Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,479)

Search Parameters:
Keywords = rural–urban system

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 8879 KiB  
Article
Inland Flood Analysis in Irrigated Agricultural Fields Including Drainage Systems and Pump Stations
by Inhyeok Song, Heesung Lim and Hyunuk An
Water 2025, 17(15), 2299; https://doi.org/10.3390/w17152299 - 2 Aug 2025
Viewed by 123
Abstract
Effective flood management in agricultural fields has become increasingly important due to the rising frequency and intensity of rainfall events driven by climate change. This study investigates the applicability of urban flood analysis models—SWMM (1D) and K-Flood (2D)—to irrigated agricultural fields with artificial [...] Read more.
Effective flood management in agricultural fields has become increasingly important due to the rising frequency and intensity of rainfall events driven by climate change. This study investigates the applicability of urban flood analysis models—SWMM (1D) and K-Flood (2D)—to irrigated agricultural fields with artificial drainage systems. A case study was conducted in a rural area near the Sindae drainage station in Cheongju, South Korea, using rainfall data from an extreme weather event in 2017. The models simulated inland flooding and were validated against flood trace maps provided by the Ministry of the Interior and Safety (MOIS). Receiver Operating Characteristic (ROC) analysis showed a true positive rate of 0.565, a false positive rate of 0.21, and an overall accuracy of 0.731, indicating reasonable agreement with observed inundation. Scenario analyses were also conducted to assess the effectiveness of three improvement strategies: reducing the Manning coefficient, increasing pump station capacity, and widening drainage channels. Among them, increasing pump capacity most effectively reduced flood volume, while channel widening had the greatest impact on reducing flood extent. These findings demonstrate the potential of urban flood models for application in agricultural contexts and support data-driven planning for rural flood mitigation. Full article
Show Figures

Figure 1

21 pages, 4415 KiB  
Article
Friction and Regenerative Braking Shares Under Various Laboratory and On-Road Driving Conditions of a Plug-In Hybrid Passenger Car
by Dimitrios Komnos, Alessandro Tansini, Germana Trentadue, Georgios Fontaras, Theodoros Grigoratos and Barouch Giechaskiel
Energies 2025, 18(15), 4104; https://doi.org/10.3390/en18154104 - 2 Aug 2025
Viewed by 236
Abstract
Although particulate matter (PM) pollution from vehicles’ exhaust has decreased significantly over the years, the contribution from non-exhaust sources (brakes, tyres) has remained at the same levels. In the European Union (EU), Euro 7 regulation introduced PM limits for vehicles’ brake systems. Regenerative [...] Read more.
Although particulate matter (PM) pollution from vehicles’ exhaust has decreased significantly over the years, the contribution from non-exhaust sources (brakes, tyres) has remained at the same levels. In the European Union (EU), Euro 7 regulation introduced PM limits for vehicles’ brake systems. Regenerative braking, i.e., recuperation of the deceleration kinetic and potential energy to the vehicle battery, is one of the strategies to reduce the brake emission levels and improve vehicle efficiency. According to the regulation, the shares of friction and regenerative braking can be determined with actual testing of the vehicle on a chassis dynamometer. In this study we tested the regenerative capabilities of a plug-in hybrid vehicle, both in the laboratory and on the road, under different protocols (including both smooth and aggressive braking) and covering a wide range of driving conditions (urban, rural, motorway) over 10,000 km of driving. Good agreement was obtained between laboratory and on-road tests, with the use of the friction brakes being on average 7% and 5.3%, respectively. However, at the same time it was demonstrated that the friction braking share can vary over a wide range (up to around 30%), depending on the driver’s behaviour. Full article
Show Figures

Figure 1

24 pages, 10417 KiB  
Article
Landscape Ecological Risk Assessment of Peri-Urban Villages in the Yangtze River Delta Based on Ecosystem Service Values
by Yao Xiong, Yueling Li and Yunfeng Yang
Sustainability 2025, 17(15), 7014; https://doi.org/10.3390/su17157014 - 1 Aug 2025
Viewed by 201
Abstract
The rapid urbanization process has accelerated the degradation of ecosystem services (ESs) in peri-urban rural areas of the Yangtze River Delta (YRD), leading to increasing landscape ecological risks (LERs). Establishing a scientifically grounded landscape ecological risk assessment (LERA) system and corresponding control strategies [...] Read more.
The rapid urbanization process has accelerated the degradation of ecosystem services (ESs) in peri-urban rural areas of the Yangtze River Delta (YRD), leading to increasing landscape ecological risks (LERs). Establishing a scientifically grounded landscape ecological risk assessment (LERA) system and corresponding control strategies is therefore imperative. Using rural areas of Jiangning District, Nanjing as a case study, this research proposes an optimized dual-dimensional coupling assessment framework that integrates ecosystem service value (ESV) and ecological risk probability. The spatiotemporal evolution of LER in 2000, 2010, and 2020 and its key driving factors were further studied by using spatial autocorrelation analysis and geodetector methods. The results show the following: (1) From 2000 to 2020, cultivated land remained dominant, but its proportion decreased by 10.87%, while construction land increased by 26.52%, with minimal changes in other land use types. (2) The total ESV increased by CNY 1.67 × 109, with regulating services accounting for over 82%, among which water bodies contributed the most. (3) LER showed an overall increasing trend, with medium- to highest-risk areas expanding by 55.37%, lowest-risk areas increasing by 10.10%, and lower-risk areas decreasing by 65.48%. (4) Key driving factors include landscape vulnerability, vegetation coverage, and ecological land connectivity, with the influence of distance to road becoming increasingly significant. This study reveals the spatiotemporal evolution characteristics of LER in typical peri-urban villages. Based on the LERA results, combined with terrain features and ecological pressure intensity, the study area was divided into three ecological management zones: ecological conservation, ecological restoration, and ecological enhancement. Corresponding zoning strategies were proposed to guide rural ecological governance and support regional sustainable development. Full article
Show Figures

Figure 1

26 pages, 1033 KiB  
Article
Internet of Things Platform for Assessment and Research on Cybersecurity of Smart Rural Environments
by Daniel Sernández-Iglesias, Llanos Tobarra, Rafael Pastor-Vargas, Antonio Robles-Gómez, Pedro Vidal-Balboa and João Sarraipa
Future Internet 2025, 17(8), 351; https://doi.org/10.3390/fi17080351 - 1 Aug 2025
Viewed by 163
Abstract
Rural regions face significant barriers to adopting IoT technologies, due to limited connectivity, energy constraints, and poor technical infrastructure. While urban environments benefit from advanced digital systems and cloud services, rural areas often lack the necessary conditions to deploy and evaluate secure and [...] Read more.
Rural regions face significant barriers to adopting IoT technologies, due to limited connectivity, energy constraints, and poor technical infrastructure. While urban environments benefit from advanced digital systems and cloud services, rural areas often lack the necessary conditions to deploy and evaluate secure and autonomous IoT solutions. To help overcome this gap, this paper presents the Smart Rural IoT Lab, a modular and reproducible testbed designed to replicate the deployment conditions in rural areas using open-source tools and affordable hardware. The laboratory integrates long-range and short-range communication technologies in six experimental scenarios, implementing protocols such as MQTT, HTTP, UDP, and CoAP. These scenarios simulate realistic rural use cases, including environmental monitoring, livestock tracking, infrastructure access control, and heritage site protection. Local data processing is achieved through containerized services like Node-RED, InfluxDB, MongoDB, and Grafana, ensuring complete autonomy, without dependence on cloud services. A key contribution of the laboratory is the generation of structured datasets from real network traffic captured with Tcpdump and preprocessed using Zeek. Unlike simulated datasets, the collected data reflect communication patterns generated from real devices. Although the current dataset only includes benign traffic, the platform is prepared for future incorporation of adversarial scenarios (spoofing, DoS) to support AI-based cybersecurity research. While experiments were conducted in an indoor controlled environment, the testbed architecture is portable and suitable for future outdoor deployment. The Smart Rural IoT Lab addresses a critical gap in current research infrastructure, providing a realistic and flexible foundation for developing secure, cloud-independent IoT solutions, contributing to the digital transformation of rural regions. Full article
Show Figures

Figure 1

26 pages, 2059 KiB  
Article
Integration and Development Path of Smart Grid Technology: Technology-Driven, Policy Framework and Application Challenges
by Tao Wei, Haixia Li and Junfeng Miao
Processes 2025, 13(8), 2428; https://doi.org/10.3390/pr13082428 - 31 Jul 2025
Viewed by 413
Abstract
As a key enabling technology for energy transition, the smart grid is propelling the global power system to evolve toward greater efficiency, reliability, and sustainability. Based on the three-dimensional analysis framework of “technology–policy–application”, this study systematically sorts out the technical architecture, regional development [...] Read more.
As a key enabling technology for energy transition, the smart grid is propelling the global power system to evolve toward greater efficiency, reliability, and sustainability. Based on the three-dimensional analysis framework of “technology–policy–application”, this study systematically sorts out the technical architecture, regional development mode, and typical application scenarios of the smart grid, revealing the multi-dimensional challenges that it faces. By using the methods of literature review, cross-national case comparison, and technology–policy collaborative analysis, the differentiated paths of China, the United States, and Europe in the development of smart grids are compared, aiming to promote the integration and development of smart grid technologies. From a technical perspective, this paper proposes a collaborative framework comprising the perception layer, network layer, and decision-making layer. Additionally, it analyzes the integration pathways of critical technologies, including sensors, communication protocols, and artificial intelligence. At the policy level, by comparing the differentiated characteristics in policy orientation and market mechanisms among China, the United States, and Europe, the complementarity between government-led and market-driven approaches is pointed out. At the application level, this study validates the practical value of smart grids in optimizing energy management, enhancing power supply reliability, and promoting renewable energy consumption through case analyses in urban smart energy systems, rural electrification, and industrial sectors. Further research indicates that insufficient technical standardization, data security risks, and the lack of policy coordination are the core bottlenecks restricting the large-scale development of smart grids. This paper proposes that a new type of intelligent and resilient power system needs to be constructed through technological innovation, policy coordination, and international cooperation, providing theoretical references and practical paths for energy transition. Full article
Show Figures

Figure 1

16 pages, 2647 KiB  
Article
“Habari, Colleague!”: A Qualitative Exploration of the Perceptions of Primary School Mathematics Teachers in Tanzania Regarding the Use of Social Robots
by Edger P. Rutatola, Koen Stroeken and Tony Belpaeme
Appl. Sci. 2025, 15(15), 8483; https://doi.org/10.3390/app15158483 (registering DOI) - 30 Jul 2025
Viewed by 169
Abstract
The education sector in Tanzania faces significant challenges, especially in public primary schools. Unmanageably large classes and critical teacher–pupil ratios hinder the provision of tailored tutoring, impeding pupils’ educational growth. However, artificial intelligence (AI) could provide a way forward. Advances in generative AI [...] Read more.
The education sector in Tanzania faces significant challenges, especially in public primary schools. Unmanageably large classes and critical teacher–pupil ratios hinder the provision of tailored tutoring, impeding pupils’ educational growth. However, artificial intelligence (AI) could provide a way forward. Advances in generative AI can be leveraged to create interactive and effective intelligent tutoring systems, which have recently been built into embodied systems such as social robots. Motivated by the pivotal influence of teachers’ attitudes on the adoption of educational technologies, this study undertakes a qualitative investigation of Tanzanian primary school mathematics teachers’ perceptions of contextualised intelligent social robots. Thirteen teachers from six schools in both rural and urban settings observed pupils learning with a social robot. They reported their views during qualitative interviews. The results, analysed thematically, reveal a generally positive attitude towards using social robots in schools. While commended for their effective teaching and suitability for one-to-one tutoring, concerns were raised about incorrect and inconsistent feedback, language code-switching, response latency, and the lack of support infrastructure. We suggest actionable steps towards adopting tutoring systems and social robots in schools in Tanzania and similar low-resource countries, paving the way for their adoption to redress teachers’ workloads and improve educational outcomes. Full article
(This article belongs to the Special Issue Advances in Human–Machine Interaction)
Show Figures

Figure 1

26 pages, 7277 KiB  
Article
Characteristics and Driving Factors of the Spatial and Temporal Evolution of County Urban–Rural Integration—Evidence from the Beijing–Tianjin–Hebei Region, China
by Jian Tian, Junqi Ma, Suiping Zeng and Yu Bai
Land 2025, 14(8), 1563; https://doi.org/10.3390/land14081563 - 30 Jul 2025
Viewed by 367
Abstract
Urban–rural integration realises the coordinated development and prosperity of urban and rural areas as a whole by optimising the allocation of resources and the flow of factors, and its connotations have been extended from a single dimension to multiple dimensions such as people, [...] Read more.
Urban–rural integration realises the coordinated development and prosperity of urban and rural areas as a whole by optimising the allocation of resources and the flow of factors, and its connotations have been extended from a single dimension to multiple dimensions such as people, land and industry. The Beijing–Tianjin–Hebei Region has a typical “Core–Periphery Structure”, and this paper took the 187 county units within the region as the research object, taking into account indicators of development and coordination to construct an evaluation index system of urban–rural integration of the Beijing–Tianjin–Hebei region counties in the dimensions of “people–land–industry”. Global principal component analysis was used to measure the evolutionary pattern of the urban–rural integration level between 2005 and 2020, and its spatiotemporal drivers were analysed by using the Geographical and Temporal Weighted Regression model (GTWR). The results of the study show that (1) the level of urban–rural integration in the Beijing–Tianjin–Hebei region showed an increasing trend during the 15-year study period, the high-value areas of urban–rural integration were mainly distributed in Beijing and the Bohai Rim region in the eastern part of the Tianjin–Hebei region, and the level of urban–rural integration of the peri-urban county units of the city was better than that of the remote counties and cities as a whole. (2) In terms of spatial agglomeration, all dimensions were characterised by significant spatial agglomeration. The degree of agglomeration was categorised as urban–rural comprehensive integration (U-RCI) > urban–rural industry integration (U-RII) > urban–rural land integration (U-RLI) > urban–rural people integration (U-RPI). (3) In terms of spatial and temporal driving factors for urban–rural integration, the driving role of U-RPI, U-RLI and U-RII for U-RCI has gradually weakened during the past 15 years, and urban–rural integration in the counties shifted from a single role to a more central coordinated and multidimensional driving role. Full article
Show Figures

Figure 1

34 pages, 1087 KiB  
Article
Reconfiguring Urban–Rural Systems Through Agricultural Service Reform: A Socio-Technical Perspective from China
by Yuchen Lu, Chenlu Yang, Yifan Tang and Yakun Chen
Systems 2025, 13(8), 634; https://doi.org/10.3390/systems13080634 - 29 Jul 2025
Viewed by 402
Abstract
The transition toward integrated urban–rural development represents a complex socio-technical challenge in post-poverty alleviation China. This study examines how the reform of agricultural service systems—especially the rollout of full-process socialization services—reshapes urban–rural integration by embedding new institutional, technological, and organizational structures into rural [...] Read more.
The transition toward integrated urban–rural development represents a complex socio-technical challenge in post-poverty alleviation China. This study examines how the reform of agricultural service systems—especially the rollout of full-process socialization services—reshapes urban–rural integration by embedding new institutional, technological, and organizational structures into rural production. Drawing on staggered provincial pilot programs, we apply a double machine learning framework to assess the causal impact of service reform on the urban–rural income gap, labor reallocation, and agricultural productivity. Results show that agricultural socialization services enhance systemic efficiency by reducing labor bottlenecks, increasing technology diffusion, and fostering large-scale coordination in agricultural operations. These effects are most pronounced in provinces with stronger institutional capacity and higher levels of mechanization. The findings highlight agricultural service reform as a systemic intervention that alters resource allocation logics, drives institutional change, and fosters structural convergence across urban and rural domains. This research contributes to the understanding of agricultural modernization as a systems-engineered solution for regional inequality. Full article
(This article belongs to the Section Systems Practice in Social Science)
Show Figures

Figure 1

22 pages, 3476 KiB  
Article
Digital Inequality and Smart Inclusion: A Socio-Spatial Perspective from the Region of Xanthi, Greece
by Kyriaki Kourtidou, Yannis Frangopoulos, Asimenia Salepaki and Dimitris Kourkouridis
Smart Cities 2025, 8(4), 123; https://doi.org/10.3390/smartcities8040123 - 28 Jul 2025
Viewed by 363
Abstract
This study explores digital inequality as a socio-spatial phenomenon within the context of smart inclusion, focusing on the Regional Unit of Xanthi, Greece—a region marked by ethno-cultural diversity and pronounced urban–rural contrasts. Using a mixed-methods design, this research integrates secondary quantitative data with [...] Read more.
This study explores digital inequality as a socio-spatial phenomenon within the context of smart inclusion, focusing on the Regional Unit of Xanthi, Greece—a region marked by ethno-cultural diversity and pronounced urban–rural contrasts. Using a mixed-methods design, this research integrates secondary quantitative data with qualitative insights from semi-structured interviews, aiming to uncover how spatial, demographic, and cultural variables shape digital engagement. Geographic Information System (GIS) tools are employed to map disparities in internet access and ICT infrastructure, revealing significant gaps linked to geography, education, and economic status. The findings demonstrate that digital inequality is particularly acute in rural, minority, and economically marginalized communities, where limited infrastructure intersects with low digital literacy and socio-economic disadvantage. Interview data further illuminate how residents navigate exclusion, emphasizing generational divides, perceptions of technology, and place-based constraints. By bridging spatial analysis with lived experience, this study advances the conceptualization of digitally inclusive smart regions. It offers policy-relevant insights into how territorial inequality undermines the goals of smart development and proposes context-sensitive interventions to promote equitable digital participation. The case of Xanthi underscores the importance of integrating spatial justice into smart city and regional planning agendas. Full article
Show Figures

Figure 1

36 pages, 27306 KiB  
Article
Integrating Social Network and Space Syntax: A Multi-Scale Diagnostic–Optimization Framework for Public Space Optimization in Nomadic Heritage Villages of Xinjiang
by Hao Liu, Rouziahong Paerhati, Nurimaimaiti Tuluxun, Saierjiang Halike, Cong Wang and Huandi Yan
Buildings 2025, 15(15), 2670; https://doi.org/10.3390/buildings15152670 - 28 Jul 2025
Viewed by 348
Abstract
Nomadic heritage villages constitute significant material cultural heritage. Under China’s cultural revitalization and rural development strategies, these villages face spatial degradation driven by tourism and urbanization. Current research predominantly employs isolated analytical approaches—space syntax often overlooks social dynamics while social network analysis (SNA) [...] Read more.
Nomadic heritage villages constitute significant material cultural heritage. Under China’s cultural revitalization and rural development strategies, these villages face spatial degradation driven by tourism and urbanization. Current research predominantly employs isolated analytical approaches—space syntax often overlooks social dynamics while social network analysis (SNA) overlooks physical interfaces—hindering the development of holistic solutions for socio-spatial resilience. This study proposes a multi-scale integrated assessment framework combining social network analysis (SNA) and space syntax to systematically evaluate public space structures in traditional nomadic villages of Xinjiang. The framework provides scientific evidence for optimizing public space design in these villages, facilitating harmonious coexistence between spatial functionality and cultural values. Focusing on three heritage villages—representing compact, linear, and dispersed morphologies—the research employs a hierarchical “village-street-node” analytical model to dissect spatial configurations and their socio-functional dynamics. Key findings include the following: Compact villages exhibit high central clustering but excessive concentration, necessitating strategies to enhance network resilience and peripheral connectivity. Linear villages demonstrate weak systemic linkages, requiring “segment-connection point supplementation” interventions to mitigate structural elongation. Dispersed villages maintain moderate network density but face challenges in visual integration and centrality, demanding targeted activation of key intersections to improve regional cohesion. By merging SNA’s social attributes with space syntax’s geometric precision, this framework bridges a methodological gap, offering comprehensive spatial optimization solutions. Practical recommendations include culturally embedded placemaking, adaptive reuse of transitional spaces, and thematic zoning to balance heritage conservation with tourism needs. Analyzing Xinjiang’s unique spatial–social interactions provides innovative insights for sustainable heritage village planning and replicable solutions for comparable global cases. Full article
Show Figures

Figure 1

19 pages, 3492 KiB  
Article
Deep Learning-Based Rooftop PV Detection and Techno Economic Feasibility for Sustainable Urban Energy Planning
by Ahmet Hamzaoğlu, Ali Erduman and Ali Kırçay
Sustainability 2025, 17(15), 6853; https://doi.org/10.3390/su17156853 - 28 Jul 2025
Viewed by 241
Abstract
Accurate estimation of available rooftop areas for PV power generation at the city scale is critical for sustainable energy planning and policy development. In this study, using publicly available high-resolution satellite imagery, rooftop solar energy potential in urban, rural, and industrial areas is [...] Read more.
Accurate estimation of available rooftop areas for PV power generation at the city scale is critical for sustainable energy planning and policy development. In this study, using publicly available high-resolution satellite imagery, rooftop solar energy potential in urban, rural, and industrial areas is estimated using deep learning models. In order to identify roof areas, high-resolution open-source images were manually labeled, and the training dataset was trained with DeepLabv3+ architecture. The developed model performed roof area detection with high accuracy. Model outputs are integrated with a user-friendly interface for economic analysis such as cost, profitability, and amortization period. This interface automatically detects roof regions in the bird’s-eye -view images uploaded by users, calculates the total roof area, and classifies according to the potential of the area. The system, which is applied in 81 provinces of Turkey, provides sustainable energy projections such as PV installed capacity, installation cost, annual energy production, energy sales revenue, and amortization period depending on the panel type and region selection. This integrated system consists of a deep learning model that can extract the rooftop area with high accuracy and a user interface that automatically calculates all parameters related to PV installation for energy users. The results show that the DeepLabv3+ architecture and the Adam optimization algorithm provide superior performance in roof area estimation with accuracy between 67.21% and 99.27% and loss rates between 0.6% and 0.025%. Tests on 100 different regions yielded a maximum roof estimation accuracy IoU of 84.84% and an average of 77.11%. In the economic analysis, the amortization period reaches the lowest value of 4.5 years in high-density roof regions where polycrystalline panels are used, while this period increases up to 7.8 years for thin-film panels. In conclusion, this study presents an interactive user interface integrated with a deep learning model capable of high-accuracy rooftop area detection, enabling the assessment of sustainable PV energy potential at the city scale and easy economic analysis. This approach is a valuable tool for planning and decision support systems in the integration of renewable energy sources. Full article
Show Figures

Figure 1

19 pages, 2278 KiB  
Article
Interplay Between Vegetation and Urban Climate in Morocco—Impact on Human Thermal Comfort
by Noura Ed-dahmany, Lahouari Bounoua, Mohamed Amine Lachkham, Mohammed Yacoubi Khebiza, Hicham Bahi and Mohammed Messouli
Urban Sci. 2025, 9(8), 289; https://doi.org/10.3390/urbansci9080289 - 25 Jul 2025
Viewed by 528
Abstract
This study examines diurnal surface temperature dynamics across major Moroccan cities during the growing season and explores the interaction between urban and vegetated surfaces. We also introduce the Urban Thermal Impact Ratio (UTIR), a novel metric designed to quantify urban thermal comfort as [...] Read more.
This study examines diurnal surface temperature dynamics across major Moroccan cities during the growing season and explores the interaction between urban and vegetated surfaces. We also introduce the Urban Thermal Impact Ratio (UTIR), a novel metric designed to quantify urban thermal comfort as a function of the surface urban heat island (SUHI) intensity. The analysis is based on outputs from a land surface model (LSM) for the year 2010, integrating high-resolution Landsat and MODIS data to characterize land cover and biophysical parameters across twelve land cover types. Our findings reveal moderate urban–vegetation temperature differences in coastal cities like Tangier (1.8 °C) and Rabat (1.0 °C), where winter vegetation remains active. In inland areas, urban morphology plays a more dominant role: Fes, with a 20% impervious surface area (ISA), exhibits a smaller SUHI than Meknes (5% ISA), due to higher urban heating in the latter. The Atlantic desert city of Dakhla shows a distinct pattern, with a nighttime SUHI of 2.1 °C and a daytime urban cooling of −0.7 °C, driven by irrigated parks and lawns enhancing evapotranspiration and shading. At the regional scale, summer UTIR values remain below one in Tangier-Tetouan-Al Hoceima, Rabat-Sale-Kenitra, and Casablanca-Settat, suggesting that urban conditions generally stay within thermal comfort thresholds. In contrast, higher UTIR values in Marrakech-Safi, Beni Mellal-Khénifra, and Guelmim-Oued Noun indicate elevated heat discomfort. At the city scale, the UTIR in Tangier, Rabat, and Casablanca demonstrates a clear diurnal pattern: it emerges around 11:00 a.m., peaks at 1:00 p.m., and fades by 3:00 p.m. This study highlights the critical role of vegetation in regulating urban surface temperatures and modulating urban–rural thermal contrasts. The UTIR provides a practical, scalable indicator of urban heat stress, particularly valuable in data-scarce settings. These findings carry significant implications for climate-resilient urban planning, optimized energy use, and the design of public health early warning systems in the context of climate change. Full article
Show Figures

Figure 1

24 pages, 2803 KiB  
Article
AKI2ALL: Integrating AI and Blockchain for Circular Repurposing of Japan’s Akiyas—A Framework and Review
by Manuel Herrador, Romi Bramantyo Margono and Bart Dewancker
Buildings 2025, 15(15), 2629; https://doi.org/10.3390/buildings15152629 - 25 Jul 2025
Viewed by 581
Abstract
Japan’s 8.5 million vacant homes (Akiyas) represent a paradox of scarcity amid surplus: while rural depopulation leaves properties abandoned, housing shortages and bureaucratic inefficiencies hinder their reuse. This study proposes AKI2ALL, an AI-blockchain framework designed to automate the circular repurposing of Akiyas into [...] Read more.
Japan’s 8.5 million vacant homes (Akiyas) represent a paradox of scarcity amid surplus: while rural depopulation leaves properties abandoned, housing shortages and bureaucratic inefficiencies hinder their reuse. This study proposes AKI2ALL, an AI-blockchain framework designed to automate the circular repurposing of Akiyas into ten high-value community assets—guesthouses, co-working spaces, pop-up retail and logistics hubs, urban farming hubs, disaster relief housing, parking lots, elderly daycare centers, exhibition spaces, places for food and beverages, and company offices—through smart contracts and data-driven workflows. By integrating circular economy principles with decentralized technology, AKI2ALL streamlines property transitions, tax validation, and administrative processes, reducing operational costs while preserving embodied carbon in existing structures. Municipalities list properties, owners select uses, and AI optimizes assignments based on real-time demand. This work bridges gaps in digital construction governance, proving that automating trust and accountability can transform systemic inefficiencies into opportunities for community-led, low-carbon regeneration, highlighting its potential as a scalable model for global vacant property reuse. Full article
(This article belongs to the Special Issue Advances in the Implementation of Circular Economy in Buildings)
Show Figures

Figure 1

22 pages, 504 KiB  
Article
Rural Public Science and Technology Services, Land Productivity, and Agricultural Modernization: Case Study of Southwest China
by Tingting Huang and Qinghua Huang
Land 2025, 14(8), 1530; https://doi.org/10.3390/land14081530 - 24 Jul 2025
Viewed by 243
Abstract
The realization of agricultural modernization inevitably requires the improvement of agricultural land productivity. Rural public science and technology services is an important driving force to improve agricultural land productivity. However, can rural public science and technology services accelerate the process of agricultural modernization [...] Read more.
The realization of agricultural modernization inevitably requires the improvement of agricultural land productivity. Rural public science and technology services is an important driving force to improve agricultural land productivity. However, can rural public science and technology services accelerate the process of agricultural modernization by improving land productivity? This paper innovatively constructs an evaluation index system and an mediating mechanism model, measures the comprehensive index of agricultural modernization and rural public science and technology services through the global entropy method, and empirically tests the mediating effect of the mechanism of “land productivity” with the help of measurement methods such as the Sobel–Goodman test and Bootstrap test. The research results find that rural public science and technology services can positively promote agricultural modernization and pass the 1% significance level test. There is a significant mediating effect of “increasing production” in the impact of rural public science and technology services on agricultural modernization, that is, rural public science and technology services can significantly promote agricultural modernization through the mechanism of “improving land productivity”. Government intervention and economic growth are significantly positive, which can significantly promote agricultural modernization. These findings have clear policy implications: Chinese government should accelerate the filling of gaps in rural public technology services between urban and rural areas in the southwest region, empower land productivity through science and technology, and promote the transformation of agricultural scientific and technological achievements into real productive forces. This research is helpful to provide policy reference and case experience for similar areas to speed up agricultural modernization by giving full play to the mechanism of “improving land productivity” of agricultural science and technology services. Full article
(This article belongs to the Special Issue Land Use Policy and Food Security: 2nd Edition)
Show Figures

Figure 1

21 pages, 1792 KiB  
Article
From Urban Planning to Territorial Spatial Planning: The Evolution of China’s Planning System and the Persistent Barriers to Urban–Rural Integration
by Shengxi Xin and Hui Qian
Land 2025, 14(8), 1520; https://doi.org/10.3390/land14081520 - 24 Jul 2025
Viewed by 397
Abstract
This paper critically examines the persistent limitations of spatial planning reforms in China in addressing urban–rural integration, despite significant and successive legislative and planning reforms. Through a historically grounded and institutionally informed analysis, the study traces the evolution of China’s planning regimes across [...] Read more.
This paper critically examines the persistent limitations of spatial planning reforms in China in addressing urban–rural integration, despite significant and successive legislative and planning reforms. Through a historically grounded and institutionally informed analysis, the study traces the evolution of China’s planning regimes across three key phases—urban planning, urban–rural planning, and territorial spatial planning (TSP)—highlighting shifting policy logics and the enduring structural challenges that shape rural marginalization. Drawing on national planning documents and authors’ empirical insights from planning practice, the paper identifies four interrelated and persistent constraints: (1) cross-scalar and interdepartmental fragmentation in governance, (2) contradictions in the land system that restrict rural development rights, (3) fiscal dependence on land conversion that distorts planning priorities, and (4) technical and conceptual gaps that reduce rural planning to physicalist and exogenous interventions. The paper contributes by offering a periodized account of China’s rural planning reforms, situating these within global debates on rural marginalization, and evaluating the transformative potential of the TSP framework. It argues that achieving meaningful urban–rural integration requires a fundamental rethinking of planning as a developmental, rather than solely regulatory, practice—one that is territorially embedded, socially responsive, and functionally aligned with endogenous rural revitalization. Full article
Show Figures

Figure 1

Back to TopTop