Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (115)

Search Parameters:
Keywords = ryanodine receptor (RYR)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 769 KiB  
Article
Sperm Motility Is Modulated by F4-Neuroprostane via the Involvement of Ryanodine Receptors
by Cinzia Signorini, Elena Moretti, Laura Liguori, Caterina Marcucci, Thierry Durand, Jean-Marie Galano, Camille Oger and Giulia Collodel
Int. J. Mol. Sci. 2025, 26(15), 7231; https://doi.org/10.3390/ijms26157231 - 26 Jul 2025
Viewed by 232
Abstract
F4-Neuroprostanes (F4-NeuroPs), oxidative metabolites of docosahexaenoic acid, act as bioactive lipid mediators enhancing sperm motility and induce capacitation-like changes in vitro. Their biological action is proposed to involve sperm ion channels, in particular ryanodine receptors (RyRs), which regulate intracellular [...] Read more.
F4-Neuroprostanes (F4-NeuroPs), oxidative metabolites of docosahexaenoic acid, act as bioactive lipid mediators enhancing sperm motility and induce capacitation-like changes in vitro. Their biological action is proposed to involve sperm ion channels, in particular ryanodine receptors (RyRs), which regulate intracellular calcium homeostasis. We evaluated the effects of dantrolene, a RyR inhibitor, on motility and vitality of a selected spermatozoa at different concentrations (10, 30, 50, 100 μM). Then sperm motility, acrosome integrity, and RyR localization following co-incubation with dantrolene (D50 or D100 μM) and 4-/10-F4t-NeuroPs (7 ng) were investigated. Acrosomal status was assessed using Pisum sativum agglutinin (PSA) staining and RyR localization by immunofluorescence. D50 was identified as the minimum effective dose to induce significant reductions in sperm motility. F4-NeuroPs significantly increased rapid progressive motility versus controls. Co-incubation with F4-NeuroPs + D50 reduced rapid motility and increased in situ and circular movement. The acrosome staining appeared altered or absent to different percentages, and RyR localization was also seen in the midpiece. These findings suggested that F4-NeuroPs enhance sperm motility via RyR-mediated pathways, as confirmed by dantrolene inhibition. Accordingly, our results underscore the physiological relevance of RyRs in sperm function and suggest new insights into lipid-based mechanisms regulating sperm motility. Full article
Show Figures

Figure 1

13 pages, 272 KiB  
Article
Genetic Variability of Loci Affecting Meat Quality and Production in Nero Siciliano Pig Breed
by Serena Tumino, Morena Carlentini, Giorgio Chessari, Andrea Criscione, Aurora Antoci, Donata Marletta and Salvatore Bordonaro
Animals 2025, 15(14), 2143; https://doi.org/10.3390/ani15142143 - 19 Jul 2025
Viewed by 256
Abstract
Nero Siciliano (NS) is an autochthonous pig breed reared in northeastern Sicily; despite its high-quality meat products, NS is currently endangered. This study aimed to evaluate the genetic variability at nine loci within candidate genes for meat traits—Melanocortin 4 Receptor (MC4R), [...] Read more.
Nero Siciliano (NS) is an autochthonous pig breed reared in northeastern Sicily; despite its high-quality meat products, NS is currently endangered. This study aimed to evaluate the genetic variability at nine loci within candidate genes for meat traits—Melanocortin 4 Receptor (MC4R), Ryanodine Receptor 1 (RYR1), Class 3 Phosphoinositide 3-Kinase (PIK3C3) and Leptin (LEP)—to provide useful information for preservation and exploitation of the NS pig breed. Distribution of the genetic variants was assessed in a representative sample of 87 pigs (18 boars and 69 sows) collected in nine farms located in the original breeding area. Genotypes have been determined using PCR-RFLP and Sanger sequencing. Alleles linked to different growth rates and back fat deposition showed high frequencies (MC4R c.175C—0.93; LEP g.3469T—0.91) in the whole sample. Deviations from Hardy–Weinberg equilibrium and different allele distribution in boars and sows were observed. The RYR1 g.1843T allele, associated with Malignant Hyperthermia and Pale Soft Exudative meat defect, was reported in seven heterozygote pigs (q = 0.04) with one farm exhibiting a frequency of 0.29. Our results suggest the need for continuous monitoring of the genetic variants in NS both to maintain high meat quality and eradicate the RYR1 g.1843T allele. Full article
(This article belongs to the Special Issue Impact of Genetics and Feeding on Growth Performance of Pigs)
14 pages, 1020 KiB  
Review
Molecular Mechanisms of L-Type Calcium Channel Dysregulation in Heart Failure
by Arbab Khalid, Abu-Bakr Ahmed, Randeep Gill, Taha Shaikh, Joshua Khorsandi and Ali Kia
Int. J. Mol. Sci. 2025, 26(12), 5738; https://doi.org/10.3390/ijms26125738 - 15 Jun 2025
Viewed by 773
Abstract
The L-type calcium channels (LTCCs) function as the main entry points that convert myocyte membrane depolarization into calcium transients, which drive every heartbeat. There is increasing evidence to show that maladaptive remodeling of these channels is the cause of heart failure with reduced [...] Read more.
The L-type calcium channels (LTCCs) function as the main entry points that convert myocyte membrane depolarization into calcium transients, which drive every heartbeat. There is increasing evidence to show that maladaptive remodeling of these channels is the cause of heart failure with reduced ejection fraction (HFrEF) and heart failure with preserved ejection fraction (HFpEF). Recent experimental, translational, and clinical studies have improved our understanding of the roles LTCC expression, micro-domain trafficking, and post-translational control have in disrupting excitation–contraction coupling, provoking arrhythmias, and shaping phenotype specific hemodynamic compromise. We performed a systematic search of the PubMed and Google Scholar databases (2015–2025, English) and critically evaluated 17 eligible publications in an effort to organize the expanding body of work. This review combines existing data about LTCC density and T-tubule architecture with β-adrenergic and Ca2⁺/calmodulin-dependent protein kinase II (CaMKII) signaling and downstream sarcoplasmic reticulum crosstalk to explain how HFrEF presents with contractile insufficiency and how HFpEF shows diastolic calcium overload and stiffening. Additionally, we highlight the emerging therapeutic strategies aimed at restoring calcium homeostasis such as CaMKII inhibitors, ryanodine receptor type 2 (RyR2) stabilizers, and selective LTCC modulators without compromising systolic reserve. The review establishes LTCC dysregulation as a single mechanism that causes myocardial dysfunction while remaining specific to each phenotype, thus offering clinicians and researchers a complete reference for current concepts and future precision therapy approaches in heart failure. Full article
(This article belongs to the Special Issue Molecular and Cellular Mechanisms in Cardiomyopathy)
Show Figures

Figure 1

23 pages, 2709 KiB  
Review
Ryanodine Receptors in Islet Cell Function: Calcium Signaling, Hormone Secretion, and Diabetes
by Md. Shahidul Islam
Cells 2025, 14(10), 690; https://doi.org/10.3390/cells14100690 - 10 May 2025
Viewed by 2486
Abstract
Ryanodine receptors (RyRs) are large intracellular Ca2+ release channels primarily found in muscle and nerve cells and also present at low levels in pancreatic islet endocrine cells. This review examines the role of RyRs in islet cell function, focusing on calcium signaling [...] Read more.
Ryanodine receptors (RyRs) are large intracellular Ca2+ release channels primarily found in muscle and nerve cells and also present at low levels in pancreatic islet endocrine cells. This review examines the role of RyRs in islet cell function, focusing on calcium signaling and hormone secretion, while addressing the ongoing debate regarding their significance due to their limited expression. We explore conflicting experimental results and their potential causes, synthesizing current knowledge on RyR isoforms in islet cells, particularly in beta and delta cells. The review discusses how RyR-mediated calcium-induced calcium release enhances, rather than drives, glucose-stimulated insulin secretion. We examine the phosphorylation-dependent regulation of beta-cell RyRs, the concept of “leaky ryanodine receptors”, and the roles of RyRs in endoplasmic reticulum stress, apoptosis, store-operated calcium entry, and beta-cell electrical activity. The relationship between RyR dysfunction and the development of impaired insulin secretion in diabetes is assessed, noting their limited role in human diabetes pathogenesis given the disease’s polygenic nature. We highlight the established role of RyR-mediated CICR in the mechanism of action of common type 2 diabetes treatments, such as glucagon-like peptide-1, which enhances insulin secretion. By integrating findings from electrophysiological, molecular, and clinical studies, this review provides a balanced perspective on RyRs in islet cell physiology and pathology, emphasizing their significance in both normal insulin secretion and current diabetes therapies. Full article
(This article belongs to the Special Issue Molecular Mechanisms of Signal Transduction in the Islet Cells)
Show Figures

Graphical abstract

11 pages, 1664 KiB  
Article
Aging Favors Calcium Activation of Ryanodine Receptor Channels from Brain Cortices and Hippocampi and Hinders Learning and Memory in Male Rats
by Jamileth More, José Pablo Finkelstein, José Luis Valdés, Cecilia Hidalgo and Ricardo Bull
Int. J. Mol. Sci. 2025, 26(5), 2101; https://doi.org/10.3390/ijms26052101 - 27 Feb 2025
Viewed by 508
Abstract
The response of ryanodine receptor (RyR) channels to increases in free cytoplasmic calcium concentration ([Ca2+]) is tuned by several mechanisms, including redox signaling. Three different responses to [Ca2+] have been described in RyR channels, low, moderate and high activity [...] Read more.
The response of ryanodine receptor (RyR) channels to increases in free cytoplasmic calcium concentration ([Ca2+]) is tuned by several mechanisms, including redox signaling. Three different responses to [Ca2+] have been described in RyR channels, low, moderate and high activity responses, which depend on the RyR channel protein oxidation state. Thus, reduced RyR channels display the low activity response, whereas partially oxidized channels display the moderate response and more oxidized channels, the high activity response. As described here, RyR channels from rat brain cortices or hippocampi displayed aged-related marked changes in the distribution of these channel responses; RyR channels from aged rats displayed reduced fraction of low activity channels and increased fraction of high activity channels, which would favor Ca2+-induced Ca2+ release. In addition, compared with young rats, aged rats displayed learning and memory defects, with lower hit rates when tested in the Oasis maze, a dry version of the Morris water maze. Previous oral administration of N-acetylcysteine for 3 weeks prevented both the age-dependent effects on RyR channel activation by [Ca2+], and the learning and memory defects. Based on these results, it is proposed that redox-sensitive neuronal RyR channels partake in the mechanism underlying the learning and memory disruptions displayed by aged rats. Full article
(This article belongs to the Special Issue Calcium Homeostasis of Cells in Health and Disease: 2nd Edition)
Show Figures

Figure 1

22 pages, 3912 KiB  
Article
Complex Actions of FKBP12 on RyR1 Ion Channel Activity Consistent with Negative Co-Operativity in FKBP12 Binding to the RyR1 Tetramer
by Spencer J. Richardson, Chris G. Thekkedam, Marco G. Casarotto, Nicole A. Beard and Angela F. Dulhunty
Cells 2025, 14(3), 157; https://doi.org/10.3390/cells14030157 - 21 Jan 2025
Viewed by 1048
Abstract
The association of the 12 KDa FK506 binding protein (FKBP12) with ryanodine receptor type 1 (RyR1) in skeletal muscle is thought to suppress RyR1 channel opening and contribute to healthy muscle function. The strongest evidence for this role is increased RyR1 channel activity [...] Read more.
The association of the 12 KDa FK506 binding protein (FKBP12) with ryanodine receptor type 1 (RyR1) in skeletal muscle is thought to suppress RyR1 channel opening and contribute to healthy muscle function. The strongest evidence for this role is increased RyR1 channel activity following FKBP12 dissociation. However, the corollary that channel activity will decrease when FKBP12 is added back to FKBP12-depleted RyR1 is not well established, and when reported, the time- and concentration-dependence of inhibition vary over orders of magnitude. Here, we address this problem with an investigation of the molecular mechanisms of the FKBP12 regulation of RyR1. Muscle processing to obtain sarcoplasmic reticulum (SR) vesicle preparations enriched in RyR1 resulted in substantial FKBP12 dissociation from RyR1, indicating low-affinity binding. Conversely, high-affinity binding was indicated by some FKBP12 remaining bound to RyR1 after solubilization. We report, for the first time, an increase in the activity of FKBP12-depleted channels after the addition of exogenous FKBP12 (5 nM to 5 µM), followed by a reduction in activity consistent with inhibition after 20–30 min exposure to higher [FKBP12]s. Both the increase and later decline in activity were time- and concentration-dependent. The results suggest a high-affinity activation when FKBP12 binding sites on the RyR1 tetramer are partially occupied by FKBP12 and lower affinity inhibition as more RyR1 monomers become occupied. These novel results imply negative cooperativity in FKBP12 binding to RyR1 and a dynamic role for FKBP12/RyR1 interactions in intact muscle fibers. Full article
Show Figures

Graphical abstract

15 pages, 2990 KiB  
Article
A Novel Approach for In Vitro Testing and Hazard Evaluation of Nanoformulated RyR2-Targeting siRNA Drugs Using Human PBMCs
by Valeria Bettinsoli, Gloria Melzi, Angelica Crea, Lorenzo Degli Esposti, Michele Iafisco, Daniele Catalucci, Paolo Ciana and Emanuela Corsini
Life 2025, 15(1), 95; https://doi.org/10.3390/life15010095 - 14 Jan 2025
Viewed by 1661
Abstract
Nucleic acid (NA)-based drugs are promising therapeutics agents. Beyond efficacy, addressing safety concerns—particularly those specific to this class of drugs—is crucial. Here, we propose an in vitro approach to screen for potential adverse off-target effects of NA-based drugs. Human peripheral blood mononuclear cells [...] Read more.
Nucleic acid (NA)-based drugs are promising therapeutics agents. Beyond efficacy, addressing safety concerns—particularly those specific to this class of drugs—is crucial. Here, we propose an in vitro approach to screen for potential adverse off-target effects of NA-based drugs. Human peripheral blood mononuclear cells (PBMCs), purified from buffy coats of healthy donors, were used to investigate the ability of NA-drugs to trigger toxicity pathways and inappropriate immune stimulation. PBMCs were selected for their ability to represent potential human responses, given their likelihood of interacting with administered drugs. As proof of concept, a small interfering RNA (siRNA) targeting Ryanodine Receptor mRNA (RyR2) identified by the Italian National Center for Gene Therapy and Drugs based on RNA Technology as a potential therapeutic target for dominant catecholaminergic polymorphic ventricular tachycardia, was selected. This compound and its scramble were formulated within a calcium phosphate nanoparticle-based delivery system. Positive controls for four toxicity pathways were identified through literature review, each associated with a specific type of cellular stress: oxidative stress (tert-butyl hydroperoxide), mitochondrial stress (rotenone), endoplasmic reticulum stress (thapsigargin), and autophagy (rapamycin). These controls were used to define specific mRNA signatures triggered in PBMCs, which were subsequently used as indicators of off-target effects. To assess immune activation, the release of pro-inflammatory cytokines (interleukin-6, interleukin-8, tumor necrosis factor-α, and interferon-γ) was measured 24 h after exposure. The proposed approach provides a rapid and effective screening method for identifying potential unintended effects in a relevant human model, which also allows to address gender effects and variability in responses. Full article
(This article belongs to the Section Pharmaceutical Science)
Show Figures

Figure 1

21 pages, 2775 KiB  
Article
Flecainide Specifically Targets the Monovalent Countercurrent Through the Cardiac Ryanodine Receptor, While a Dominant Opposing Ca2+/Ba2+ Current Is Present
by Jana Gaburjakova, Michaela Domsicova, Alexandra Poturnayova and Marta Gaburjakova
Int. J. Mol. Sci. 2025, 26(1), 203; https://doi.org/10.3390/ijms26010203 - 29 Dec 2024
Viewed by 1239
Abstract
Catecholaminergic polymorphic ventricular tachycardia (CPVT) is a highly arrhythmogenic syndrome triggered by stress, primarily linked to gain-of-function point mutations in the cardiac ryanodine receptor (RyR2). Flecainide, as an effective therapy for CPVT, is a known blocker of the surface-membrane Na+ channel, also [...] Read more.
Catecholaminergic polymorphic ventricular tachycardia (CPVT) is a highly arrhythmogenic syndrome triggered by stress, primarily linked to gain-of-function point mutations in the cardiac ryanodine receptor (RyR2). Flecainide, as an effective therapy for CPVT, is a known blocker of the surface-membrane Na+ channel, also affecting the intracellular RyR2 channel. The therapeutic relevance of the flecainide-RyR2 interaction remains controversial, as flecainide blocks only the RyR2 current flowing in the opposite direction to the physiological Ca2+ release from the sarcoplasmic reticulum (SR). However, it has been proposed that charge-compensating countercurrent from the cytosol to SR lumen plays a critical role, and its reduction may indeed suppress excessive diastolic SR Ca2+ release through RyR2 channels in CPVT. Monitoring single-channel properties, we examined whether flecainide can target intracellular pathways for charge-balancing currents carried by RyR2 and SR Cl channels under cell-like conditions. Particularly, the Tris+ countercurrent flowed through the RyR2 channel simultaneously with a dominant reverse Ca2+/Ba2+ current. We demonstrate that flecainide blocked the RyR2-mediated countercurrent without affecting channel activity. In contrast, the SR Cl channel was completely resistant to flecainide. Based on these findings, it is reasonable to propose that the primary intracellular target of flecainide in vivo is the RyR2-mediated countercurrent. Full article
(This article belongs to the Special Issue Ion Conductance and Ion Regulation in Human Health and Disease)
Show Figures

Figure 1

20 pages, 2307 KiB  
Article
Immature Skeletal Myotubes Are an Effective Source for Improving the Terminal Differentiation of Skeletal Muscle
by Seung Yeon Jeong, Jun Hee Choi, Paul D. Allen and Eun Hui Lee
Cells 2024, 13(24), 2136; https://doi.org/10.3390/cells13242136 - 23 Dec 2024
Viewed by 1400
Abstract
Injured or atrophied adult skeletal muscles are regenerated through terminal differentiation of satellite cells to form multinucleated muscle fibers. Transplantation of satellite cells or cultured myoblasts has been used to improve skeletal muscle regeneration. Some of the limitations observed result from the limited [...] Read more.
Injured or atrophied adult skeletal muscles are regenerated through terminal differentiation of satellite cells to form multinucleated muscle fibers. Transplantation of satellite cells or cultured myoblasts has been used to improve skeletal muscle regeneration. Some of the limitations observed result from the limited number of available satellite cells that can be harvested and the efficiency of fusion of cultured myoblasts with mature muscle fibers (i.e., terminal differentiation) upon transplantation. However, the possible use of immature myotubes in the middle of the terminal differentiation process instead of satellite cells or cultured myoblasts has not been thoroughly investigated. Herein, myoblasts (Mb) or immature myotubes on differentiation day 2 (D2 immature myotubes) or 3 (D3 immature myotubes) were transferred to plates containing D2 or D3 immature myotubes as host cells. The transferred Mb/immature myotubes on the plates were further co-differentiated with host immature myotubes into mature myotubes in six conditions: Mb-to-D2, D2-to-D2, D3-to-D2, Mb-to-D3, D2-to-D3, and D3-to-D3. Among these six co-differentiation conditions, the D2-to-D3 co-differentiation condition exhibited the most characteristic myotube appearance and the greatest availability of Ca2+ for skeletal muscle contraction. Compared with non-co-differentiated control myotubes, D2-to-D3 co-differentiated myotubes presented increased MyoD and myosin heavy chain II (MyHC II) expression and increased myotube width, accompanied by parallel and swirling alignment. These increases correlated with functional increases in both electrically induced intracellular Ca2+ release and extracellular Ca2+ entry due to the increased expression of ryanodine receptor 1 (RyR1), sarcoplasmic/endoplasmic reticulum Ca2+-ATPase 1a (SERCA1a), and stromal interaction molecule 1 (STIM1). These increases were not detected in any of the other co-differentiation conditions. These results suggest that in vitro-cultured D2-to-D3 co-differentiated mature myotubes could be a good alternative source of satellite cells or cultured myoblasts for skeletal muscle regeneration. Full article
(This article belongs to the Special Issue Advances in Muscle Research in Health and Disease—2nd Edition)
Show Figures

Figure 1

11 pages, 6658 KiB  
Article
Attempts to Create Transgenic Mice Carrying the Q3924E Mutation in RyR2 Ca2+ Binding Site
by Xiao-hua Zhang, Fu-lei Tang, Allison M. Trouten and Martin Morad
Cells 2024, 13(24), 2051; https://doi.org/10.3390/cells13242051 - 12 Dec 2024
Viewed by 1108
Abstract
Over 200 point mutations in the ryanodine receptor (RyR2) of the cardiac sarcoplasmic reticulum (SR) are known to be associated with cardiac arrhythmia. We have already reported on the calcium signaling phenotype of a point mutation in RyR2 Ca2+ binding site Q3925E [...] Read more.
Over 200 point mutations in the ryanodine receptor (RyR2) of the cardiac sarcoplasmic reticulum (SR) are known to be associated with cardiac arrhythmia. We have already reported on the calcium signaling phenotype of a point mutation in RyR2 Ca2+ binding site Q3925E expressed in human stem-cell-derived cardiomyocytes (hiPSC-CMs) that was found to be lethal in a 9-year-old girl. CRISPR/Cas9-gene-edited mutant cardiomyocytes carrying the RyR2-Q3925E mutation exhibited a loss of calcium-induced calcium release (CICR) and caffeine-triggered calcium release but continued to beat arrhythmically without generating significant SR Ca2+ release, consistent with a remodeling of the calcium signaling pathway. An RNAseq heat map confirmed significant changes in calcium-associated genes, supporting the possibility of remodeling. To determine the in situ cardiac phenotype in an animal model of this mutation, we generated a knock-in mouse model of RyR2-Q3924E+/− using the CRISPR/Cas9 technique. We obtained three homozygous and one chimera mice, but they all died before reaching 3 weeks of age, preventing the establishment of germline mutation transmission in their offspring. A histo-pathological analysis of the heart showed significant cardiac hypertrophy, suggesting the Q3924E-RyR2 mutation was lethal to the mice. Full article
(This article belongs to the Special Issue Ca2+ Signaling and Calcium-Binding Proteins in Human Disease)
Show Figures

Graphical abstract

37 pages, 8673 KiB  
Article
Structure-Function Relationship of the Ryanodine Receptor Cluster Network in Sinoatrial Node Cells
by Alexander V. Maltsev, Valeria Ventura Subirachs, Oliver Monfredi, Magdalena Juhaszova, Pooja Ajay Warrier, Shardul Rakshit, Syevda Tagirova, Anna V. Maltsev, Michael D. Stern, Edward G. Lakatta and Victor A. Maltsev
Cells 2024, 13(22), 1885; https://doi.org/10.3390/cells13221885 - 14 Nov 2024
Viewed by 1729
Abstract
The rate of spontaneous action potentials (APs) generated by sinoatrial node cells (SANC) is regulated by local Ca2+ release (LCR) from the sarcoplasmic reticulum via Ca2+ release channels (ryanodine receptors, RyRs). LCR events propagate and self-organize within the network of RyR [...] Read more.
The rate of spontaneous action potentials (APs) generated by sinoatrial node cells (SANC) is regulated by local Ca2+ release (LCR) from the sarcoplasmic reticulum via Ca2+ release channels (ryanodine receptors, RyRs). LCR events propagate and self-organize within the network of RyR clusters (Ca release units, CRUs) via Ca-induced-Ca-release (CICR) that depends on CRU sizes and locations: While larger CRUs generate stronger release signals, the network’s topology governs signal diffusion and propagation. This study used super-resolution structured illumination microscopy to image the 3D network of CRUs in rabbit SANC. The peripheral CRUs formed a spatial mesh, reflecting the cell surface geometry. Two distinct subpopulations of CRUs were identified within each cell, with size distributions conforming to a two-component Gamma mixture model. Furthermore, neighboring CRUs exhibited repulsive behavior. Functional properties of the CRU network were further examined in a novel numerical SANC model developed using our experimental data. Model simulations revealed that heterogeneities in both CRU sizes and locations facilitate CICR and increase the AP firing rate in a cooperative manner. However, these heterogeneities reduce the effect of β-adrenergic stimulation in terms of its relative change in AP firing rate. The presence of heterogeneities in both sizes and locations allows SANC to reach higher absolute AP firing rates during β-adrenergic stimulation. Thus, the CICR facilitation by heterogeneities in CRU sizes and locations regulates and optimizes cardiac pacemaker cell operation under various physiological conditions. Dysfunction of this optimization could be a key factor in heart rate reserve decline in aging and disease. Full article
(This article belongs to the Section Cells of the Cardiovascular System)
Show Figures

Figure 1

25 pages, 7079 KiB  
Article
Gain-of-Function and Loss-of-Function Mutations in the RyR2-Expressing Gene Are Responsible for the CPVT1-Related Arrhythmogenic Activities in the Heart
by Roshan Paudel, Mohsin Saleet Jafri and Aman Ullah
Curr. Issues Mol. Biol. 2024, 46(11), 12886-12910; https://doi.org/10.3390/cimb46110767 - 13 Nov 2024
Viewed by 1904
Abstract
Mutations in the ryanodine receptor (RyR2) gene have been linked to arrhythmia and possibly sudden cardiac death (SCD) during acute emotional stress, physical activities, or catecholamine perfusion. The most prevalent disorder is catecholaminergic polymorphic ventricular tachycardia (CPVT1). Four primary mechanisms have been proposed [...] Read more.
Mutations in the ryanodine receptor (RyR2) gene have been linked to arrhythmia and possibly sudden cardiac death (SCD) during acute emotional stress, physical activities, or catecholamine perfusion. The most prevalent disorder is catecholaminergic polymorphic ventricular tachycardia (CPVT1). Four primary mechanisms have been proposed to describe CPVT1 with a RyR2 mutation: (a) gain-of-function, (b) destabilization of binding proteins, (c) store-overload-induced Ca2+ release (SOICR), and (d) loss of function. The goal of this study was to use computational models to understand these four mechanisms and how they might contribute to arrhythmia. To this end, we have developed a local control stochastic model of a ventricular cardiac myocyte and used it to investigate how the Ca2+ dynamics in the mutant RyR2 are responsible for the development of an arrhythmogenic episode under the condition of β-adrenergic (β-AR) stimulation or pauses afterward. Into the model, we have incorporated 20,000 distinct cardiac dyads consisting of stochastically gated L-type Ca2+ channels (LCCs) and ryanodine receptors (RyR2s) and the intervening dyadic cleft to analyze the alterations in Ca2+ dynamics. Recent experimental findings were incorporated into the model parameters to test these proposed mechanisms and their role in triggering arrhythmias. The model could not find any connection between SOICR and the destabilization of binding proteins as the arrhythmic mechanisms in the mutant myocyte. On the other hand, the model was able to observe loss-of-function and gain-of-function mutations resulting in EADs (Early Afterdepolarizations) and variations in action potential amplitudes and durations as the precursors to generate arrhythmia, respectively. These computational studies demonstrate how GOF and LOF mutations can lead to arrhythmia and cast doubt on the feasibility of SOICR as a mechanism of arrhythmia. Full article
(This article belongs to the Section Bioinformatics and Systems Biology)
Show Figures

Graphical abstract

10 pages, 1326 KiB  
Review
Calcium Release Deficiency Syndrome (CRDS): Rethinking “Atypical” Catecholaminergic Polymorphic Ventricular Tachycardia
by Alessandra P. Porretta, Etienne Pruvot and Zahurul A. Bhuiyan
Cardiogenetics 2024, 14(4), 211-220; https://doi.org/10.3390/cardiogenetics14040017 - 11 Nov 2024
Viewed by 1803
Abstract
Since the first description of catecholaminergic polymorphic ventricular tachycardia (CPVT) in the 1970s, new insights have progressively unraveled the understanding of this inherited arrhythmia syndrome. The identification of new distinct clinical entities related to RYR2, the gene encoding the cardiac ryanodine receptor, [...] Read more.
Since the first description of catecholaminergic polymorphic ventricular tachycardia (CPVT) in the 1970s, new insights have progressively unraveled the understanding of this inherited arrhythmia syndrome. The identification of new distinct clinical entities related to RYR2, the gene encoding the cardiac ryanodine receptor, has allowed significant refinement in the diagnosis of previously labeled “atypical” CPVT cases. Among RYR2-ryanodinopathies, the characterization of calcium release deficiency syndrome (CRDS) is still in its infancy and represents a diagnostic challenge due to the need for functional studies which may confirm the loss-of-function nature of the RYR2 variant. The present review summarizes current evidence on CRDS. First, by providing an overview on RYR2 structure and function, we will elucidate the different pathophysiological underpinnings of CRDS and CPVT. Second, by retrieving in detail reported CRDS variants and their clinical phenotypes, we will provide, if any, genetic and clinical red flags that should raise suspicion for CRDS in daily clinical practice. Finally, we will discuss available therapies to provide clinicians with practical therapeutic options for CRDS management. Full article
(This article belongs to the Section Cardiovascular Genetics in Clinical Practice)
Show Figures

Figure 1

22 pages, 6439 KiB  
Article
Using a Failing Human Ventricular Cardiomyocyte Model to Re-Evaluate Ca2+ Cycling, Voltage Dependence, and Spark Characteristics
by Jerome Anthony E. Alvarez, Mohsin Saleet Jafri and Aman Ullah
Biomolecules 2024, 14(11), 1371; https://doi.org/10.3390/biom14111371 - 28 Oct 2024
Cited by 2 | Viewed by 1307
Abstract
Previous studies have observed alterations in excitation–contraction (EC) coupling during end-stage heart failure that include action potential and calcium (Ca2+) transient prolongation and a reduction of the Ca2+ transient amplitude. Underlying these phenomena are the downregulation of potassium (K+ [...] Read more.
Previous studies have observed alterations in excitation–contraction (EC) coupling during end-stage heart failure that include action potential and calcium (Ca2+) transient prolongation and a reduction of the Ca2+ transient amplitude. Underlying these phenomena are the downregulation of potassium (K+) currents, downregulation of the sarcoplasmic reticulum Ca2+ ATPase (SERCA), increase Ca2+ sensitivity of the ryanodine receptor, and the upregulation of the sodium–calcium (Na=-Ca2+) exchanger. However, in human heart failure (HF), debate continues about the relative contributions of the changes in calcium handling vs. the changes in the membrane currents. To understand the consequences of the above changes, they are incorporated into a computational human ventricular myocyte HF model that can explore the contributions of the spontaneous Ca2+ release from the sarcoplasmic reticulum (SR). The reduction of transient outward K+ current (Ito) is the main membrane current contributor to the decrease in RyR2 open probability and L-type calcium channel (LCC) density which emphasizes its importance to phase 1 of the action potential (AP) shape and duration (APD). During current-clamp conditions, RyR2 hyperphosphorylation exhibits the least amount of Ca2+ release from the SR into the cytosol and SR Ca2+ fractional release during a dynamic slow–rapid–slow (0.5–2.5–0.5 Hz) pacing, but it displays the most abundant and more lasting Ca2+ sparks two-fold longer than a normal cell. On the other hand, under voltage-clamp conditions, HF by decreased SERCA and upregulated INCX show the least SR Ca2+ uptake and EC coupling gain, as compared to HF by hyperphosphorylated RyR2s. Overall, this study demonstrates that the (a) combined effect of SERCA and NCX, and the (b) RyR2 dysfunction, along with the downregulation of the cardiomyocyte’s potassium currents, could substantially contribute to Ca2+ mishandling at the spark level that leads to heart failure. Full article
Show Figures

Figure 1

15 pages, 9325 KiB  
Article
Compound Heterozygous RYR1 Variants in a Patient with Severe Congenital Myopathy: Case Report and Comparison with Additional Cases of Recessive RYR1-Related Myopathy
by Sören Janßen, Leoni S. Erbe, Moritz Kneifel, Matthias Vorgerd, Kristina Döring, Krzysztof P. Lubieniecki, Joanna M. Lubieniecka, Wanda M. Gerding, Nicolas Casadei, Anne-Katrin Güttsches, Christoph Heyer, Thomas Lücke, Hoa Huu Phuc Nguyen, Cornelia Köhler and Sabine Hoffjan
Int. J. Mol. Sci. 2024, 25(19), 10867; https://doi.org/10.3390/ijms251910867 - 9 Oct 2024
Viewed by 1938
Abstract
Pathogenic variants in the ryanodine receptor 1 (RYR1) gene are causative for a wide spectrum of muscular phenotypes, ranging from malignant hyperthermia over mild, non-progressive to severe congenital myopathy. Both autosomal dominant and recessive inheritance can occur, with the more severe [...] Read more.
Pathogenic variants in the ryanodine receptor 1 (RYR1) gene are causative for a wide spectrum of muscular phenotypes, ranging from malignant hyperthermia over mild, non-progressive to severe congenital myopathy. Both autosomal dominant and recessive inheritance can occur, with the more severe forms usually showing recessive inheritance. However, genotype–phenotype correlations are complicated due to the large size of the gene and heterogeneous phenotypes. We present a 6-year-old patient with severe congenital myopathy, carrying a heterozygous pathogenic RYR1 variant inherited from the healthy mother. Through whole genome sequencing we identified a second, deep intronic RYR1 variant that has recently been described in another patient with severe congenital myopathy and shown to affect splicing. Segregation analyses confirmed the variants to be compound heterozygous. We compared our patient’s phenotype to that of the patient from the literature as well as five additional patients with compound heterozygous RYR1 variants from our center. The main overlapping features comprised congenital onset, predominant muscular hypotonia, and normal creatine kinase (CK) levels, while overall clinical expression varied substantially. Interestingly, both patients carrying the new intronic splice variant showed a very severe disease course. More widespread use of genome sequencing will open the way for better genotype–phenotype correlations. Full article
(This article belongs to the Special Issue Molecular and Neuromuscular Mechanisms in Skeletal Muscle Aging)
Show Figures

Figure 1

Back to TopTop