Genetic Variability of Loci Affecting Meat Quality and Production in Nero Siciliano Pig Breed
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animal Sampling and DNA Extraction
2.2. Genetic Characterization
2.3. Statistical Analysis
Gene | Acc. Num. | Site | SNP | AminoAcids | Primers Sequence (5′-3′) | Amplicon (bp) | Method | Ref |
---|---|---|---|---|---|---|---|---|
MC4R | FJ357500.1 | 5′ UTR | −780 C>G | - | GTGGCGAAGGTCACAATGG AGTGGCTCCTCCTCTGCTT | 640 | PCR-RFLP | [15] |
c.135 C>T | - | TCTTCTCCCAATAGCACAGC GGAAACGCTCACCAGCATA | 536 | Sequencing | [15] | |||
Ex 1 | c.175 C>T rs81221060 | p.Leu59Leu | CAGGTCAGAGGGGATCTCAA GTGCAGACTGCCCAGATACA | 568 | PCR-RFLP | [15] | ||
c.707G>A rs81221061 | p.Arg236His | TCGATTGCAGTGGACAGGTA GAAAATGCTGTTGTGAAGCA | 663 | Sequencing | [15] | |||
c.1426G>A rs81219178 | p.Asp298Asn | PCR-RFLP | [15] | |||||
RYR1 | M91451.1 | Ex 17 | c.1843C>T rs706913914 | p.Arg615Cys | GTGCTGGATGTCCTGTGTTCCCT CTGGTGACATAGTTGATGAGGTTTG | 134 | PCR-RFLP | [16] |
LEP | AF026976 | 3′ UTR | g.2728G>A rs3475337814 | - | CCCTGCTTGCACTTGGTAGC CTGCCACACGAGTCTTGCTC | 658 | PCR-RFLP | [17] |
U66254.1 | Ex 2 | c.3469 T>C rs45431504 | p.Leu72Leu | AACAGAGGGTCACCGGTTTG TTTGGAAGAGCAGCTTAGCG | 486 | PCR-RFLP | [18] | |
PIK3C3 | AY823302.1 | Ex 24 | c.2604 C>T rs81211045 | p.His826His | ATTTCGTCTAGACCTGTCCG TGAATCTGTTCTACCACCGC | 102 | PCR-RFLP | [19] |
3. Results and Discussion
3.1. Genetic Variation at MC4R Gene
3.2. Genetic Variation at RYR1, LEP and PIK3C3 Genes
3.3. Haplotypes at MC4R, LEP and Genetic Diversity Parameters in Nero Siciliano
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chicoli, N. Riproduzione, Allevamento e Miglioramento Degli Animali Domestici in Sicilia; Lorsnaider, G., Ed.; Stamperia di Giovanni Lorsnaider: Palermo, Italy, 1870. [Google Scholar]
- Guastella, A.M.; Criscione, A.; Marletta, D.; Zuccaro, A.; Chies, L.; Bordonaro, S. Molecular characterization and genetic structure of the Nero Siciliano pig breed. Genet. Mol. Biol. 2010, 33, 650–656. [Google Scholar] [CrossRef] [PubMed]
- Zumbo, A.; Sutera, A.M.; Tardiolo, G.; D’Alessandro, E. Sicilian black pig: An overview. Animals 2020, 10, 2326. [Google Scholar] [CrossRef] [PubMed]
- Pugliese, C.; Madonia, G.; Chiofalo, V.; Margiotta, S.; Acciaioli, A.; Gandini, G. Comparison of the performances of Nero Siciliano pigs reared indoors and outdoors. 1. Growth and carcass composition. Meat Sci. 2003, 65, 825–831. [Google Scholar] [CrossRef] [PubMed]
- Pugliese, C.; Sirtori, F.; D’Adorante, S.; Parenti, S.; Rey, A.; Lopez-Bote, C.; Franci, O. Effect of pasture in oak and chestnut groves on chemical and sensorial traits of cured lard of Cinta Senese pigs. Ital. J. Anim. Sci. 2016, 8, 131–142. [Google Scholar] [CrossRef]
- Moretti, R.; Criscione, A.; Turri, F.; Bordonaro, S.; Marletta, D.; Castiglioni, B.; Chessa, S. A 20-SNP Panel as a Tool for Genetic Authentication and Traceability of Pig Breeds. Animals 2022, 12, 1335. [Google Scholar] [CrossRef] [PubMed]
- Bordonaro, S.; Chessari, G.; Mastrangelo, S.; Senczuk, G.; Chessa, S.; Castiglioni, B.; Tumino, S.; Marletta, D.; Criscione, A. Genome-wide population structure, homozygosity, and heterozygosity patterns of Nero Siciliano pig in the framework of Italian and cosmopolitan breeds. Anim. Genet. 2023, 54, 591–605. [Google Scholar] [CrossRef] [PubMed]
- D’Alessandro, E.; Sottile, G.; Sardina, M.T.; Criscione, A.; Bordonaro, S.; Sutera, A.M.; Zumbo, A.; Portolano, B.; Mastrangelo, S. Genome-wide analyses reveal the regions involved in the phenotypic diversity in Sicilian pigs. Anim. Genet. 2020, 51, 101–105. [Google Scholar] [CrossRef] [PubMed]
- Pugliese, C.; Calagna, G.; Chiofalo, V.; Moretti, V.M.; Margiotta, S.; Franci, O.; Gandini, G. Comparison of the performances of Nero Siciliano pigs reared indoors and outdoors: 2. Joints composition, meat and fat traits. Meat Sci. 2004, 68, 523–528. [Google Scholar] [CrossRef] [PubMed]
- Liotta, L.; Chiofalo, B.; Zumbo, A.; Chiofalo, V. Effects of different nutritional levels on Nero Siciliano pig performance. Ital. J. Anim. Sci. 2010, 4, 470–472. [Google Scholar] [CrossRef]
- Bozzi, R.; Gallo, M.; Geraci, C.; Fontanesi, L.; Batorek-Lukač, N. Nero Siciliano Pig in European Local Pig Breeds-Diversity and Performance. A Study of Project Treasure; IntechOpen: Rijeka, Croatia, 2019; ISBN 978-1-78985-408-4. [Google Scholar]
- Tamura, K.; Stecher, G.; Kumar, S. MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Mol. Biol. Evol. 2021, 38, 3022–3027. [Google Scholar] [CrossRef] [PubMed]
- Peakall, R.O.D.; Smouse, P.E. GenAlEx 6: Genetic analysis in Excel. Population genetic software for teaching and research. Mol. Ecol. Notes 2006, 6, 288–295. [Google Scholar] [CrossRef]
- Stephens, M.; Smith, N.J.; Donnelly, P. A new statistical method for haplotype reconstruction from population data. Am. J. Hum. Genet. 2001, 68, 978–989. [Google Scholar] [CrossRef] [PubMed]
- Fan, B.; Onteru, S.K.; Plastow, G.S.; Rothschild, M.F. Detailed characterization of the porcine MC4R gene in relation to fatness and growth. Anim. Genet. 2009, 40, 401–409. [Google Scholar] [CrossRef] [PubMed]
- Russo, V.; Fontanesi, L.; Davoli, R.; Chiofalo, L.; Liotta, L.; Zumbo, A. Analysis of single nucleotide polymorphisms in major and candidate genes for production traits in Nero Siciliano pig breed. Ital. J. Anim. Sci. 2016, 3, 19–29. [Google Scholar] [CrossRef]
- Kennes, Y.M.; Murphy, B.D.; Pothier, F.; Palin, M.F. Characterization of swine leptin (LEP) polymorphisms and their association with production traits. Anim. Genet. 2001, 32, 215–218. [Google Scholar] [CrossRef] [PubMed]
- Chao, Z.; Wang, F.; Deng, C.-Y.; Wei, L.-M.; Sun, R.-P.; Liu, H.-L.; Liu, Q.-W.; Zheng, X.-L. Distribution and linkage disequilibrium analysis of polymorphisms of MC4R, LEP, H-FABP genes in the different populations of pigs, associated with economic traits in DIV2 line. Mol. Biol. Rep. 2012, 39, 6329–6335. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.H.; Choi, B.H.; Lim, H.T.; Park, E.W.; Lee, S.H.; Seo, B.Y.; Cho, I.C.; Lee, J.G.; Oh, S.J.; Jeon, J.T. Characterization of Phosphoinositide-3-kinase, Class 3 (PIK3C3) Gene and Association Tests with Quantitative Traits in Pigs. Asian Australas. Assoc. Anim. Prod. Soc. 2005, 18, 1701–1707. [Google Scholar] [CrossRef]
- Krude, H.; Biebermann, H.; Luck, W.; Horn, R.; Brabant, G.; Grüters, A. Severe early-onset obesity, adrenal insufficiency and red hair pigmentation caused by POMC mutations in humans. Nat. Genet. 1998, 19, 155–157. [Google Scholar] [CrossRef] [PubMed]
- Cone, R.D. Anatomy and regulation of the central melanocortin system. Nat. Neurosci. 2005, 8, 571–578. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.S.; Larsen, N.; Short, T.; Plastow, G.; Rothschild, M.F. A missense variant of the porcine melanocortin-4 receptor (MC4R) gene is associated with fatness, growth, and feed intake traits. Mamm. Genome 2000, 11, 131–135. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.S.; Larsen, N.J.; Rothschild, M.F. Rapid communication: Linkage and physical mapping of the porcine melanocortin-4 receptor (MC4R) gene. J. Anim. Sci. 2000, 78, 791–792. [Google Scholar] [CrossRef] [PubMed]
- Hu, Z.-L.; Dracheva, S.; Jang, W.; Maglott, D.; Bastiaansen, J.; Rothschild, M.F.; Reecy, J.M. A QTL resource and comparison tool for pigs: PigQTLDB. Mamm. Genome 2005, 16, 792–800. [Google Scholar] [CrossRef] [PubMed]
- Fontanesi, L.; Buttazzoni, L.; Galimberti, G.; Calò, D.G.; Scotti, E.; Russo, V. Association between melanocortin 4 receptor (MC4R) gene haplotypes and carcass and production traits in Italian Large White pigs evaluated with a selective genotyping approach. Livest. Sci. 2013, 157, 48–56. [Google Scholar] [CrossRef]
- Tatro, J.B. Receptor biology of the melanocortins, a family of neuroimmunomodulatory peptides. Neuroimmunomodulation 1996, 3, 259–284. [Google Scholar] [CrossRef] [PubMed]
- Muñoz, M.; Bozzi, R.; García, F.; Núñez, Y.; Geraci, C.; Crovetti, A.; García-Casco, J.; Alves, E.; Škrlep, M.; Charneca, R.; et al. Diversity across major and candidate genes in European local pig breeds. PLoS ONE 2018, 13, e0207475. [Google Scholar] [CrossRef] [PubMed]
- Valluzzi, C.; Rando, A.; Di Gregorio, P. Genetic variability of Nero Lucano pig breed at IGF2, LEP, MC4R, PIK3C3, RYR1 and VRTN loci. Ital. J. Anim. Sci. 2019, 18, 1321–1326. [Google Scholar] [CrossRef]
- Hirose, K.; Ito, T.; Fukawa, K.; Arakawa, A.; Mikawa, S.; Hayashi, Y.; Tanaka, K. Evaluation of effects of multiple candidate genes (LEP, LEPR, MC4R, PIK3C3, and VRTN) on production traits in Duroc pigs. Anim. Sci. J. 2014, 85, 198–206. [Google Scholar] [CrossRef] [PubMed]
- Jokubka, R.; Maak, S.; Kerziene, S.; Swalve, H.H. Association of a melanocortin 4 receptor (MC4R) polymorphism with performance traits in Lithuanian White pigs. J. Anim. Breed. Genet. 2006, 123, 17–22. [Google Scholar] [CrossRef] [PubMed]
- Davoli, R.; Braglia, S.; Valastro, V.; Annaratone, C.; Comella, M.; Zambonelli, P.; Nisi, I.; Gallo, M.; Buttazzoni, L.; Russo, V. Analysis of MC4R polymorphism in Italian Large White and Italian Duroc pigs: Association with carcass traits. Meat Sci. 2012, 90, 887–892. [Google Scholar] [CrossRef] [PubMed]
- Van den Broeke, A.; Aluwé, M.; Tuyttens, F.A.M.; Ampe, B.; Vanhaecke, L.; Wauters, J.; Janssens, S.; Coussé, A.; Buys, N.; Millet, S. An intervention study demonstrates effects of MC4R genotype on boar taint and performances of growing-finishing pigs. J. Anim. Sci. 2015, 93, 934–943. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Li, J.; Wu, C.; Hu, Z.; An, L.; Wan, Y.; Fang, C.; Zhang, X.; Li, J.; Wang, Y. The Asp298Asn polymorphism of melanocortin-4 receptor (MC4R) in pigs: Evidence for its potential effects on MC4R constitutive activity and cell surface expression. Anim. Genet. 2020, 51, 694–706. [Google Scholar] [CrossRef] [PubMed]
- Chowdhary, B.P.; Thomsen, P.D.; Harbitz, I.; Landset, M.; Gustavsson, I. Precise localization of the genes for glucose phosphate isomerase (GPI), calcium release channel (CRC), hormone-sensitive lipase (LIPE), and growth hormone (GH) in pigs, using nonradioactive in situ hybridization. Cytogenet. Cell Genet. 1994, 67, 211–214. [Google Scholar] [CrossRef] [PubMed]
- Dietze, B.; Henke, J.; Eichinger, H.M.; Lehmann-Horn, F.; Melzer, W. Malignant hyperthermia mutation Arg615Cys in the porcine ryanodine receptor alters voltage dependence of Ca2+ release. J. Physiol. 2000, 526 Pt 3, 507–514. [Google Scholar] [CrossRef] [PubMed]
- Saintilan, R.; Mérour, I.; Schwob, S.; Sellier, P.; Bidanel, J.; Gilbert, H. Genetic parameters and halothane genotype effect for residual feed intake in Piétrain growing pigs. Livest. Sci. 2011, 142, 203–209. [Google Scholar] [CrossRef]
- Oliván, M.; González, J.; Bassols, A.; Díaz, F.; Carreras, R.; Mainau, E.; Arroyo, L.; Peña, R.; Potes, Y.; Coto-Montes, A.; et al. Effect of sex and RYR1 gene mutation on the muscle proteomic profile and main physiological biomarkers in pigs at slaughter. Meat Sci. 2018, 141, 81–90. [Google Scholar] [CrossRef] [PubMed]
- Fiedler, I.; Ender, K.; Wicke, M.; Maak, S.; Lengerken, G.V.; Meyer, W. Structural and functional characteristics of muscle fibres in pigs with different malignant hyperthermia susceptibility (MHS) and different meat quality. Meat Sci. 1999, 53, 9–15. [Google Scholar] [CrossRef] [PubMed]
- Fujii, J.; Otsu, K.; Zorzato, F.; de Leon, S.; Khanna, V.K.; Weiler, J.E.; O’Brien, P.J.; MacLennan, D.H. Identification of a mutation in porcine ryanodine receptor associated with malignant hyperthermia. Science 1991, 253, 448–451. [Google Scholar] [CrossRef] [PubMed]
- Matassino, D.; Davoli, R.; Occidente, M.; Milc, J.A.; Caiola, C.; Rocco, M. Identificazione del genotipo per la sensibilità all’alotano in alcuni tipi genetici autoctoni. Option Mediterranéennes 2000, 41, 265. [Google Scholar]
- Ramos, A.M.; Delgado, J.V.; Rangel-Figueiredo, T.; Barba, C.; Matos, J.; Cumbreras, M. Genotypic and allelic frequencies of the RYRI locus in the Manchado de Jabugo pig breed. In Quality of Meat and Fat in Pigs as Affected by Genetics and Nutrition; EAAP Scientific Series; Wageningen Academic Publishers: Wageningen, The Netherlands, 2000; Volume 100, pp. 175–178. ISBN 978-90-8686-504-8. [Google Scholar]
- Labroue, F.; Luquet, M.; Marsac, H.; Canope, I.; Rinaldo, D.; Ollivier, L. Performances of French local breeds. In Pig Genetic Resources in Europe. Characterisation and Conservation; Ollivier, L., Ed.; EAAP (European Federation of Animal Science): Rome, Italy, 2001; Volume 104, ISBN 9074134939/9789074134934. [Google Scholar]
- Crovetti, A.; Bozzi, R.; Nardi, L.; Franci, O.; Fontanesi, L. Assessment of variability of genes associated with meat quality traits in Cinta Senese pigs. Ital. J. Anim. Sci. 2007, 6, 101. [Google Scholar] [CrossRef]
- Pugliese, C.; Sirtori, F. Quality of meat and meat products produced from southern European pig breeds. Meat Sci. 2012, 90, 511–518. [Google Scholar] [CrossRef] [PubMed]
- Flak, J.N.; Myers, M.G. Minireview: CNS mechanisms of leptin action. Mol. Endocrinol. 2016, 30, 3–12. [Google Scholar] [CrossRef] [PubMed]
- Neuenschwander, S.; Rettenberger, G.; Meijerink, E.; Jörg, H.; Stranzinger, G. Partial characterization of porcine obesity gene (OBS) and its localization to chromosome 18 by somatic cell hybrids. Anim. Genet. 1996, 27, 275–278. [Google Scholar] [CrossRef] [PubMed]
- Cepica, S.; Yerle, M.; Stratil, A.; Schröffel, J.; Redl, B. Regional localization of porcine MYOD1, MYF5, LEP, UCP3 and LCN1 genes. Anim. Genet. 1999, 30, 476–478. [Google Scholar] [CrossRef] [PubMed]
- Bidwell, C.; Ji, S.; Frank, G.R.; Cornelius, S.G.; Willis, G.M.; Spurlock, M.E. Cloning and expression of the porcine obese gene. Anim. Biotechnol. 1997, 8, 191–206. [Google Scholar] [CrossRef]
- Stratil, A.; Peelman, L.; Van Poucke, M.; Cepica, S. A HinfI PCR-RFLP at the porcine leptin (LEP) gene. Anim. Genet. 1997, 28, 371–372. [Google Scholar] [CrossRef] [PubMed]
- de Oliveira Peixoto, J.; Facioni Guimarães, S.E.; Sávio Lopes, P.; Menck Soares, M.A.; Vieira Pires, A.; Gualberto Barbosa, M.V.; de Almeida Torres, R.; de Almeida e Silva, M. Associations of leptin gene polymorphisms with production traits in pigs. J. Anim. Breed. Genet. 2006, 123, 378–383. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.H.; Lee, Y.S.; Park, E.W.; Seo, B.Y.; Cho, I.C.; Lee, J.G.; Oh, S.J.; Lee, J.H.; Jeon, J.T. Assignment of the phosphoinositide-3-kinase, class 3 (PIK3C3) gene to porcine chromosome 6q22-->q23 by somatic cell and radiation hybrid panel mapping. Cytogenet. Genome Res. 2005, 108, 362. [Google Scholar] [CrossRef] [PubMed]
- Hirose, K.; Takizawa, T.; Fukawa, K.; Ito, T.; Ueda, M.; Hayashi, Y.; Tanaka, K. Association of an SNP marker in exon 24 of a class 3 phosphoinositide-3-kinase (PIK3C3) gene with production traits in Duroc pigs. Anim. Sci. J. 2011, 82, 46–51. [Google Scholar] [CrossRef] [PubMed]
- Genualdo, V.; Perucatti, A.; Marletta, D.; Castiglioni, B.; Bordonaro, S.; Iannaccone, M.; Ciotola, F.; Peretti, V.; Iannuzzi, A. Cytogenetic investigation in two endangered pig breeds raised in Southern-Italy: Clinical and environmental aspects. Livest. Sci. 2018, 216, 36–43. [Google Scholar] [CrossRef]
- Genualdo, V.; Turri, F.; Pizzi, F.; Castiglioni, B.; Marletta, D.; Iannuzzi, A. Sperm Nuclei Analysis and Nuclear Organization of a Fertile Boar-Pig Hybrid by 2D FISH on Both Total and Motile Sperm Fractions. Animals 2021, 11, 738. [Google Scholar] [CrossRef] [PubMed]
Gene | Locus | ||||||||
---|---|---|---|---|---|---|---|---|---|
MC4R | −780 C>G | ||||||||
N | Sample | CC | CG | GG | C | G | χ2 | p-Value | |
87 | Population | 2 | 85 | - | 51% | 49% | 79.355 | <0.001 | |
18 | Boars | - | 18 | - | 50% | 50% | 18 | <0.001 | |
69 | Sows | 2 | 67 | - | 51% | 49% | 61.444 | <0.001 | |
c.135 C>T | |||||||||
N | Sample | CC | CT | TT | C | T | χ2 | p-value | |
87 | Population | - | - | TT | - | 100% | - | - | |
18 | Boars | - | - | TT | - | 100% | - | - | |
69 | Sows | - | - | TT | - | 100% | - | - | |
c.175 C>T | |||||||||
N | Sample | CC | CT | TT | C | T | χ2 | p-value | |
87 | Population | 77 | 8 | 2 | 93% | 7% | 7.014 | 0.008 | |
18 | Boars | 14 | 3 | 1 | 86% | 14% | 1.655 | 0.1982 | |
69 | Sows | 63 | 5 | 1 | 95% | 5% | 4.288 | 0.0397 | |
c.707 G>A | |||||||||
N | Sample | GG | GA | AA | G | A | χ2 | p-value | |
87 | Population | 33 | 44 | 10 | 63% | 37% | 0.666 | 0.414 | |
18 | Boars | 6 | 10 | 2 | 61% | 39% | 0.5130 | 0.4738 | |
69 | Sows | 27 | 34 | 8 | 64% | 36% | 0.3039 | 0.5814 | |
c.1426 G>A | |||||||||
N | Sample | GG | GA | AA | G | A | χ2 | p-value | |
87 | Population | 24 | 47 | 16 | 55% | 45% | 0.699 | 0.403 | |
18 | Boars | 2 | 10 | 6 | 39% | 61% | 0.5131 | 0.4738 | |
69 | Sows | 22 | 37 | 10 | 59% | 41% | 0.7740 | 0.3790 |
Gene | Locus | ||||||||
---|---|---|---|---|---|---|---|---|---|
RYR1 | g.1843 C>T | ||||||||
N | Sample | CC | CT | TT | C | T | χ2 | p-value | |
87 | Population | 80 | 7 | - | 96% | 4% | 0.152 | 0.696 | |
18 | Boar | 17 | 1 | - | 97% | 3% | 0.015 | 0.903 | |
69 | Sows | 63 | 6 | - | 96% | 4% | 0.142 | 0.705 | |
LEP | g.2728 G>A | ||||||||
N | Sex | GG | GA | AA | G | A | χ2 | p-value | |
87 | Population | 11 | 70 | 6 | 53% | 47% | 32.855 | <0.001 | |
18 | Boar | 2 | 13 | 3 | 47% | 53% | 3.627 | 0.0568 | |
69 | Sows | 9 | 57 | 3 | 54% | 46% | 30.4917 | <0.001 | |
c.3469 T>C | |||||||||
N | Sample | TT | TC | CC | T | C | χ2 | p-value | |
87 | Population | 70 | 16 | - | 91% | 9% | 0.904 | 0.342 | |
18 | Boar | 16 | 2 | - | 94% | 6% | 0.0623 | 0.8029 | |
68 | Sows | 54 | 14 | - | 90% | 10% | 0.8955 | 0.3440 | |
PIK3C3 | g.2604 C>T | ||||||||
N | Sex | CC | CT | TT | C | T | χ2 | p-value | |
87 | Population | 12 | 75 | - | 57% | 43% | 49.931 | <0.001 | |
18 | Boar | - | 18 | - | 50% | 50% | 18 | <0.001 | |
69 | Sows | 12 | 57 | - | 59% | 41% | 34.1687 | <0.001 |
Gene | SNP | Ho | He | F |
---|---|---|---|---|
MC4R | −780 C>G | 0.977 | 0.500 | −0.955 |
c.135 C>T | - | - | - | |
c.175 C>T rs81221060 | 0.092 | 0.128 | 0.284 | |
c.707G>A rs81221061 | 0.506 | 0.465 | −0.088 | |
c.1426 G>A rs81219178 | 0.540 | 0.496 | −0.090 | |
RYR1 | c.1843C>T rs706913914 | 0.080 | 0.077 | −0.042 |
LEP | g.2728G>A rs3475337814 | 0.862 | 0.490 | −0.758 |
c.3469 T>C rs45431504 | 0.186 | 0.169 | −0.103 | |
PIK3C3 | c.2604 C>T rs81211045 | 0.805 | 0.498 | −0.615 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tumino, S.; Carlentini, M.; Chessari, G.; Criscione, A.; Antoci, A.; Marletta, D.; Bordonaro, S. Genetic Variability of Loci Affecting Meat Quality and Production in Nero Siciliano Pig Breed. Animals 2025, 15, 2143. https://doi.org/10.3390/ani15142143
Tumino S, Carlentini M, Chessari G, Criscione A, Antoci A, Marletta D, Bordonaro S. Genetic Variability of Loci Affecting Meat Quality and Production in Nero Siciliano Pig Breed. Animals. 2025; 15(14):2143. https://doi.org/10.3390/ani15142143
Chicago/Turabian StyleTumino, Serena, Morena Carlentini, Giorgio Chessari, Andrea Criscione, Aurora Antoci, Donata Marletta, and Salvatore Bordonaro. 2025. "Genetic Variability of Loci Affecting Meat Quality and Production in Nero Siciliano Pig Breed" Animals 15, no. 14: 2143. https://doi.org/10.3390/ani15142143
APA StyleTumino, S., Carlentini, M., Chessari, G., Criscione, A., Antoci, A., Marletta, D., & Bordonaro, S. (2025). Genetic Variability of Loci Affecting Meat Quality and Production in Nero Siciliano Pig Breed. Animals, 15(14), 2143. https://doi.org/10.3390/ani15142143