Google Scholar] [CrossRef]
- Solomon, B.J.; Mok, T.; Kim, D.W.; Wu, Y.L.; Nakagawa, K.; Mekhail, T.; Felip, E.; Cappuzzo, F.; Paolini, J.; Usari, T.; et al. First-line crizotinib versus chemotherapy in ALK-positive lung cancer. N. Engl. J. Med. 2014, 371, 2167–2177. [Google Scholar] [CrossRef]
- Yasuda, H.; De Figueiredo-Pontes, L.L.; Kobayashi, S.; Costa, D.B. Preclinical rationale for use of the clinically available multitargeted tyrosine kinase inhibitor crizotinib in ROS1-translocated lung cancer. J. Thorac. Oncol. 2012, 7, 1086–1090. [Google Scholar] [CrossRef] [PubMed]
- Shaw, A.T.; Ou, S.H.I.; Bang, Y.J.; Camidge, D.R.; Solomon, B.J.; Salgia, R.; Riely, G.J.; Varella-Garcia, M.; Shapiro, G.I.; Costa, D.B.; et al. Crizotinib in ROS1-rearranged non-small-cell lung cancer. N. Engl. J. Med. 2014, 371, 1963–1971. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.-L.; Chih-Hsin Yang, J.; Kim, D.-W.; Lu, S.; Zhou, J.; Seto, T.; Yang, J.-J.; Yamamoto, N.; Ahn, M.-J.; Takahashi, T.; et al. Phase II study of crizotinib in East Asian patients with ROS1-positive advanced non–small-cell lung cancer. J. Clin. Oncol. 2018, 36, 1405–1411. [Google Scholar] [CrossRef] [PubMed]
- Sakamoto, H.; Tsukaguchi, T.; Hiroshima, S.; Kodama, T.; Kobayashi, T.; Fukami, T.A.; Oikawa, N.; Tsukuda, T.; Ishii, N.; Aoki, Y. CH5424802, a Selective ALK Inhibitor Capable of Blocking the Resistant Gatekeeper Mutant. Cancer Cell 2011, 19, 679–690. [Google Scholar] [CrossRef] [PubMed]
- Kodama, T.; Tsukaguchi, T.; Satoh, Y.; Yoshida, M.; Watanabe, Y.; Kondoh, O.; Sakamoto, H. Alectinib shows potent antitumor activity against RET-rearranged non-small cell lung cancer. Mol. Cancer Ther. 2014, 13, 2910–2918. [Google Scholar] [CrossRef] [PubMed]
- Ferrara, R.; Auger, N.; Auclin, E.; Besse, B. Clinical and Translational Implications of RET Rearrangements in Non–Small Cell Lung Cancer. J. Thorac. Oncol. 2018, 13, 27–45. [Google Scholar] [CrossRef] [PubMed]
- Seto, T.; Kiura, K.; Nishio, M.; Nakagawa, K.; Maemondo, M.; Inoue, A.; Hida, T.; Yamamoto, N.; Yoshioka, H.; Harada, M.; et al. CH5424802 (RO5424802) for patients with ALK-rearranged advanced non-small-cell lung cancer (AF-001JP study): A single-arm, open-label, phase 1-2 study. Lancet Oncol. 2013, 14, 590–598. [Google Scholar] [CrossRef]
- Gadgeel, S.M.; Gandhi, L.; Riely, G.J.; Chiappori, A.A.; West, H.L.; Azada, M.C.; Morcos, P.N.; Lee, R.M.; Garcia, L.; Yu, L.; et al. Safety and activity of alectinib against systemic disease and brain metastases in patients with crizotinib-resistant ALK-rearranged non-small-cell lung cancer (AF-002JG): Results from the dose-finding portion of a phase 1/2 study. Lancet Oncol. 2014, 15, 1119–1128. [Google Scholar] [CrossRef]
- Hida, T.; Nokihara, H.; Kondo, M.; Kim, Y.H.; Azuma, K.; Seto, T.; Takiguchi, Y.; Nishio, M.; Yoshioka, H.; Imamura, F.; et al. Alectinib versus crizotinib in patients with ALK-positive non-small-cell lung cancer (J-ALEX): An open-label, randomised phase 3 trial. Lancet 2017, 390, 29–39. [Google Scholar] [CrossRef]
- Nakagawa, K.; Hida, T.; Nokihara, H.; Morise, M.; Azuma, K.; Kim, Y.H.; Seto, T.; Takiguchi, Y.; Nishio, M.; Yoshioka, H.; et al. Final progression-free survival results from the J-ALEX study of alectinib versus crizotinib in ALK-positive non-small-cell lung cancer. Lung Cancer 2020, 139, 195–199. [Google Scholar] [CrossRef]
- Peters, S.; Camidge, D.R.; Shaw, A.T.; Gadgeel, S.; Ahn, J.S.; Kim, D.W.; Ou, S.H.I.; Pérol, M.; Dziadziuszko, R.; Rosell, R.; et al. Alectinib versus crizotinib in untreated ALK-positive non–small-cell lung cancer. N. Engl. J. Med. 2017, 377, 829–838. [Google Scholar] [CrossRef] [PubMed]
- Tonini, T.; Rossi, F.; Claudio, P.P. Molecular basis of angiogenesis and cancer. Oncogene 2003, 22, 6549–6556. [Google Scholar] [CrossRef] [PubMed]
- Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell 2011, 144, 646–674. [Google Scholar] [CrossRef] [PubMed]
- Hicklin, D.J.; Ellis, L.M. Role of the vascular endothelial growth factor pathway in tumor growth and angiogenesis. J. Clin. Oncol. 2005, 23, 1011–1027. [Google Scholar] [CrossRef] [PubMed]
- Dvorak, H.F. Vascular permeability factor/vascular endothelial growth factor: A critical cytokine in tumor angiogenesis and a potential target for diagnosis and therapy. J. Clin. Oncol. 2002, 20, 4368–4380. [Google Scholar] [CrossRef]
- Ellis, L.M.; Hicklin, D.J. VEGF-targeted therapy: Mechanisms of anti-tumour activity. Nat. Rev. Cancer 2008, 8, 579–591. [Google Scholar] [CrossRef]
- Abdalla, A.M.E.; Xiao, L.; Ullah, M.W.; Yu, M.; Ouyang, C.; Yang, G. Current challenges of cancer anti-angiogenic therapy and the promise of nanotherapeutics. Theranostics 2018, 8, 533–549. [Google Scholar] [CrossRef]
- Garon, E.B.; Ciuleanu, T.E.; Arrieta, O.; Prabhash, K.; Syrigos, K.N.; Goksel, T.; Park, K.; Gorbunova, V.; Kowalyszyn, R.D.; Pikiel, J.; et al. Ramucirumab plus docetaxel versus placebo plus docetaxel for second-line treatment of stage IV non-small-cell lung cancer after disease progression on platinum-based therapy (REVEL): A multicentre, double-blind, randomised phase 3 trial. Lancet 2014, 384, 665–673. [Google Scholar] [CrossRef]
- Soria, J.C.; Mauguen, A.; Reck, M.; Sandler, A.B.; Saijo, N.; Johnson, D.H.; Burcoveanu, D.; Fukuoka, M.; Besse, B.; Pignon, J.P. Systematic review and meta-analysis of randomised, phase II/III trials adding bevacizumab to platinum-based chemotherapy as first-line treatment in patients with advanced non-small-cell lung cancer. Ann. Oncol. 2013, 24, 20–30. [Google Scholar] [CrossRef]
- Liu, L.; Cao, Y.; Chen, C.; Zhang, X.; McNabola, A.; Wilkie, D.; Wilhelm, S.; Lynch, M.; Carter, C. Sorafenib blocks the RAF/MEK/ERK pathway, inhibits tumor angiogenesis, and induces tumor cell apoptosis in hepatocellular carcinoma model PLC/PRF/5. Cancer Res. 2006, 66, 11851–11858. [Google Scholar] [CrossRef]
- Carlomagno, F.; Anaganti, S.; Guida, T.; Salvatore, G.; Troncone, G.; Wilhelm, S.M.; Santoro, M. BAY 43-9006 inhibition of oncogenic RET mutants. J. Natl. Cancer Inst. 2006, 98, 326–334. [Google Scholar] [CrossRef] [PubMed]
- Blumenschein, G.R.; Gatzemeier, U.; Fossella, F.; Stewart, D.J.; Cupit, L.; Cihon, F.; O’Leary, J.; Reck, M. Phase II, multicenter, uncontrolled trial of single-agent sorafenib in patients with relapsed or refractory, advanced non-small-cell lung cancer. J. Clin. Oncol. 2009, 27, 4274–4280. [Google Scholar] [CrossRef] [PubMed]
- Paz-Ares, L.; Hirsh, V.; Zhang, L.; De Marinis, F.; Yang, J.C.H.; Wakelee, H.A.; Seto, T.; Wu, Y.L.; Novello, S.; Juhász, E.; et al. Monotherapy Administration of Sorafenib in Patients with Non-Small Cell Lung Cancer (MISSION) Trial: A Phase III, Multicenter, Placebo-Controlled Trial of Sorafenib in Patients with Relapsed or Refractory Predominantly Nonsquamous Non-Small-Cell Lung Canc. J. Thorac. Oncol. 2015, 10, 1745–1753. [Google Scholar] [CrossRef] [PubMed]
- Scagliotti, G.; Novello, S.; Von Pawel, J.; Reck, M.; Pereira, J.R.; Thomas, M.; Miziara, J.E.A.; Balint, B.; De Marinis, F.; Keller, A.; et al. Phase III study of carboplatin and paclitaxel alone or with sorafenib in advanced non-small-cell lung cancer. J. Clin. Oncol. 2010, 28, 1835–1842. [Google Scholar] [CrossRef] [PubMed]
- Hilberg, F.; Roth, G.J.; Krssak, M.; Kautschitsch, S.; Sommergruber, W.; Tontsch-Grunt, U.; Garin-Chesa, P.; Bader, G.; Zoephel, A.; Quant, J.; et al. BIBF 1120: Triple angiokinase inhibitor with sustained receptor blockade and good antitumor efficacy. Cancer Res. 2008, 68, 4774–4782. [Google Scholar] [CrossRef]
- Wollin, L.; Maillet, I.; Quesniaux, V.; Holweg, A.; Ryffel, B. Antifibrotic and anti-inflammatory activity of the Tyrosine Kinase inhibitor Nintedanib in Experimental Models of Lung Fibrosiss. J. Pharmacol. Exp. Ther. 2014, 349, 209–220. [Google Scholar] [CrossRef]
- Roth, G.J.; Heckel, A.; Colbatzky, F.; Handschuh, S.; Kley, J.; Lehmann-Lintz, T.; Lotz, R.; Tontsch-Grunt, U.; Walter, R.; Hilberg, F. Design, synthesis, and evaluation of indolinones as triple angiokinase inhibitors and the discovery of a highly specific 6-methoxycarbonyl-substituted indolinone (BIBF 1120). J. Med. Chem. 2009, 52, 4466–4480. [Google Scholar] [CrossRef]
- Richeldi, L.; Costabel, U.; Selman, M.; Soon Kim, D.; Hansell, D.M.; Nicholson, A.G.; Brown, K.K.; Flaherty, K.R.; Noble, P.W.; Raghu, G.; et al. Efficacy of a Tyrosine Kinase Inhibitor in Idiopathic Pulmonary Fibrosis. N. Engl. J. Med. 2011, 12, 1079–1087. [Google Scholar] [CrossRef]
- Richeldi, L.; Cottin, V.; Flaherty, K.R.; Kolb, M.; Inoue, Y.; Raghu, G.; Taniguchi, H.; Hansell, D.M.; Nicholson, A.G.; Le Maulf, F.; et al. Design of the INPULSISTM trials: Two phase 3 trials of nintedanib in patients with idiopathic pulmonary fibrosis. Respir. Med. 2014, 108, 1023–1030. [Google Scholar] [CrossRef]
- Richeldi, L.; Du Bois, R.M.; Raghu, G.; Azuma, A.; Brown, K.K.; Costabel, U.; Cottin, V.; Flaherty, K.R.; Hansell, D.M.; Inoue, Y.; et al. Efficacy and safety of nintedanib in idiopathic pulmonary fibrosis. N. Engl. J. Med. 2014, 370, 2071–2082. [Google Scholar] [CrossRef]
- Distler, O.; Highland, K.B.; Gahlemann, M.; Azuma, A.; Fischer, A.; Mayes, M.D.; Raghu, G.; Sauter, W.; Girard, M.; Alves, M.; et al. Nintedanib for systemic sclerosis-associated interstitial lung disease. N. Engl. J. Med. 2019, 380, 2518–2528. [Google Scholar] [CrossRef] [PubMed]
- Reck, M.; Kaiser, R.; Mellemgaard, A.; Douillard, J.Y.; Orlov, S.; Krzakowski, M.; von Pawel, J.; Gottfried, M.; Bondarenko, I.; Liao, M.; et al. Docetaxel plus nintedanib versus docetaxel plus placebo in patients with previously treated non-small-cell lung cancer (LUME-Lung 1): A phase 3, double-blind, randomised controlled trial. Lancet Oncol. 2014, 15, 143–155. [Google Scholar] [CrossRef]
- Hanna, N.H.; Kaiser, R.; Sullivan, R.N.; Aren, O.R.; Ahn, M.J.; Tiangco, B.; Voccia, I.; von Pawel, J.; Kovcin, V.; Agulnik, J.; et al. Nintedanib plus pemetrexed versus placebo plus pemetrexed in patients with relapsed or refractory, advanced non-small cell lung cancer (LUME-Lung 2): A randomized, double-blind, phase III trial. Lung Cancer 2016, 102, 65–73. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Zhao, Y.; Lu, F.; Hou, X.; Ma, Y.; Luo, F.; Zeng, K.; Zhao, S.; Zhang, Y.; Zhou, T.; et al. Multi-targeted tyrosine kinase inhibitors as third-line regimen in advanced non-small cell lung cancer: A network meta-analysis. Ann. Transl. Med. 2019, 7, 452. [Google Scholar] [CrossRef]
- Drilon, A.; Siena, S.; Ou, S.H.I.; Patel, M.; Ahn, M.J.; Lee, J.; Bauer, T.M.; Farago, A.F.; Wheler, J.J.; Liu, S.V.; et al. Safety and antitumor activity of the multitargeted pan-TRK, ROS1, and ALK inhibitor entrectinib: Combined results from two phase I trials (ALKA-372-001 and STARTRK-1). Cancer Discov. 2017, 7, 400–409. [Google Scholar] [CrossRef]
- Ackermann, C.J.; Stock, G.; Tay, R.; Dawod, M.; Gomes, F.; Califano, R. Targeted therapy for RET-rearranged non-small cell lung cancer: Clinical development and future directions. Onco. Targets. Ther. 2019, 12, 7857–7864. [Google Scholar] [CrossRef] [PubMed]
Trial | Phase | Line | Type | n | RR(CR/PR) | DCR(CR/PR/SD) | Time to Progression | PFS | MST or OS |
---|---|---|---|---|---|---|---|---|---|
Scagliotti G.V. 2003 PEM alone | II | 1st line | MPM | 64 | 14.1% | 65.6% | 4.7 m | 10.7 m | |
Vogelzang N.J. 2003 PEM/CDDP vs. CDDP | III | 1st line | MPM | 456 | 41.3% vs. 16.7% | 5.7 m vs. 3.9 m | 12.1 m vs. 9.3 m | ||
Hughes A. 2002 PEM/CBDCA | I | 1st line | MPM | 27 | 32% | 88% | 305 d | 451 d | |
Ceresoli G.L. 2006 PEM/CBDCA | II | 1st line | MPM | 102 | 18.6% | 65.7% | 6.5 m | 12.7 m | |
Castagneto B. 2008 PEM/CBDCA | II | 1st line | MPM | 76 | 25% | 63% | 8 m | 14.1 m | |
Hanna N. 2004 PEM vs. DTX | III | 2nd line | NSCLC | 571 | 9.1% vs. 8.8% | 3.4 m vs. 3.5 m | 2.9 m vs. 2.9 m | 8.3 m vs. 7.9 m | |
Scagliotti G.V. 2008 CDDP/PEM vs. CDDP/GEM (JMDB trial) | III | 1st line | NSCLC | 1725 | 30.6% vs. 28.2% | 4.8 m vs. 5.1 m | 10.3 m vs. 10.3 m | ||
Non Sq | 1000 | 5.3 m vs. 4.7 m | 11.8 m vs. 10.4 m | ||||||
Sq | 473 | 4.4 m vs. 5.5 m | 9.4 m vs. 10.8 m | ||||||
Paz-Ares L.G. 2013 PEM maintenance vs. placebo (PARAMOUNT trial) | III | Induction | NSCLC | 939 | 4.4 m vs. 2.8 m | 13.9 m vs. 11.0 m | |||
Gandhi L. 2018 Platinum/PEM/ Pembrolizumab vs. Platinum/PEM/ placebo | III | 1st line | NSCLC | 616 | 47.6% vs. 18.9% | 84.6% vs. 70.4% | 8.8 m vs. 4.9 m | Not reachedvs 11.3 m |
Trial | Phase | Line | Type | n | RR(CR/PR) | DCR(CR/PR/SD) | PFS | MST or OS | |
---|---|---|---|---|---|---|---|---|---|
Crizotinib | Kwak E.L. 2010 (PROFILE 1001) | I | 1st line | ALK-positive NSCLC | 82 | 57% | 90% | 6.4 m | |
Shaw A.T. 2013 Crizotinib vs. PEM or DTX (PROFILE 1007) | III | 2nd line | ALK-positive LC | 347 | 65% vs. 20% | 84% vs. 56% | 7.7 m vs. 3.0 m | 20.3 m vs. 22.8 m | |
Solomon B.J. 2014 Crizotinib vs. PEM/platinum (PROFILE 1014) | III | 1st line | ALK-positive NSCLC(NonSq) | 343 | 74% vs. 45% | 91% vs. 82% | 10.9 m vs. 7.0 m | Not reached | |
Shaw A.T. 2014 Crizotinib alone | I | 1st line | ROS-1-positive NSCLC | 50 | 72% | 90% | 19.2 m | Not reached | |
Wu Y-L. 2018 Crizotinib alone | II | 4th line or later | ROS-1-positive NSCLC | 127 | 71.7% | 80.3%(16 w) | 15.9 m | 32.5 m | |
Alectinib | Seto T. 2013 Alectinib alone (AF-001JP study) | I | 3rd line or later | ALK-positive NSCLC(ALK inhibitor-naïve) | 24 | ||||
II | 2nd line or later | 46 | 93.5% | 95.7% | |||||
Gadgeel S.M. 2014 (AF-002JG trial) Alectinib alone | I/II | any | ALK-positive NSCLC(crizotinib-treated) | 47 | 55% | 91% | |||
With CNS metastases | 21 | 52% | 90% | ||||||
Hida T. 2017 Alectinib vs. crizotinib (J-ALEX trial) | III | 1–2nd line | ALK-positive NSCLC(ALK inhibitor-naïve Japanese) | 207 | 92% vs. 79% | 96% vs. 92% | Not reached vs. 10.2 m | Not reached | |
Nakagawa K. 2020 Alectinib vs. crizotinib (J-ALEX trial) | III | 1–2nd line | ALK-positive NSCLC(ALK inhibitor-naïve Japanese) | 207 | 34.1 m vs. 10.2 m | Not reached vs. 43.7 m | |||
Peters S. 2017 Alectinib vs. crizotinib (ALEX trial) | III | 1st line | ALK-positive NSCLC | 303 | 82.9% vs. 75.5% | 89% vs. 91% | Not reached vs. 11.1 m | Not reached |
Trial | Phase | Line | Type | n | RR(CR/PR) | DCR(CR/PR/SD) | Time to progression | PFS | MST or OS | |
---|---|---|---|---|---|---|---|---|---|---|
Sorafenib | Blumenschein G.R. 2009 Sorafenib alone | II | 2nd–3rd line | NSCLC | 54 | 0% | 59% | 2.7 m | 6.7 m | |
Paz-Ares L. 2015 Sorafenib alone vs. placebo (MISSION trial) | III | 3rd–4th line | NSCLC | 703 | 4.9% vs. 0.9% | 47.1% vs. 24.7% | 2.9 m vs. 1.4 m | 2.8 m vs. 1.4 m | 8.2 m vs. 8.3 m | |
EGFR mutation+ | 89 | 6.8% vs. 0% | 40.9% vs. 2.2% | 2.7 m vs. 1.4 m | 13.9 m vs. 6.5 m | |||||
wild-type EGFR | 258 | 7.4% vs. 1.5% | 46.7% vs. 25.8% | 2.7 m vs. 1.5 m | 8.3 m vs. 8.4 m | |||||
KRAS mutation+ | 68 | 2.9% vs. 0% | 44.1% vs. 7.6% | 2.6 m vs. 1.7 m | 6.4 m vs. 5.1 m | |||||
wild-type KRAS | 279 | 8.3% vs. 1.4% | 45.4% vs. 20.4% | 2.7 m vs. 1.4 m | 11.0 m vs. 9.1 m | |||||
Scagliotti G. 2010 CBDCA/PTX/sorafenib vs. CBDCA/PTX/placebo (ESCAPE trial) | III | 1st line | NSCLC | 926 | 27% vs. 24% | 50% vs. 56% | 4.6 m vs. 5.4 m | 10.7 m vs. 10.6 m | ||
Sq | 223 | 25% vs. 35% | 42% vs. 60% | 4.3 m vs. 5.8 m | 8.9 m vs. 13.6 m | |||||
Other | 703 | 28% vs. 20% | 52% vs. 55% | 4.8 m vs. 5.3 m | 11.5 m vs. 10.2 m | |||||
Nintedanib | Reck M. 2014 DTX/nintedanib vs. DTX/placebo (LUME-Lung 1 trial) | III | 2nd line | NSCLC | 1314 | 4.4% vs. 3.3% | 54% vs. 41.3% | 3.4 m vs. 2.7 m | 10.1 m vs. 9.1 m | |
Adeno | 658 | 4.7% 3.6% | 60.2% vs. 44% | 12.6 m vs. 10.3 m | ||||||
Hanna N.H. 2016 Nintedanib/PEM vs. PEM (LUME-Lung 2 trial) | III | 2nd line | NonSq NSCLC | 713 | 9.1% vs. 8.3% | 60.9% vs. 53.3% | 4.4 m vs. 3.6 m | 12.0 m vs. 12.7 m | ||
Adeno | 670 | 9.6% vs. 9.0% | 61.8% vs. 54.6% | 4.5 m vs. 3.9 m | 12.3 m vs. 13.1 m |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yumura, M.; Nagano, T.; Nishimura, Y. Novel Multitarget Therapies for Lung Cancer and Respiratory Disease. Molecules 2020, 25, 3987. https://doi.org/10.3390/molecules25173987
Yumura M, Nagano T, Nishimura Y. Novel Multitarget Therapies for Lung Cancer and Respiratory Disease. Molecules. 2020; 25(17):3987. https://doi.org/10.3390/molecules25173987
Chicago/Turabian StyleYumura, Masako, Tatsuya Nagano, and Yoshihiro Nishimura. 2020. "Novel Multitarget Therapies for Lung Cancer and Respiratory Disease" Molecules 25, no. 17: 3987. https://doi.org/10.3390/molecules25173987
APA StyleYumura, M., Nagano, T., & Nishimura, Y. (2020). Novel Multitarget Therapies for Lung Cancer and Respiratory Disease. Molecules, 25(17), 3987. https://doi.org/10.3390/molecules25173987