Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (229)

Search Parameters:
Keywords = route modification and development

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 5766 KB  
Article
Physicomechanical Properties of Recycled Gypsum Composites with Polyvinyl Acetate Emulsion and Treated Short Green Coconut Fibers
by Sandra Cunha Gonçalves, Milton Ferreira da Silva Junior, Marcelo Tramontin Souza, Nilson Santana de Amorim Júnior and Daniel Véras Ribeiro
Buildings 2025, 15(19), 3490; https://doi.org/10.3390/buildings15193490 - 26 Sep 2025
Abstract
The reintegration of waste into the production chain represents a sustainable method of reducing environmental impact while promoting economic growth. This also aligns with social and environmental demands. In this study, composites were produced from commercial and recycled gypsum, polyvinyl acetate (PVA) emulsions, [...] Read more.
The reintegration of waste into the production chain represents a sustainable method of reducing environmental impact while promoting economic growth. This also aligns with social and environmental demands. In this study, composites were produced from commercial and recycled gypsum, polyvinyl acetate (PVA) emulsions, and chemically treated short green coconut fibers, and characterized by physical and mechanical analyses. The addition of PVA improved paste workability, extended setting time, and reduced porosity, while fiber pretreatment enhanced adhesion and tensile performance. XRD, FTIR, and TGA-DTA confirmed modifications in crystallinity, bonding, and thermal stability due to the combined action of PVA and fibers. Compared with the recycled gypsum reference (RG), the optimized composite (R50C50P5F10) exhibited a 69.1% reduction in sorptivity (from 5440 × 10−4 to 1680 × 10−4 kg/m2·s0.5), a 27.9% increase in flexural tensile strength (from 2.65 to 3.39 MPa), and a 15.1% increase in compressive strength (from 6.18 to 7.12 MPa). Surface hardness values remained statistically equivalent to RG but complied with normative requirements, maintaining all formulations within the moderate hardness category (55–80 Shore C). The results demonstrate the technical feasibility of incorporating recycled gypsum and agro-industrial fibers into gypsum composites, providing a sustainable route for developing more durable construction materials. Full article
Show Figures

Figure 1

30 pages, 1919 KB  
Article
Dijkstra and A* Algorithms for Algorithmic Optimization of Maritime Routes and Logistics of Offshore Wind Farms
by Vice Milin, Tatjana Stanivuk, Ivica Skoko and Toma Bulić
J. Mar. Sci. Eng. 2025, 13(10), 1863; https://doi.org/10.3390/jmse13101863 - 26 Sep 2025
Abstract
Shipping in complex marine environments requires a balance between navigational safety, minimising travel time and optimising logistics management, which is particularly challenging in areas with geometric obstructions and Offshore Wind Farms (OWFs). This study focuses on the maritime route networks in the Croatian [...] Read more.
Shipping in complex marine environments requires a balance between navigational safety, minimising travel time and optimising logistics management, which is particularly challenging in areas with geometric obstructions and Offshore Wind Farms (OWFs). This study focuses on the maritime route networks in the Croatian ports of Pula and Rijeka, including the main access routes to OWFs and zones characterised by multiple navigational challenges. The aim of the research is to develop an empirically based and practically applicable framework for the optimisation of sea routes that combines analytical precision with operational efficiency. The parallel application of Dijkstra and A* algorithms enables a comparative analysis between deterministic and heuristic approaches in terms of reducing navigation risk, optimising route costs and ensuring fast logistical access to OWFs. The applied methods include the analysis of real and simulated route networks, the evaluation of statistical route parameters and the visualisation of the results for the evaluation of logistical and operational efficiency. Adaptive heuristic modifications of the A* algorithm, combined with the parallel implementation of Dijkstra’s algorithm, enable dynamic route planning that takes into account real-world conditions, including variations in wind speed and direction. The results obtained provide a comprehensive framework for safe, efficient and logistically optimised navigation in complex marine environments, with direct applications in the maintenance, inspection and operational management of OWFs. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

32 pages, 8677 KB  
Review
Advances in Dealloying of Ti and Ti-Based Alloys for Biomedical Applications
by Kirti Tiwari, Deepti Raj, Paola Rizzi and Federico Scaglione
Materials 2025, 18(18), 4424; https://doi.org/10.3390/ma18184424 - 22 Sep 2025
Viewed by 117
Abstract
Dealloying technique has been used for centuries as an attractive method for producing porous surfaces by removing one or more undesirable elements from the surface. Since early 2000s, the technique has been further developed for understanding the dealloying mechanism and tailoring it to [...] Read more.
Dealloying technique has been used for centuries as an attractive method for producing porous surfaces by removing one or more undesirable elements from the surface. Since early 2000s, the technique has been further developed for understanding the dealloying mechanism and tailoring it to produce chemically homogeneous materials with nanoporous (np) morphology. Dealloying has found numerous applications such as sensors, catalysts, as well as in the biomedical field, which is fairly recent and has attracted great attention on this topic. This review investigates the dealloying technique for preparing nanoporous materials and nanoporous surfaces by using different modification routes on various types of Ti-based alloys for biomedical implant application. There has been significant growth in studying dealloying of crystalline, amorphous, shape memory, and composites-based Ti alloys. This review aims to summarise the findings from literature and discuss the scope of this technique and challenges involved for future aspects. Full article
(This article belongs to the Special Issue Advances in Implant Materials and Biocompatibility)
Show Figures

Figure 1

26 pages, 389 KB  
Review
Microbiota Gut–Brain Axis and Autism Spectrum Disorder: Mechanisms and Therapeutic Perspectives
by Andreas Petropoulos, Elisavet Stavropoulou, Christina Tsigalou and Eugenia Bezirtzoglou
Nutrients 2025, 17(18), 2984; https://doi.org/10.3390/nu17182984 - 17 Sep 2025
Viewed by 654
Abstract
Background/Objectives: Autism Spectrum Disorder (ASD) is a neurodevelopmental condition often accompanied by gastrointestinal (GI) symptoms and gut microbiota imbalances. The microbiota–gut–brain (MGB) axis is a bidirectional communication network linking gut microbes, the GI system, and the central nervous system (CNS). This narrative [...] Read more.
Background/Objectives: Autism Spectrum Disorder (ASD) is a neurodevelopmental condition often accompanied by gastrointestinal (GI) symptoms and gut microbiota imbalances. The microbiota–gut–brain (MGB) axis is a bidirectional communication network linking gut microbes, the GI system, and the central nervous system (CNS). This narrative review explores the role of the MGB axis in ASD pathophysiology, focusing on communication pathways, neurodevelopmental implications, gut microbiota alteration, GI dysfunction, and emerging therapeutics. Methods: A narrative review methodology was employed. We searched major scientific databases including PubMed, Scopus, and Google Scholar for research on MGB axis mechanisms, gut microbiota composition in ASD, dysbiosis, leaky gut, immune activation, GI disorders, and intervention (probiotics, prebiotics, fecal microbiota transplantation (FMT), antibiotics and diet). Key findings from recent human, animal and in vitro studies were synthesized thematically, emphasizing mechanistic insights and therapeutic outcomes. Original references from the initial manuscript draft were retained and supplemented for comprehensiveness and accuracy. Results: The MGB axis involves neuroanatomical, neuroendocrine, immunological, and metabolic pathways that enable microbes to influence brain development and function. Individuals with ASD commonly exhibit gut dysbiosis characterized by reduced microbial diversity (notably lower Bifidobacterium and Firmicutes) and overpresentation of potentially pathogenic taxa (e.g., Clostridia, Desulfovibrio, Enterobacteriaceae). Dysbiosis is associated with increased intestinal permeability (“leaky gut”) and newly activated and altered microbial metabolite profiles, such as short-chain fatty acids (SCFAs) and lipopolysaccharides (LPSs). Functional gastrointestinal disorders (FGIDs) are prevalent in ASD, linking gut–brain axis dysfunction to behavioral severity. Therapeutically, probiotics and prebiotics can restore eubiosis, fortify the gut barrier, and reduce neuroinflammation, showing modest improvements in GI and behavioral symptoms. FMT and Microbiota Transfer Therapy (MTT) have yielded promising results in open label trials, improving GI function and some ASD behaviors. Antibiotic interventions (e.g., vancomycin) have been found to temporarily alleviate ASD symptoms associated with Clostridiales overgrowth, while nutritional strategies (high-fiber, gluten-free, or ketogenic diets) may modulate the microbiome and influence outcomes. Conclusions: Accumulating evidence implicates the MGB axis in ASD pathogenesis. Gut microbiota dysbiosis and the related GI pathology may exacerbate neurodevelopmental and behavioral symptoms via immune, endocrine and neural routes. Interventions targeting the gut ecosystem, through diet modification, probiotics, symbiotics, or microbiota transplants, offer therapeutic promise. However, heterogeneity in findings underscores the need for rigorous, large-scale studies to clarify causal relationships and evaluate long-term efficacy and safety. Understanding MGB axis mechanisms in ASD could pave the way for novel adjunctive treatments to improve the quality of life for individuals with ASD. Full article
(This article belongs to the Section Nutrition and Neuro Sciences)
16 pages, 4426 KB  
Article
Scalable Fabrication of Biomimetic Antibacterial Nanospikes on PMMA Films Using Atmospheric-Pressure Low-Temperature Plasma
by Masashi Yamamoto, Kentaro Tada, Ayumu Takada and Atsushi Sekiguchi
Biomimetics 2025, 10(9), 601; https://doi.org/10.3390/biomimetics10090601 - 8 Sep 2025
Viewed by 454
Abstract
Antibacterial surfaces inspired by biological micro- and nanostructures, such as those found on the wings of cicadas and dragonflies, have attracted interest due to their ability to inhibit bacterial adhesion and damage microbial membranes without relying on chemical agents. However, conventional fabrication techniques [...] Read more.
Antibacterial surfaces inspired by biological micro- and nanostructures, such as those found on the wings of cicadas and dragonflies, have attracted interest due to their ability to inhibit bacterial adhesion and damage microbial membranes without relying on chemical agents. However, conventional fabrication techniques like photolithography or nanoimprinting are limited by substrate shape, size, and high operational costs. In this study, we developed a scalable method using atmospheric-pressure low-temperature plasma (APLTP) to fabricate sharp-edged nanospikes on solvent-cast polymethyl methacrylate (PMMA) films. The nanospikes were formed through plasma-induced modification of pores in the film, followed by annealing to control surface wettability while maintaining structural sharpness. Atomic force microscopy confirmed the formation of micro/nanostructures, and contact angle measurements revealed reversible hydrophilicity. Antibacterial performance was evaluated against Escherichia coli using ISO 22196 standards. While the film with only plasma treatment reduced bacterial colonies by 30%, the film annealed after plasma treatment achieved an antibacterial activity value greater than 5, with bacterial counts below the detection limit (<10 CFU). These findings demonstrate that APLTP offers a practical route for large-area fabrication of biomimetic antibacterial coatings on flexible polymer substrates, holding promise for future applications in healthcare, packaging, and public hygiene. Full article
(This article belongs to the Section Biomimetic Surfaces and Interfaces)
Show Figures

Figure 1

11 pages, 6759 KB  
Article
Microstructural Evolution of a Pre-Alloyed Duplex Stainless Steel 2205 with Boron Addition Prepared by Powder Metallurgy
by Pedro Morita Terceiro and Juliano Soyama
Powders 2025, 4(3), 24; https://doi.org/10.3390/powders4030024 - 22 Aug 2025
Viewed by 673
Abstract
The addition of hard particles such as borides to a ductile stainless steel matrix can be very efficient for improving mechanical properties. Powder metallurgy represents a suitable route for developing these material modifications, combining high reproducibility and cost-effectiveness. The present research investigated the [...] Read more.
The addition of hard particles such as borides to a ductile stainless steel matrix can be very efficient for improving mechanical properties. Powder metallurgy represents a suitable route for developing these material modifications, combining high reproducibility and cost-effectiveness. The present research investigated the effect of sintering time on an atomized, pre-alloyed 2205 stainless steel with 2.5 wt.% boron, using two different powder size distributions: fine (<45 µm) and coarse (250–500 µm). Cold uniaxial compaction was conducted using a cylindrical closed die. Sintering was carried out at 1200 °C with a dwell time of 2 and 4 h in argon atmosphere. Microstructural investigation showed that borides were formed in the powder’s atomization step and presented a small size with different morphologies. The borides significantly improved the hardness and compression strength. Compared to the reference 2205 stainless steel, specimens prepared with the fine powder size distribution achieved a twofold enhancement in yield stress, while hardness increased by 26%. Full article
Show Figures

Figure 1

16 pages, 1685 KB  
Article
Analytical Method for Modifying Compound Curves on Railway Lines
by Wladyslaw Koc
Geomatics 2025, 5(3), 38; https://doi.org/10.3390/geomatics5030038 - 22 Aug 2025
Viewed by 550
Abstract
The aim of the research presented in the article is to develop a method for modifying compound curves, i.e., geometric systems composed of two (or more) circular arcs with different radii, directed in the same direction and directly connected to each other. These [...] Read more.
The aim of the research presented in the article is to develop a method for modifying compound curves, i.e., geometric systems composed of two (or more) circular arcs with different radii, directed in the same direction and directly connected to each other. These curves are used when connecting two directions of the railway route where one circular arc is impossible due to permanent terrain obstacles. To solve the problem, an analytical method of designing track geometric systems was used, in which individual elements of these systems are described using mathematical equations. The modification itself involves introducing appropriate transition curves between the connecting arcs. Three possibilities for such a connection were presented, resulting from the method of considering conditions related to horizontal curvature of the track axis. A comparative analysis of the obtained solutions was conducted using the developed geometric test system. The analysis was based on the curvature values determined for the considered transition curves, after assuming varying lengths of these curves. For the recommended solution to the problem, it was necessary to verify the practical feasibility of horizontal ordinate values, which could not be too small relative to the implementation error. As stated, to limit the effects of this error, the transition curve lengths should be adjusted to specific geometric situations and excessively short curves should be avoided. As a result of the conducted research, the transition curve determined with strict curvature conditions was determined to be the most advantageous. It maintains curvature continuity along its entire length, there are no abrupt changes in curvature at the edges, and the changes in curvature along the length are much smoother than in the other curves considered. Therefore, this curve should be recommended for practical use. Full article
Show Figures

Figure 1

29 pages, 1172 KB  
Review
Oncolytic Herpes Simplex Virus Therapy: Latest Advances, Core Challenges, and Future Outlook
by Yiyang Zheng, Yusheng Pei, Chunyan Dong, Jinghui Liang, Tong Cai, Yuan Zhang, Dejiang Tan, Junzhi Wang and Qing He
Vaccines 2025, 13(8), 880; https://doi.org/10.3390/vaccines13080880 - 20 Aug 2025
Viewed by 1279
Abstract
Oncolytic virus (OV) immunotherapy, particularly with oncolytic herpes simplex virus (oHSV), has become a promising new strategy in cancer treatment. This field has achieved significant clinical milestones, highlighted by the FDA approval of Talimogene laherparepvec (T-VEC) for melanoma in 2015 and the approval [...] Read more.
Oncolytic virus (OV) immunotherapy, particularly with oncolytic herpes simplex virus (oHSV), has become a promising new strategy in cancer treatment. This field has achieved significant clinical milestones, highlighted by the FDA approval of Talimogene laherparepvec (T-VEC) for melanoma in 2015 and the approval of Teserpaturev/G47Δ for malignant glioma in Japan in 2021. This review synthesizes the key preclinical and clinical advancements in oHSV therapy over the last decade, critically analyzing the core challenges in target selection, genetic modification, administration routes, and targeted delivery. Key findings indicate that arming oHSV with immunomodulatory transgenes, such as cytokines and antibodies, and combining it with immune checkpoint inhibitors are critical strategies for enhancing therapeutic efficacy. Future research will focus on precision engineering using CRISPR/Cas9, the development of novel delivery vehicles like nanoparticles and mesenchymal stem cells (MSCs), and biomarker-guided personalized medicine, aiming to provide safer and more effective solutions for refractory cancers. This review synthesizes oHSV advances and analyzes novel delivery and gene-editing strategies. Full article
Show Figures

Figure 1

45 pages, 4280 KB  
Article
Helminth/Protozoan Coinfections in Chronic Fascioliasis Cases in Human Hyperendemic Areas: High Risk of Multiparasitism Linked to Transmission Aspects and Immunological, Environmental and Social Factors
by M. Adela Valero, M. Manuela Morales-Suarez-Varela, Davis J. Marquez-Guzman, Rene Angles, Jose R. Espinoza, Pedro Ortiz, Filippo Curtale, M. Dolores Bargues and Santiago Mas-Coma
Trop. Med. Infect. Dis. 2025, 10(8), 224; https://doi.org/10.3390/tropicalmed10080224 - 11 Aug 2025
Viewed by 988
Abstract
Research is required to determine whether the coinfections by Fasciola spp. and other parasite species result from poor rural hygiene or reflect underlying epidemiological patterns and causes. Therefore, the role of fascioliasis is analyzed concerning coinfection complexity, risk of multiparasitism, parasite associations, pathogenic [...] Read more.
Research is required to determine whether the coinfections by Fasciola spp. and other parasite species result from poor rural hygiene or reflect underlying epidemiological patterns and causes. Therefore, the role of fascioliasis is analyzed concerning coinfection complexity, risk of multiparasitism, parasite associations, pathogenic implications and their multifactorial causes. Helminth and protozoan coinfections are studied in 2575 previously untreated individuals from four rural hyperendemic areas (Northern Bolivian Altiplano, Peruvian Altiplano and Cajamarca valley, and the Egyptian Nile Delta). This cross-sectional study was conducted from January 2011 to December 2023. Coinfections were coprologically assessed by the merthiolate–iodine–formalin and formol–ether concentration techniques. Infection intensity was measured as eggs/gram of feces (epg) with the Kato–Katz technique. Parasite and coinfection prevalences were stratified by age, sex and geographical location. High mixed infections, fascioliasis prevalences and very low non-coinfected Fasciola-infected subjects were associated with the following regions: Bolivian Altiplano, 96.5%, 16.8% and 3.5%; Peruvian Altiplano, 100%, 24.6% and 0%; Cajamarca valley, 98.7%, 21.4% and 1.8%; Nile Delta, 84.1%, 13.0% and 15.9%. Transmission routes and human infection sources underlie fascioliasis associations with protozoan and other helminth infections. Prevalence pattern of protozoan–helminth coinfections differed between Fasciola-infected individuals and individuals not infected with Fasciola, presenting higher prevalences in individuals with fascioliasis. Multiparasitism diagnosed in Fasciola-infected subjects included coinfections by up to nine parasite species, eight protozoan species, and five helminth species. The most prevalent pathogenic protozoan was Giardia intestinalis. The most prevalent helminth species differ according to environmental conditions. Several parasites indicate fecal environmental contamination. When the fascioliasis burden increases, the total number of parasite species also increases. The fascioliasis risk increases when the total helminth species number/host increases. Fasciola-infected subjects may present a modification in the clinical phenotypes of coinfecting parasitic diseases. Fascioliasis coinfection factors include transmission ways and immunological, environmental and social aspects. Coinfections must be considered when assessing the health impact of fascioliasis, including the analysis of the fascioliasis effects on malnutrition and physical/intellectual child development. Fascioliasis-control schemes should, therefore, integrate control measures mainly against other helminthiases. Full article
(This article belongs to the Section Neglected and Emerging Tropical Diseases)
Show Figures

Figure 1

33 pages, 2747 KB  
Review
Biochar-Derived Electrochemical Sensors: A Green Route for Trace Heavy Metal Detection
by Sairaman Saikrithika and Young-Joon Kim
Chemosensors 2025, 13(8), 278; https://doi.org/10.3390/chemosensors13080278 - 1 Aug 2025
Viewed by 855
Abstract
The increasing demand for rapid, sensitive, and eco-friendly methods for the detection of trace heavy metals in environmental samples, attributed to their serious threats to health and the environment, has spurred considerable interest in the development of sustainable sensor materials. Toxic metal ions, [...] Read more.
The increasing demand for rapid, sensitive, and eco-friendly methods for the detection of trace heavy metals in environmental samples, attributed to their serious threats to health and the environment, has spurred considerable interest in the development of sustainable sensor materials. Toxic metal ions, namely, lead (Pb2+), cadmium (Cd2+), mercury (Hg2+), arsenic (As3+), and chromium, are potential hazards due to their non-biodegradable nature with high toxicity, even at trace levels. Acute health complications, including neurological, renal, and developmental disorders, arise upon exposure to such metal ions. To monitor and mitigate these toxic exposures, sensitive detection techniques are essential. Pre-existing conventional detection methods, such as atomic absorption spectroscopy (AAS) and inductively coupled plasma-mass spectrometry (ICP-MS), involve expensive instrumentation, skilled operators, and complex sample preparation. Electrochemical sensing, which is simple, portable, and eco-friendly, is foreseen as a potential alternative to the above conventional methods. Carbon-based nanomaterials play a crucial role in electrochemical sensors due to their high conductivity, stability, and the presence of surface functional groups. Biochar (BC), a carbon-rich product, has emerged as a promising electrode material for electrochemical sensing due to its high surface area, sustainability, tunable porosity, surface rich in functional groups, eco-friendliness, and negligible environmental footprint. Nevertheless, broad-spectrum studies on the use of biochar in electrochemical sensors remain narrow. This review focuses on the recent advancements in the development of biochar-based electrochemical sensors for the detection of toxic heavy metals such as Pb2+, Cd2+, and Hg2+ and the simultaneous detection of multiple ions, with special emphasis on BC synthesis routes, surface modification methodologies, electrode fabrication techniques, and electroanalytical performance. Finally, current challenges and future perspectives for integrating BC into next-generation sensor platforms are outlined. Full article
(This article belongs to the Special Issue Green Electrochemical Sensors for Trace Heavy Metal Detection)
Show Figures

Graphical abstract

36 pages, 9312 KB  
Review
Current Progress in the Biosynthesis of Metal Sulfide Nanomaterials for the Degradation of Dyes: A Review
by Carol D. Langa, Nonhlangabezo Mabuba and Nomso C. Hintsho-Mbita
Catalysts 2025, 15(8), 727; https://doi.org/10.3390/catal15080727 - 30 Jul 2025
Viewed by 743
Abstract
The contamination of water bodies by industrial dyes poses a significant environmental challenge on a global scale. Conventional wastewater treatment methods often suffer from limitations related to high cost, limited efficiency, and potential secondary environmental impacts. Recent advances in photocatalytic technologies have highlighted [...] Read more.
The contamination of water bodies by industrial dyes poses a significant environmental challenge on a global scale. Conventional wastewater treatment methods often suffer from limitations related to high cost, limited efficiency, and potential secondary environmental impacts. Recent advances in photocatalytic technologies have highlighted the potential of metal sulfide-based photocatalysts, particularly those synthesized through environmentally friendly, plant-mediated approaches, as promising alternatives for efficient and sustainable dye degradation. However, despite their promising potential, metal sulfide photocatalysts often suffer from limitations such as photocorrosion, low stability under irradiation, and rapid recombination of charge carriers, which restrict their long-term applicability. In light of these challenges, this review provides a comprehensive examination of the physicochemical characteristics, synthetic strategies, and photocatalytic applications of metal sulfides. Particular emphasis is placed on green synthesis routes employing plant-derived extracts, which offer environmentally benign and sustainable alternatives to conventional methods. Moreover, the review elucidates various modification approaches, most notably, the formation of heterostructures, as viable strategies to enhance photocatalytic efficiency and mitigate the aforementioned drawbacks. The green synthesis of metal sulfides, aligned with the principles of green chemistry, offers a promising route toward the development of sustainable and environmentally friendly water treatment technologies. Full article
(This article belongs to the Special Issue Recent Advances in Photocatalysis for Environmental Applications)
Show Figures

Figure 1

32 pages, 4464 KB  
Review
Multifunctional Polyimide for Packaging and Thermal Management of Electronics: Design, Synthesis, Molecular Structure, and Composite Engineering
by Xi Chen, Xin Fu, Zhansheng Chen, Zaiteng Zhai, Hongkang Miu and Peng Tao
Nanomaterials 2025, 15(15), 1148; https://doi.org/10.3390/nano15151148 - 24 Jul 2025
Viewed by 1059
Abstract
Polyimide, a class of high-performance polymers, is renowned for its exceptional thermal stability, mechanical strength, and chemical resistance. However, in the context of high-integration and high-frequency electronic packaging, polyimides face critical challenges including relatively high dielectric constants, inadequate thermal conductivity, and mechanical brittleness. [...] Read more.
Polyimide, a class of high-performance polymers, is renowned for its exceptional thermal stability, mechanical strength, and chemical resistance. However, in the context of high-integration and high-frequency electronic packaging, polyimides face critical challenges including relatively high dielectric constants, inadequate thermal conductivity, and mechanical brittleness. Recent advances have focused on molecular design and composite engineering strategies to address these limitations. This review first summarizes the intrinsic properties of polyimides, followed by a systematic discussion of chemical synthesis, surface modification approaches, molecular design principles, and composite fabrication methods. We comprehensively examine both conventional polymerization synthetic routes and emerging techniques such as microwave-assisted thermal imidization and chemical vapor deposition. Special emphasis is placed on porous structure engineering via solid-template and liquid-template methods. Three key modification strategies are highlighted: (1) surface modifications for enhanced hydrophobicity, chemical stability, and tribological properties; (2) molecular design for optimized dielectric performance and thermal stability; and (3) composite engineering for developing high-thermal-conductivity materials with improved mechanical strength and electromagnetic interference (EMI) shielding capabilities. The dielectric constant of polyimide is reduced while chemical stability and wear resistance can be enhanced through the introduction of fluorine groups. Ultra-low dielectric constant and high-temperature resistance can be achieved by employing rigid monomers and porous structures. Furthermore, the incorporation of fillers such as graphene and boron nitride can endow the composite materials with high thermal conductivity, excellent EMI shielding efficiency, and improved mechanical properties. Finally, we discuss representative applications of polyimide and composites in electronic device packaging, EMI shielding, and thermal management systems, providing insights into future development directions. Full article
(This article belongs to the Special Issue Functional and Structural Properties of Polymeric Nanocomposites)
Show Figures

Figure 1

14 pages, 3055 KB  
Article
High-Performance Thin Film Composite Nanofiltration (NF) Membrane Constructed on Modified Polyvinylidene Fluoride (PVDF) Substrate
by Junliang Dong, Qianzhi Sun, Xiaolin Feng and Ruijun Zhang
Membranes 2025, 15(7), 216; https://doi.org/10.3390/membranes15070216 - 20 Jul 2025
Viewed by 711
Abstract
The inherent hydrophobic nature of PVDF material renders it challenging to establish a stable aqueous hydration layer, thereby limiting its suitability as a substrate for the preparation of nanofiltration (NF) membranes. In this study, we developed a novel modification approach that effectively enhances [...] Read more.
The inherent hydrophobic nature of PVDF material renders it challenging to establish a stable aqueous hydration layer, thereby limiting its suitability as a substrate for the preparation of nanofiltration (NF) membranes. In this study, we developed a novel modification approach that effectively enhances the hydrophilicity of PVDF substrates through the incorporation of sulfonic acid-doped polyaniline (SPANI) and hyperbranched polyester (HPE) into the PVDF casting solution, followed by cross-linking with trimesoyl chloride (TMC). The introduction of SPANI and HPE, which contain reactive polar amino and hydroxyl groups, improved the hydrophilicity of the substrate, while the subsequent cross-linking with TMC effectively anchored these components within the substrate through the covalent linking between TMC and the reactive sites. Additionally, the hydrolysis of TMC yielded non-reactive carboxyl groups, which further enhanced the hydrophilicity of the substrate. As a result, the modified PVDF substrate exhibited improved hydrophilicity, facilitating the construction of an intact polyamide layer. In addition, the fabricated TFC NF membrane demonstrated excellent performance in the advanced treatment of tap water, achieving a total dissolved solid removal rate of 57.9% and a total organic carbon removal rate of 85.3%. This work provides a facile and effective route to modify PVDF substrates for NF membrane fabrication. Full article
Show Figures

Figure 1

25 pages, 947 KB  
Article
Synthetic Analogs of the Alkaloid Cassiarin A with Enhanced Antimalarial Activity
by Thomas Klaßmüller, Timo Reiß, Florian Lengauer, Che Julius Ngwa, Karin Bartel, Gabriele Pradel and Franz Bracher
Pharmaceuticals 2025, 18(7), 1018; https://doi.org/10.3390/ph18071018 - 9 Jul 2025
Viewed by 544
Abstract
Background: Among the alkaloids from Cassia siamea, cassiarin A has outstanding antiprotozoal activity, but structure–activity relationships for this chemotype were only poorly understood until now. Methods: We worked out efficient approaches to hitherto underexplored analogs (12 examples) on three synthesis routes which [...] Read more.
Background: Among the alkaloids from Cassia siamea, cassiarin A has outstanding antiprotozoal activity, but structure–activity relationships for this chemotype were only poorly understood until now. Methods: We worked out efficient approaches to hitherto underexplored analogs (12 examples) on three synthesis routes which mainly comprised variations in the methyl groups at C-2 and C-5. The new compounds were tested for antiprotozoal and cytotoxic activities. Results: Introduction of a (substituted) benzene ring at C-2 led to a significant enhancement of activity against Plasmodium falciparum, while modifications of the methyl group at C-5 and the phenolic group had detrimental effects. Two of the 2-phenyl analogs further showed a resistance index comparable to the one of the reference drug chloroquine. Although the novel derivatives did not show hemolytic effects, investigation on human endothelial (HUVEC) cells at relevant concentrations indicated strong cytotoxic effects on human cells. Conclusions: Systematic structure modifications of cassiarin A led to a significant enhancement of antiplasmodial activity, but the observed strong cytotoxicity to human cells renders this library of cassiarin A derivatives inadequate for drug development. Full article
(This article belongs to the Special Issue Natural Products-Assisted Organic Synthesis in Medicinal Chemistry)
Show Figures

Graphical abstract

26 pages, 1297 KB  
Review
Research Progress on the Application of Neutralizing Nanobodies in the Prevention and Treatment of Viral Infections
by Qingling Duan, Tong Ai, Yingying Ma, Ruoyu Li, Hanlin Jin, Xingyi Chen, Rui Zhang, Kunlu Bao and Qi Chen
Microorganisms 2025, 13(6), 1352; https://doi.org/10.3390/microorganisms13061352 - 11 Jun 2025
Viewed by 1086
Abstract
Public health crises triggered by viral infections pose severe threats to individual health and disrupt global socioeconomic systems. Against the backdrop of global pandemics caused by highly infectious diseases such as COVID-19 and Ebola virus disease (EVD), the development of innovative prevention and [...] Read more.
Public health crises triggered by viral infections pose severe threats to individual health and disrupt global socioeconomic systems. Against the backdrop of global pandemics caused by highly infectious diseases such as COVID-19 and Ebola virus disease (EVD), the development of innovative prevention and treatment strategies has become a strategic priority in the field of biomedicine. Neutralizing antibodies, as biological agents, are increasingly recognized for their potential in infectious disease control. Among these, nanobodies (Nbs) derived from camelid heavy-chain antibodies exhibit remarkable technical advantages due to their unique structural features. Compared to traditional neutralizing antibodies, nanobodies offer significant cost-effectiveness in production and enable versatile administration routes (e.g., subcutaneous injection, oral delivery, or aerosol inhalation), making them particularly suitable for respiratory infection control and resource-limited settings. Furthermore, engineered modification strategies—including multivalent constructs, multi-epitope recognition designs, and fragment crystallizable (Fc) domain fusion—effectively enhance their neutralizing activity and suppress viral immune escape mechanisms. Breakthroughs have been achieved in combating pathogens such as the Ebola virus and SARS-CoV-2, with mechanisms involving the blockade of virus–host interactions, induction of viral particle disintegration, and enhancement of immune responses. This review comprehensively discusses the structural characteristics, high-throughput screening technologies, and engineering strategies of nanobodies, providing theoretical foundations for the development of novel antiviral therapeutics. These advances hold strategic significance for addressing emerging and re-emerging infectious diseases. Full article
Show Figures

Figure 1

Back to TopTop